Search results for: diesel bus
256 Indirect Genotoxicity of Diesel Engine Emission: An in vivo Study Under Controlled Conditions
Authors: Y. Landkocz, P. Gosset, A. Héliot, C. Corbière, C. Vendeville, V. Keravec, S. Billet, A. Verdin, C. Monteil, D. Préterre, J-P. Morin, F. Sichel, T. Douki, P. J. Martin
Abstract:
Air Pollution produced by automobile traffic is one of the main sources of pollutants in urban atmosphere and is largely due to exhausts of the diesel engine powered vehicles. The International Agency for Research on Cancer, which is part of the World Health Organization, classified in 2012 diesel engine exhaust as carcinogenic to humans (Group 1), based on sufficient evidence that exposure is associated with an increased risk for lung cancer. Amongst the strategies aimed at limiting exhausts in order to take into consideration the health impact of automobile pollution, filtration of the emissions and use of biofuels are developed, but their toxicological impact is largely unknown. Diesel exhausts are indeed complex mixtures of toxic substances difficult to study from a toxicological point of view, due to both the necessary characterization of the pollutants, sampling difficulties, potential synergy between the compounds and the wide variety of biological effects. Here, we studied the potential indirect genotoxicity of emission of Diesel engines through on-line exposure of rats in inhalation chambers to a subchronic high but realistic dose. Following exposure to standard gasoil +/- rapeseed methyl ester either upstream or downstream of a particle filter or control treatment, rats have been sacrificed and their lungs collected. The following indirect genotoxic parameters have been measured: (i) telomerase activity and telomeres length associated with rTERT and rTERC gene expression by RT-qPCR on frozen lungs, (ii) γH2AX quantification, representing double-strand DNA breaks, by immunohistochemistry on formalin fixed-paraffin embedded (FFPE) lung samples. These preliminary results will be then associated with global cellular response analyzed by pan-genomic microarrays, monitoring of oxidative stress and the quantification of primary DNA lesions in order to identify biological markers associated with a potential pro-carcinogenic response of diesel or biodiesel, with or without filters, in a relevant system of in vivo exposition.Keywords: diesel exhaust exposed rats, γH2AX, indirect genotoxicity, lung carcinogenicity, telomerase activity, telomeres length
Procedia PDF Downloads 390255 An Approach towards Elementary Investigation on HCCI Technology
Authors: Jitendra Sharma
Abstract:
Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine.Keywords: HCCI, diesel engine, combustion, elementary investigation
Procedia PDF Downloads 444254 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia PDF Downloads 150253 Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions
Authors: M. A. Badr, M. N. El Kordy, A. N. Mohib, M. M. Ibrahim
Abstract:
The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.Keywords: hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study
Procedia PDF Downloads 401252 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine
Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins
Abstract:
Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG
Procedia PDF Downloads 149251 Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture
Authors: Merab Mamuladze, Mixeil Lejava, Fadiko Abuselidze
Abstract:
At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%.Keywords: engine, vibration, biodiesel, high risk factor, working conditions
Procedia PDF Downloads 81250 Effect of Fuel Injection Discharge Curve and Injection Pressure on Upgrading Power and Combustion Parameters in HD Diesel Engine with CFD Simulation
Authors: Saeed Chamehsara, Seyed Mostafa Mirsalim, Mehdi Tajdari
Abstract:
In this study, the effect of fuel injection discharge curve and injection pressure simultaneously for upgrading power of heavy duty diesel engine by simulation of combustion process in AVL-Fire software are discussed. Hence, the fuel injection discharge curve was changed from semi-triangular to rectangular which is usual in common rail fuel injection system. Injection pressure with respect to amount of injected fuel and nozzle hole diameter are changed. Injection pressure is calculated by an experimental equation which is for heavy duty diesel engines with common rail fuel injection system. Upgrading power for 1000 and 2000 bar injection pressure are discussed. For 1000 bar injection pressure with 188 mg injected fuel and 3 mm nozzle hole diameter in compare with first state which is semi-triangular discharge curve with 139 mg injected fuel and 3 mm nozzle hole diameter, upgrading power is about 19% whereas the special change has not been observed in cylinder pressure. On the other hand, both the NOX emission and the Soot emission decreased about 30% and 6% respectively. Compared with first state, for 2000 bar injection pressure that injected fuel and nozzle diameter are 196 mg and 2.6 mm respectively, upgrading power is about 22% whereas cylinder pressure has been fixed and NOX emission and the Soot emissions are decreased 36% and 20%, respectively.Keywords: CFD simulation, HD diesel engine, upgrading power, injection pressure, fuel injection discharge curve, combustion process
Procedia PDF Downloads 523249 Wear Diagnosis of Diesel Engine Helical Gear
Authors: Surjit Angra, Gajanan Rane, Vinod Kumar, Sushma Rani
Abstract:
This paper presents metallurgical investigation of failed helical gear of diesel engine gear box used in a car. The failure had occurred near the bottomland of the tooth spacing. The failed surface was studied under Scanning Electron Microscope (SEM) and also visually investigated. The images produced through SEM at various magnifications were studied. Detailed metallurgical study indicates that failure was due to foreign material inclusion which is a casting defect. Further study also revealed pitting, spalling and inter-granular fracture as the causes of gear failure.Keywords: helical gear, scanning electron microscope, casting defect, pitting
Procedia PDF Downloads 450248 Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production
Authors: Ifeanyichukwu Edeh, Tim Overton, Steve Bowra
Abstract:
Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge.Keywords: activated sludge, lipid, hydrothermal decarboxylation, renewable diesel
Procedia PDF Downloads 319247 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management
Authors: Hasan Ustun Basaran
Abstract:
Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency
Procedia PDF Downloads 178246 Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima
Authors: Rajesh Chandra, Uttam K. Ghosh
Abstract:
This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima.Keywords: biomass, bio-diesel, Cassia fistula L., C. minutissima, GC-MS, lipid
Procedia PDF Downloads 158245 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine
Authors: Pavan Pujar
Abstract:
Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.Keywords: fish oil biodiesel, raw oil, blends, performance parameters
Procedia PDF Downloads 413244 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil
Procedia PDF Downloads 240243 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure
Procedia PDF Downloads 329242 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis
Authors: Veena Chaudhary, Rakesh P. Gakkhar
Abstract:
In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics
Procedia PDF Downloads 331241 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine
Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.Keywords: diesel fuel, CFD, evaporation, multiphase
Procedia PDF Downloads 344240 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe
Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim
Abstract:
Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.Keywords: UWS (Urea-Water-Solution), selective catalytic reduction (SCR), evaporation, thermolysis, injection
Procedia PDF Downloads 397239 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil
Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang
Abstract:
Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.Keywords: catabolic gene, diesel, diversity, edaphic algae
Procedia PDF Downloads 280238 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers
Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash
Abstract:
Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system
Procedia PDF Downloads 421237 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection
Authors: Jayakrishnan U.
Abstract:
A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption
Procedia PDF Downloads 305236 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 432235 Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)
Authors: Tahsen Abdalwahab Ibraheem Albehege
Abstract:
Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management.Keywords: plasma system application, project physics, oxidizing environment, electromagnetically
Procedia PDF Downloads 99234 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device
Authors: Won Jun Jo, Man Young Kim
Abstract:
To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics
Procedia PDF Downloads 295233 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material
Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike
Abstract:
Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance
Procedia PDF Downloads 272232 Energy Resilience in the Sustainable Built Environment: the Use of Biogas to Reduce Vulnerabilities and Risks
Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik
Abstract:
The built environment is considered as a key element in transitioning to clean energy, needed to create resilient buildings and cities, enhance their adaptability to changes, and pursue energy saving. For such energy transition, this paper presents biogas as one of the sustainable sources of energy, as it is produced from organic materials often available in both urban and rural areas and can be converted into electrical and thermal energy, or into vehicular energies fuel. The resilience benefits of this fuel is being a localized alternative energy, and also provides tangible benefits for water, air, and soil quality. Through bibliographic and empirical research, this study analyzed the biogas potential and applications in Brazil and in the U.S. The results indicated that biogas emits 85% less CO2 to the atmosphere compared to diesel and could supply 40% of domestic electricity demand and 70% of diesel consumption in Brazil, with a similar scenario for the U.S.Keywords: resilience, sustainability, built environment, energy transition, biogas.
Procedia PDF Downloads 92231 Optimal Planning and Design of Hybrid Energy System for Taxila University
Authors: Habib Ur Rahman Habib
Abstract:
Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization
Procedia PDF Downloads 461230 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine
Authors: Mohan H., C. Elajchet Senni
Abstract:
In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester
Procedia PDF Downloads 291229 Fuel Cells Not Only for Cars: Technological Development in Railways
Authors: Marita Pigłowska, Beata Kurc, Paweł Daszkiewicz
Abstract:
Railway vehicles are divided into two groups: traction (powered) vehicles and wagons. The traction vehicles include locomotives (line and shunting), railcars (sometimes referred to as railbuses), and multiple units (electric and diesel), consisting of several or a dozen carriages. In vehicles with diesel traction, fuel energy (petrol, diesel, or compressed gas) is converted into mechanical energy directly in the internal combustion engine or via electricity. In the latter case, the combustion engine generator produces electricity that is then used to drive the vehicle (diesel-electric drive or electric transmission). In Poland, such a solution dominates both in heavy linear and shunting locomotives. The classic diesel drive is available for the lightest shunting locomotives, railcars, and passenger diesel multiple units. Vehicles with electric traction do not have their own source of energy -they use pantographs to obtain electricity from the traction network. To determine the competitiveness of the hydrogen propulsion system, it is essential to understand how it works. The basic elements of the construction of a railway vehicle drive system that uses hydrogen as a source of traction force are fuel cells, batteries, fuel tanks, traction motors as well as main and auxiliary converters. The compressed hydrogen is stored in tanks usually located on the roof of the vehicle. This resource is supplemented with the use of specialized infrastructure while the vehicle is stationary. Hydrogen is supplied to the fuel cell, where it oxidizes. The effect of this chemical reaction is electricity and water (in two forms -liquid and water vapor). Electricity is stored in batteries (so far, lithium-ion batteries are used). Electricity stored in this way is used to drive traction motors and supply onboard equipment. The current generated by the fuel cell passes through the main converter, whose task is to adjust it to the values required by the consumers, i.e., batteries and the traction motor. The work will attempt to construct a fuel cell with unique electrodes. This research is a trend that connects industry with science. The first goal will be to obtain hydrogen on a large scale in tube furnaces, to thoroughly analyze the obtained structures (IR), and to apply the method in fuel cells. The second goal is to create low-energy energy storage and distribution station for hydrogen and electric vehicles. The scope of the research includes obtaining a carbon variety and obtaining oxide systems on a large scale using a tubular furnace and then supplying vehicles. Acknowledgments: This work is supported by the Polish Ministry of Science and Education, project "The best of the best! 4.0", number 0911/MNSW/4968 – M.P. and grant 0911/SBAD/2102—B.K.Keywords: railway, hydrogen, fuel cells, hybrid vehicles
Procedia PDF Downloads 189228 Potential for Massive Use of Biodiesel for Automotive in Italy
Authors: Domenico Carmelo Mongelli
Abstract:
The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.Keywords: biodiesel, economy, engines, environment
Procedia PDF Downloads 75227 Fuel Properties of Distilled Tire Pyrolytic Oil and Its Blends with Biodiesel and Commercial Diesel Fuel
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
Tires are extremely challenging to recycle due to the available chemically cross-linked polymer which constitutes their nature and therefore, they are neither fusible nor soluble and consequently, cannot be remoulded into other shapes without serious degradation. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and non-condensable gases. TPO has been reported to have similar properties to commercial diesel fuel (CDF). In this study, distillation of TPO was carried out in a batch distillation column and biodiesel was produced from waste cooking oil. FTIR analysis proved that TPO can be used as a fuel due to the available compounds detected and GC analysis displayed 94% biodiesel concentration from waste cooking oil. Different blends of TPO/biodiesel, TPO/CDF and biodiesel/CDF were prepared at different ratios. Fuel properties such as viscosity, density, flash point, and calorific value were studied. Viscosity and density models were also studied to measure the quality of different blends.Keywords: biodiesel, distillation, pyrolysis, tire
Procedia PDF Downloads 162