Search results for: algebraic method
18934 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach
Authors: M. Khoshab, M. J. Sedigh
Abstract:
Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.Keywords: dynamic system, lag on supply demand, market stability, supply demand model
Procedia PDF Downloads 29518933 From Convexity in Graphs to Polynomial Rings
Authors: Ladznar S. Laja, Rosalio G. Artes, Jr.
Abstract:
This paper introduced a graph polynomial relating convexity concepts. A graph polynomial is a polynomial representing a graph given some parameters. On the other hand, a subgraph H of a graph G is said to be convex in G if for every pair of vertices in H, every shortest path with these end-vertices lies entirely in H. We define the convex subgraph polynomial of a graph G to be the generating function of the sequence of the numbers of convex subgraphs of G of cardinalities ranging from zero to the order of G. This graph polynomial is monic since G itself is convex. The convex index which counts the number of convex subgraphs of G of all orders is just the evaluation of this polynomial at 1. Relationships relating algebraic properties of convex subgraphs polynomial with graph theoretic concepts are established.Keywords: convex subgraph, convex index, generating function, polynomial ring
Procedia PDF Downloads 21518932 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels
Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur
Abstract:
With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography
Procedia PDF Downloads 12418931 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm
Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri
Abstract:
This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction
Procedia PDF Downloads 3118930 Nonhomogeneous Linear Second Order Differential Equations and Resonance through Geogebra Program
Authors: F. Maass, P. Martin, J. Olivares
Abstract:
The aim of this work is the application of the program GeoGebra in teaching the study of nonhomogeneous linear second order differential equations with constant coefficients. Different kind of functions or forces will be considered in the right hand side of the differential equations, in particular, the emphasis will be placed in the case of trigonometrical functions producing the resonance phenomena. In order to obtain this, the frequencies of the trigonometrical functions will be changed. Once the resonances appear, these have to be correlationated with the roots of the second order algebraic equation determined by the coefficients of the differential equation. In this way, the physics and engineering students will understand resonance effects and its consequences in the simplest way. A large variety of examples will be shown, using different kind of functions for the nonhomogeneous part of the differential equations.Keywords: education, geogebra, ordinary differential equations, resonance
Procedia PDF Downloads 24518929 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls
Authors: M. A. Anwar, K. Iqbal, M. Razzaq
Abstract:
Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.Keywords: bifurcation, elastic walls, finite element, wall shear stress,
Procedia PDF Downloads 17918928 Some Properties in Jordan Ideal on 3-Prime Near-Rings
Authors: Abdelkarim Boua, Abdelhakim Chillali
Abstract:
The study of non-associative structures in algebraic structures has become a separate entity; for, in the case of groups, their corresponding non-associative structure i.e. loops is dealt with separately. Similarly there is vast amount of research on the nonassociative structures of semigroups i.e. groupoids and that of rings i.e. nonassociative rings. However it is unfortunate that we do not have a parallel notions or study of non-associative near-rings. In this work we shall attempt to generalize a few known results and study the commutativity of Jordan ideal in 3-prime near-rings satisfying certain identities involving the Jordan ideal. We study the derivations satisfying certain differential identities on Jordan ideals of 3-prime near-rings. Moreover, we provide examples to show that hypothesis of our results are necessary. We give some new results and examples concerning the existence of Jordan ideal and derivations in near-rings. These near-rings can be used to build a new codes.Keywords: 3-prime near-rings, near-rings, Jordan ideal, derivations
Procedia PDF Downloads 30618927 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.Keywords: design of experiments, regression analysis, SI engine, statistical modeling
Procedia PDF Downloads 18618926 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm
Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli
Abstract:
Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.Keywords: firefly algorithm, metaheuristic algorithm, multilevel inverter, SHEPWM
Procedia PDF Downloads 14818925 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions
Procedia PDF Downloads 45618924 The Fluid Limit of the Critical Processor Sharing Tandem Queue
Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini
Abstract:
A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue
Procedia PDF Downloads 32418923 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral charac-teristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this new setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a novel characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.Keywords: Pisot numbers, Salem numbers, formal power series, over a finite field
Procedia PDF Downloads 5118922 Modeling Exponential Growth Activity Using Technology: A Research with Bachelor of Business Administration Students
Authors: V. Vargas-Alejo, L. E. Montero-Moguel
Abstract:
Understanding the concept of function has been important in mathematics education for many years. In this study, the models built by a group of five business administration and accounting undergraduate students when carrying out a population growth activity are analyzed. The theoretical framework is the Models and Modeling Perspective. The results show how the students included tables, graphics, and algebraic representations in their models. Using technology was useful to interpret, describe, and predict the situation. The first model, the students built to describe the situation, was linear. After that, they modified and refined their ways of thinking; finally, they created exponential growth. Modeling the activity was useful to deep on mathematical concepts such as covariation, rate of change, and exponential function also to differentiate between linear and exponential growth.Keywords: covariation reasoning, exponential function, modeling, representations
Procedia PDF Downloads 12018921 A New Computational Package for Using in CFD and Other Problems (Third Edition)
Authors: Mohammad Reza Akhavan Khaleghi
Abstract:
This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis
Procedia PDF Downloads 11818920 Vibration Analysis of Stepped Nanoarches with Defects
Authors: Jaan Lellep, Shahid Mubasshar
Abstract:
A numerical solution is developed for simply supported nanoarches based on the non-local theory of elasticity. The nanoarch under consideration has a step-wise variable cross-section and is weakened by crack-like defects. It is assumed that the cracks are stationary and the mechanical behaviour of the nanoarch can be modeled by Eringen’s non-local theory of elasticity. The physical and thermal properties are sensitive with respect to changes of dimensions in the nano level. The classical theory of elasticity is unable to describe such changes in material properties. This is because, during the development of the classical theory of elasticity, the speculation of molecular objects was avoided. Therefore, the non-local theory of elasticity is applied to study the vibration of nanostructures and it has been accepted by many researchers. In the non-local theory of elasticity, it is assumed that the stress state of the body at a given point depends on the stress state of each point of the structure. However, within the classical theory of elasticity, the stress state of the body depends only on the given point. The system of main equations consists of equilibrium equations, geometrical relations and constitutive equations with boundary and intermediate conditions. The system of equations is solved by using the method of separation of variables. Consequently, the governing differential equations are converted into a system of algebraic equations whose solution exists if the determinant of the coefficients of the matrix vanishes. The influence of cracks and steps on the natural vibration of the nanoarches is prescribed with the aid of additional local compliance at the weakened cross-section. An algorithm to determine the eigenfrequencies of the nanoarches is developed with the help of computer software. The effects of various physical and geometrical parameters are recorded and drawn graphically.Keywords: crack, nanoarches, natural frequency, step
Procedia PDF Downloads 12818919 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations
Abstract:
In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method
Procedia PDF Downloads 43318918 An Exposition of Principles of Islamic Fiscal Policy
Authors: Muhammad A. Ishaq, S. U. R. Aliyu
Abstract:
This paper on an exposition of Islamic fiscal policy attempts to discuss the basic principles of Islamic fiscal policy in an Islamic economy. The paper presents a number of definitions of the subject matter, its nature and its tools of application. Government spending, taxation and public borrowings were identified as the tools of the policy. The paper identifies zakat both as a veritable source of revenue and a major instrument of economic stabilization. Furthermore, the paper presents an algebraic 2-sector and 3-sector models from the basic Keynesian model. The paper posits that in view of uniqueness of its instruments, absence of interest rate in the economy and the policy’s derive towards socioeconomic justice and redistribution, Islamic fiscal policy is capable of stabilizing Islamic economy and ushering it into the path of long term economic growth and prosperity.Keywords: automatic built-in-stabilizers, government spending, Islamic fiscal policy, taxation, zakat
Procedia PDF Downloads 33918917 Elvis Improved Method for Solving Simultaneous Equations in Two Variables with Some Applications
Authors: Elvis Adam Alhassan, Kaiyu Tian, Akos Konadu, Ernest Zamanah, Michael Jackson Adjabui, Ibrahim Justice Musah, Esther Agyeiwaa Owusu, Emmanuel K. A. Agyeman
Abstract:
In this paper, how to solve simultaneous equations using the Elvis improved method is shown. The Elvis improved method says; to make one variable in the first equation the subject; make the same variable in the second equation the subject; equate the results and simplify to obtain the value of the unknown variable; put the value of the variable found into one equation from the first or second steps and simplify for the remaining unknown variable. The difference between our Elvis improved method and the substitution method is that: with Elvis improved method, the same variable is made the subject in both equations, and the two resulting equations equated, unlike the substitution method where one variable is made the subject of only one equation and substituted into the other equation. After describing the Elvis improved method, findings from 100 secondary students and the views of 5 secondary tutors to demonstrate the effectiveness of the method are presented. The study's purpose is proved by hypothetical examples.Keywords: simultaneous equations, substitution method, elimination method, graphical method, Elvis improved method
Procedia PDF Downloads 13718916 Application of Soft Sets to Non-Associative Rings
Authors: Inayatur Rehman
Abstract:
Molodtstove developed the theory of soft sets which can be seen as an effective tool to deal with uncertainties. Since the introduction of this concept, the application of soft sets has been restricted to associative algebraic structures (groups, semi groups, associative rings, semi-rings etc.). Acceptably, though the study of soft sets, where the base set of parameters is a commutative structure, has attracted the attention of many researchers for more than one decade. But on the other hand there are many sets which are naturally endowed by two compatible binary operations forming a non-associative ring and we may dig out examples which investigate a non-associative structure in the context of soft sets. Thus it seems natural to apply the concept of soft sets to non-commutative and non-associative structures. In present paper, we make a new approach to apply Molodtsoves notion of soft sets to LA-ring (a class of non-associative ring). We extend the study of soft commutative rings from theoretical aspect.Keywords: soft sets, LA-rings, soft LA-rings, soft ideals, soft prime ideals, idealistic soft LA-rings, LA-ring homomorphism
Procedia PDF Downloads 46418915 Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC) within Operational Research (OR) with Sustainability and Phenomenology
Authors: Hussain Abdullah Al-Salamin, Elias Ogutu Azariah Tembe
Abstract:
Supply chain (SC) is an operational research (OR) approach and technique which acts as catalyst within central nervous system of business today. Without SC, any type of business is at doldrums, hence entropy. SC is the lifeblood of business today because it is the pivotal hub which provides imperative competitive advantage. The paper present a conceptual framework dubbed as Homomorphic Conceptual Framework for Effective Supply Chain Strategy (HCEFSC).The term homomorphic is derived from abstract algebraic mathematical term homomorphism (same shape) which also embeds the following mathematical application sets: monomorphism, isomorphism, automorphisms, and endomorphism. The HCFESC is intertwined and integrated with wide and broad sets of elements.Keywords: homomorphism, isomorphism, monomorphisms, automorphisms, epimorphisms, endomorphism, supply chain, operational research (OR)
Procedia PDF Downloads 37218914 The Development of Large Deformation Stability of Elastomeric Bearings
Authors: Davide Forcellini, James Marshal Kelly
Abstract:
Seismic isolation using multi-layer elastomeric isolators has been used in the United States for more than 20 years. Although isolation bearings normally have a large factor of safety against buckling due to low shear stiffness, this phenomenon has been widely studied. In particular, the linearly elastic theory adopted to study this phenomenon is relatively accurate and adequate for most design purposes. Unfortunately it cannot consider the large deformation response of a bearing when buckling occurs and the unresolved behaviour of the stability of the post-buckled state. The study conducted in this paper may be viewed as a development of the linear theory of multi-layered elastomeric bearing, simply replacing the differential equations by algebraic equations, showing how it is possible to evaluate the post-buckling behaviour and the interactions at large deformations.Keywords: multi-layer elastomeric isolators, large deformation, compressive load, tensile load, post-buckling behaviour
Procedia PDF Downloads 43518913 Different Methods of Fe3O4 Nano Particles Synthesis
Authors: Arezoo Hakimi, Afshin Farahbakhsh
Abstract:
Herein, we comparison synthesized Fe3O4 using, hydrothermal method, Mechanochemical processes and solvent thermal method. The Hydrothermal Technique has been the most popular one, gathering interest from scientists and technologists of different disciplines, particularly in the last fifteen years. In the hydrothermal method Fe3O4 microspheres, in which many nearly monodisperse spherical particles with diameters of about 400nm, in the mechanochemical method regular morphology indicates that the particles are well crystallized and in the solvent thermal method Fe3O4 nanoparticles have good properties of uniform size and good dispersion.Keywords: Fe3O4 nanoparticles, hydrothermal method, mechanochemical processes, solvent thermal method
Procedia PDF Downloads 35118912 A Comparison of Smoothing Spline Method and Penalized Spline Regression Method Based on Nonparametric Regression Model
Authors: Autcha Araveeporn
Abstract:
This paper presents a study about a nonparametric regression model consisting of a smoothing spline method and a penalized spline regression method. We also compare the techniques used for estimation and prediction of nonparametric regression model. We tried both methods with crude oil prices in dollars per barrel and the Stock Exchange of Thailand (SET) index. According to the results, it is concluded that smoothing spline method performs better than that of penalized spline regression method.Keywords: nonparametric regression model, penalized spline regression method, smoothing spline method, Stock Exchange of Thailand (SET)
Procedia PDF Downloads 44018911 On the Framework of Contemporary Intelligent Mathematics Underpinning Intelligent Science, Autonomous AI, and Cognitive Computers
Authors: Yingxu Wang, Jianhua Lu, Jun Peng, Jiawei Zhang
Abstract:
The fundamental demand in contemporary intelligent science towards Autonomous AI (AI*) is the creation of unprecedented formal means of Intelligent Mathematics (IM). It is discovered that natural intelligence is inductively created rather than exhaustively trained. Therefore, IM is a family of algebraic and denotational mathematics encompassing Inference Algebra, Real-Time Process Algebra, Concept Algebra, Semantic Algebra, Visual Frame Algebra, etc., developed in our labs. IM plays indispensable roles in training-free AI* theories and systems beyond traditional empirical data-driven technologies. A set of applications of IM-driven AI* systems will be demonstrated in contemporary intelligence science, AI*, and cognitive computers.Keywords: intelligence mathematics, foundations of intelligent science, autonomous AI, cognitive computers, inference algebra, real-time process algebra, concept algebra, semantic algebra, applications
Procedia PDF Downloads 6118910 Influence of Optimization Method on Parameters Identification of Hyperelastic Models
Authors: Bale Baidi Blaise, Gilles Marckmann, Liman Kaoye, Talaka Dya, Moustapha Bachirou, Gambo Betchewe, Tibi Beda
Abstract:
This work highlights the capabilities of particles swarm optimization (PSO) method to identify parameters of hyperelastic models. The study compares this method with Genetic Algorithm (GA) method, Least Squares (LS) method, Pattern Search Algorithm (PSA) method, Beda-Chevalier (BC) method and the Levenberg-Marquardt (LM) method. Four classic hyperelastic models are used to test the different methods through parameters identification. Then, the study compares the ability of these models to reproduce experimental Treloar data in simple tension, biaxial tension and pure shear.Keywords: particle swarm optimization, identification, hyperelastic, model
Procedia PDF Downloads 17118909 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method
Authors: M. K. Balyan
Abstract:
The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.Keywords: dynamical diffraction, hologram, object image, X-ray holography
Procedia PDF Downloads 39418908 Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem
Authors: N. Guruprasad
Abstract:
This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions.Keywords: computation, efficiency, modified cost, Russell’s approximation method, transportation, Vogel’s approximation method
Procedia PDF Downloads 54718907 Steepest Descent Method with New Step Sizes
Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman
Abstract:
Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence
Procedia PDF Downloads 54018906 Mathematical Anxiety and Misconceptions in Algebra of Grade Vii Students in General Emilio Aguinaldo National High School
Authors: Nessa-Amie T. Peñaflor, Antonio Cinto
Abstract:
This is a descriptive research on the level of math anxiety and mathematics misconceptions in algebra. This research is composed of four parts: (1) analysis of the level of anxiety of the respondents; (2) analysis of the common mathematical misconceptions in algebra; (3) relationship of socio-demographic profile in math anxiety and mathematical misconceptions and (4) analysis of the relationship of math anxiety and misconceptions in algebra. Through the demographic profile questionnaire it was found out that most of the respondents were female. Majority had ages that ranged from 13-15. Most of them had parents who finished secondary education. The biggest portion of Grade Seven students where from families with annual family income ranging from PhP 100, 000 to PhP 299, 999. Most of them came from public school. Mathematics Anxiety Scale for Secondary and Senior Secondary School Students (MAS) and set of 10 open-ended algebraic expressions and polynomials were also administered to determine the anxiety level and the common misconceptions in algebra. Data analysis revealed that respondents had high anxiety in mathematics. Likewise, the common mathematical misconceptions of the Grade Seven students were: combining unlike terms; multiplying the base and exponents; regarding the variable x as 0; squaring the first and second terms only in product of two binomials; wrong meaning attached to brackets; writing the terms next to each other but not simplifying in using the FOIL Method; writing the literal coefficient even if the numerical coefficient is 0; and dividing the denominator by the numerator when the numerical coefficient in the numerator is smaller than the numerical coefficient of the denominator. Results of the study show that the socio-demographic characteristics were not related to mathematics anxiety and misconceptions. Furthermore, students from higher section had high anxiety than those students on the lower section. Thus, belonging to higher or lower section may affect the mathematical misconceptions of the respondents.Keywords: algebra, grade 7 math, math anxiety, math misconceptions
Procedia PDF Downloads 41118905 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector
Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari
Abstract:
Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.Keywords: heat transfer, nanofluid, numerical analysis, trough
Procedia PDF Downloads 371