Search results for: agent based web content mining
33660 Trace Logo: A Notation for Representing Control-Flow of Operational Process
Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa
Abstract:
Process mining research discipline bridges the gap between data mining and business process modeling and analysis, it offers the process-centric and end-to-end methods/techniques for analyzing information of real-world process detailed in operational event-logs. In this paper, we have proposed a notation called trace logo for graphically representing control-flow perspective (order of execution of activities) of process. A trace logo consists of a stack of activity names at each position, sizes of the activity name indicates their frequency in the traces and the total height of the activity depicts the information content of the position. A trace logo created from a set of aligned traces generated using Multiple Trace Alignment technique.Keywords: consensus trace, process mining, multiple trace alignment, trace logo
Procedia PDF Downloads 34833659 Exploring Legal Liabilities of Mining Companies for Human Rights Abuses: Case Study of Mongolian Mine
Authors: Azzaya Enkhjargal
Abstract:
Context: The mining industry has a long history of human rights abuses, including forced labor, environmental pollution, and displacement of communities. In recent years, there has been growing international pressure to hold mining companies accountable for these abuses. Research Aim: This study explores the legal liabilities of mining companies for human rights abuses. The study specifically examines the case of Erdenet Mining Corporation (EMC), a large mining company in Mongolia that has been accused of human rights abuses. Methodology: The study used a mixed-methods approach, which included a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Findings: The study found that mining companies can be held liable for human rights abuses under a variety of regulatory frameworks, including soft law and self-regulatory instruments in the mining industry, international law, national law, and corporate law. The study also found that there are a number of challenges to holding mining companies accountable for human rights abuses, including the lack of effective enforcement mechanisms and the difficulty of proving causation. Theoretical Importance: The study contributes to the growing body of literature on the legal liabilities of mining companies for human rights abuses. The study also provides insights into the challenges of holding mining companies accountable for human rights abuses. Data Collection: The data for the study was collected through a variety of methods, including a review of legal literature, interviews with community members and NGOs, and a case study of EMC. Analysis Procedures: The data was analyzed using a variety of methods, including content analysis, thematic analysis, and case study analysis. Conclusion: The study concludes that mining companies can be held liable for human rights abuses under a variety of legal and regulatory frameworks. There are positive developments in ensuring greater accountability and protection of affected communities and the environment in countries with a strong economy. Regrettably, access to avenues of redress is reasonably low in less developed countries, where the governments have not implemented a robust mechanism to enforce liability requirements in the mining industry. The study recommends that governments and mining companies take more ambitious steps to enhance corporate accountability.Keywords: human rights, human rights abuses, ESG, litigation, Erdenet Mining Corporation, corporate social responsibility, soft law, self-regulation, mining industry, parent company liability, sustainability, environment, UN
Procedia PDF Downloads 8033658 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 40433657 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining
Authors: Teklu Urgessa, Joong Seek Lee
Abstract:
Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.Keywords: human rights, Olympics, social media, network analysis, social network ming
Procedia PDF Downloads 25733656 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 52333655 Analysis of Reliability of Mining Shovel Using Weibull Model
Authors: Anurag Savarnya
Abstract:
The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.Keywords: reliability, Weibull model, electric mining shovel
Procedia PDF Downloads 51333654 Multi-Agent TeleRobotic Security Control System: Requirements Definitions of Multi-Agent System Using The Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent TeleRobotic Security Control System (MTSCS). The event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, TeleRobotics control, security, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 43833653 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games
Authors: Ogar Ofut Tumenayu, Olga Shabalina
Abstract:
This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration
Procedia PDF Downloads 6733652 Behavioral Patterns of Adopting Digitalized Services (E-Sport versus Sports Spectating) Using Agent-Based Modeling
Authors: Justyna P. Majewska, Szymon M. Truskolaski
Abstract:
The growing importance of digitalized services in the so-called new economy, including the e-sports industry, can be observed recently. Various demographic or technological changes lead consumers to modify their needs, not regarding the services themselves but the method of their application (attracting customers, forms of payment, new content, etc.). In the case of leisure-related to competitive spectating activities, there is a growing need to participate in events whose content is not sports competitions but computer games challenge – e-sport. The literature in this area so far focuses on determining the number of e-sport fans with elements of a simple statistical description (mainly concerning demographic characteristics such as age, gender, place of residence). Meanwhile, the development of the industry is influenced by a combination of many different, intertwined demographic, personality and psychosocial characteristics of customers, as well as the characteristics of their environment. Therefore, there is a need for a deeper recognition of the determinants of the behavioral patterns upon selecting digitalized services by customers, which, in the absence of available large data sets, can be achieved by using econometric simulations – multi-agent modeling. The cognitive aim of the study is to reveal internal and external determinants of behavioral patterns of customers taking into account various variants of economic development (the pace of digitization and technological development, socio-demographic changes, etc.). In the paper, an agent-based model with heterogeneous agents (characteristics of customers themselves and their environment) was developed, which allowed identifying a three-stage development scenario: i) initial interest, ii) standardization, and iii) full professionalization. The probabilities regarding the transition process were estimated using the Method of Simulated Moments. The estimation of the agent-based model parameters and sensitivity analysis reveals crucial factors that have driven a rising trend in e-sport spectating and, in a wider perspective, the development of digitalized services. Among the psychosocial characteristics of customers, they are the level of familiarization with the rules of games as well as sports disciplines, active and passive participation history and individual perception of challenging activities. Environmental factors include general reception of games, number and level of recognition of community builders and the level of technological development of streaming as well as community building platforms. However, the crucial factor underlying the good predictive power of the model is the level of professionalization. While in the initial interest phase, the entry barriers for new customers are high. They decrease during the phase of standardization and increase again in the phase of full professionalization when new customers perceive participation history inaccessible. In this case, they are prone to switch to new methods of service application – in the case of e-sport vs. sports to new content and more modern methods of its delivery. In a wider context, the findings in the paper support the idea of a life cycle of services regarding methods of their application from “traditional” to digitalized.Keywords: agent-based modeling, digitalized services, e-sport, spectators motives
Procedia PDF Downloads 17233651 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification
Procedia PDF Downloads 58233650 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy
Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu
Abstract:
In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics
Procedia PDF Downloads 31733649 Curriculum-Based Multi-Agent Reinforcement Learning for Robotic Navigation
Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su
Abstract:
Deep reinforcement learning has been applied to address various problems in robotics, such as autonomous driving and unmanned aerial vehicle. However, because of the sparse reward penalty for a collision with obstacles during the navigation mission, the agent fails to learn the optimal policy or requires a long time for convergence. Therefore, using obstacles and enemy agents, in this paper, we present a curriculum-based boost learning method to effectively train compound skills during multi-agent reinforcement learning. First, to enable the agents to solve challenging tasks, we gradually increased learning difficulties by adjusting reward shaping instead of constructing different learning environments. Then, in a benchmark environment with static obstacles and moving enemy agents, the experimental results showed that the proposed curriculum learning strategy enhanced cooperative navigation and compound collision avoidance skills in uncertain environments while improving learning efficiency.Keywords: curriculum learning, hard exploration, multi-agent reinforcement learning, robotic navigation, sparse reward
Procedia PDF Downloads 9233648 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia
Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan
Abstract:
The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)
Procedia PDF Downloads 30433647 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.Keywords: tag cloud, font distribution algorithm, frequency-based, content-based, power law
Procedia PDF Downloads 50533646 Data Stream Association Rule Mining with Cloud Computing
Authors: B. Suraj Aravind, M. H. M. Krishna Prasad
Abstract:
There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.Keywords: data stream, association rule mining, cloud computing, frequent itemsets
Procedia PDF Downloads 50133645 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 20833644 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 35033643 Reviewing Privacy Preserving Distributed Data Mining
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.Keywords: data mining, distributed data mining, privacy protection, privacy preserving
Procedia PDF Downloads 52533642 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53733641 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 53733640 Development of a Geomechanical Risk Assessment Model for Underground Openings
Authors: Ali Mortazavi
Abstract:
The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering
Procedia PDF Downloads 14533639 Mining in Nigeria and Development Effort of Metallurgical Technologies at National Metallurgical Development Center Jos, Plateau State-Nigeria
Authors: Linus O. Asuquo
Abstract:
Mining in Nigeria and development effort of metallurgical technologies at National Metallurgical Development Centre Jos has been addressed in this paper. The paper has looked at the history of mining in Nigeria, the impact of mining on social and industrial development, and the contribution of the mining sector to Nigeria’s Gross Domestic Product (GDP). The paper clearly stated that Nigeria’s mining sector only contributes 0.5% to the nation’s GDP unlike Botswana that the mining sector contributes 38% to the nation’s GDP. Nigeria Bureau of Statistics has it on record that Nigeria has about 44 solid minerals awaiting to be exploited. Clearly highlighted by this paper is the abundant potentials that exist in the mining sector for investment. The paper made an exposition on the extensive efforts made at National Metallurgical Development Center (NMDC) to develop metallurgical technologies in various areas of the metals sector; like mineral processing, foundry development, nonferrous metals extraction, materials testing, lime calcination, ANO (Trade name for powder lubricant) wire drawing lubricant, refractories and many others. The paper went ahead to draw a conclusion that there is a need to develop the mining sector in Nigeria and to give a sustainable support to the efforts currently made at NMDC to develop metallurgical technologies which are capable of transforming the metals sector in Nigeria, which will lead to industrialization. Finally the paper made some recommendations which traverse the topic for the best expectation.Keywords: mining, minerals, technologies, value addition
Procedia PDF Downloads 10233638 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods
Procedia PDF Downloads 36133637 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.Keywords: fuzzy logic, inference system, monitoring system, multi-agent system
Procedia PDF Downloads 60833636 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16133635 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 27933634 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis
Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa
Abstract:
Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM
Procedia PDF Downloads 45433633 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 35633632 Hierarchical Piecewise Linear Representation of Time Series Data
Authors: Vineetha Bettaiah, Heggere S. Ranganath
Abstract:
This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation
Procedia PDF Downloads 27533631 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 414