Search results for: adaptive mesh refinement method
20003 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine
Authors: Jia Li, Huacong Li, Xiaobao Han
Abstract:
Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio
Procedia PDF Downloads 31320002 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure
Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold
Abstract:
Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure has been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1 m length, 8 mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.Keywords: heat pipe, inclination, optimization, ratio
Procedia PDF Downloads 32620001 New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration
Authors: Essebti Dhahri
Abstract:
We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application.Keywords: magnetic measurements, Rietveld refinement, magnetic refrigeration, magnetocaloric effect
Procedia PDF Downloads 8720000 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search
Authors: D. S. Naumann, B. J. Evans, O. Hassan
Abstract:
This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation
Procedia PDF Downloads 33619999 Effective Tandem Mesh Nebulisation of Pulmonary Vasodilator and Bronchodilators in Critical Respiratory Failure
Authors: Nathalie Bolding, Marta Montero, Joaquim Cevallos, Juan F. Martin-Lazaro
Abstract:
Background: Inhaled epoprostenol (iEPO) have been shown to improve PaO2:FiO2 (PF) in combination with bronchodilators (BD). However, there is not an available device to deliver these two therapies concomitantly. We describe a new method to provide this therapy successfully. Objective: To evaluate the response to continuous nebulization of iEPO and intermittent nebulization of Salbutamol/Ipratropium bromide in adults with severe respiratory failure through a double mesh nebulisation in tandem. Methods: This observational study included two mechanical ventilated adults under hourly ventilatory, gasometrical and clinical measurements during 48h. Both had severe respiratory failure treated with continuous iEPO (50 – 200 micrograms/h) and BD (Salbutamol 2.5 mg and Ipratropium bromide 500 mcg every 6 hours) through double mesh nebulisation (Aerogen solo®) placed in tandem in the dry side of the humidificator. The primary endpoints were the variables associated with a positive response to this tandem nebulised therapy (PaFiO2 index, ROX index). Secondary endpoints were laboratory (ABG) clinical and ventilatory variables. Statistical analysis (SPSS v29) included linear regression and ANOVA. Results: The patients included (n=2) survived, both extubated, one after ECMO therapy. Severe acute respiratory failure had a positive response rate to continuous iEPO and intermittent BD: PaFiO2 increased (7.40 to 30.91; P75: 27%) as well as ROX index (2.91 to 11.43; P75: 33%). There was a linear correlation of improvement between iEPO with PaFiO2 (ANOVA, r=0.393, p<0.002) and ROX (r=0.419, p<0.001). iEPO+BD therapy did not show any complications. Conclusion: Continuous and intermittent mesh tandem nebulisation can be effectively delivered with this method with a positive effect in ventilatory parameters without observed complications. Randomised studies will be able to provide reassurance in this new therapy.Keywords: tandem, mesh, nebulisers, pulmonary, vasoldilators, bronchodilators, respiratory, failure
Procedia PDF Downloads 8219998 Application of a SubIval Numerical Solver for Fractional Circuits
Authors: Marcin Sowa
Abstract:
The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.Keywords: numerical method, SubIval, fractional calculus, numerical solver, circuit analysis
Procedia PDF Downloads 20419997 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly
Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee
Abstract:
Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect
Procedia PDF Downloads 62719996 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands
Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour
Abstract:
In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering
Procedia PDF Downloads 59719995 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome
Authors: Karam Chand Gupta
Abstract:
When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.Keywords: dome, mesh, slab, steel
Procedia PDF Downloads 67819994 Recursive Parametric Identification of a Doubly Fed Induction Generator-Based Wind Turbine
Authors: A. El Kachani, E. Chakir, A. Ait Laachir, A. Niaaniaa, J. Zerouaoui
Abstract:
This document presents an adaptive controller based on recursive parametric identification applied to a wind turbine based on the doubly-fed induction machine (DFIG), to compensate the faults and guarantee efficient of the DFIG. The proposed adaptive controller is based on the recursive least square algorithm which considers that the best estimator for the vector parameter is the vector x minimizing a quadratic criterion. Furthermore, this method can improve the rapidity and precision of the controller based on a model. The proposed controller is validated via simulation on a 5.5 kW DFIG-based wind turbine. The results obtained seem to be good. In addition, they show the advantages of an adaptive controller based on recursive least square algorithm.Keywords: adaptive controller, recursive least squares algorithm, wind turbine, doubly fed induction generator
Procedia PDF Downloads 28619993 Solving the Wireless Mesh Network Design Problem Using Genetic Algorithm and Simulated Annealing Optimization Methods
Authors: Moheb R. Girgis, Tarek M. Mahmoud, Bahgat A. Abdullatif, Ahmed M. Rabie
Abstract:
Mesh clients, mesh routers and gateways are components of Wireless Mesh Network (WMN). In WMN, gateways connect to Internet using wireline links and supply Internet access services for users. We usually need multiple gateways, which takes time and costs a lot of money set up, due to the limited wireless channel bit rate. WMN is a highly developed technology that offers to end users a wireless broadband access. It offers a high degree of flexibility contrasted to conventional networks; however, this attribute comes at the expense of a more complex construction. Therefore, a challenge is the planning and optimization of WMNs. In this paper, we concentrate on this challenge using a genetic algorithm and simulated annealing. The genetic algorithm and simulated annealing enable searching for a low-cost WMN configuration with constraints and determine the number of used gateways. Experimental results proved that the performance of the genetic algorithm and simulated annealing in minimizing WMN network costs while satisfying quality of service. The proposed models are presented to significantly outperform the existing solutions.Keywords: wireless mesh networks, genetic algorithms, simulated annealing, topology design
Procedia PDF Downloads 45719992 Acoustic Echo Cancellation Using Different Adaptive Algorithms
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)
Procedia PDF Downloads 7819991 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 16619990 Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms
Authors: Wael M. Bazzi, Amir Rastegarnia, Azam Khalili
Abstract:
In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition.Keywords: adaptive filter, distributed estimation, sensor network, IDLMS algorithm
Procedia PDF Downloads 63119989 Toward a Measure of Appropriateness of User Interfaces Adaptations Solutions
Authors: Abderrahim Siam, Ramdane Maamri, Zaidi Sahnoun
Abstract:
The development of adaptive user interfaces (UI) presents for a long time an important research area in which researcher attempt to call upon the full resources and skills of several disciplines. The adaptive UI community holds a thorough knowledge regarding the adaptation of UIs with users and with contexts of use. Several solutions, models, formalisms, techniques, and mechanisms were proposed to develop adaptive UI. In this paper, we propose an approach based on the fuzzy set theory for modeling the concept of the appropriateness of different solutions of UI adaptation with different situations for which interactive systems have to adapt their UIs.Keywords: adaptive user interfaces, adaptation solution’s appropriateness, fuzzy sets
Procedia PDF Downloads 48619988 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm
Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew
Abstract:
The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence
Procedia PDF Downloads 39519987 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13319986 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian
Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak
Abstract:
The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers
Procedia PDF Downloads 21219985 Application of Two Stages Adaptive Neuro-Fuzzy Inference System to Improve Dissolved Gas Analysis Interpretation Techniques
Authors: Kharisma Utomo Mulyodinoto, Suwarno, A. Abu-Siada
Abstract:
Dissolved Gas Analysis is one of impressive technique to detect and predict internal fault of transformers by using gas generated by transformer oil sample. A number of methods are used to interpret the dissolved gas from transformer oil sample: Doernenberg Ratio Method, IEC (International Electrotechnical Commission) Ratio Method, and Duval Triangle Method. While the assessment of dissolved gas within transformer oil samples has been standardized over the past two decades, analysis of the results is not always straight forward as it depends on personnel expertise more than mathematical formulas. To get over this limitation, this paper is aimed at improving the interpretation of Doernenberg Ratio Method, IEC Ratio Method, and Duval Triangle Method using Two Stages Adaptive Neuro-Fuzzy Inference System (ANFIS). Dissolved gas analysis data from 520 faulty transformers was analyzed to establish the proposed ANFIS model. Results show that the developed ANFIS model is accurate and can standardize the dissolved gas interpretation process with accuracy higher than 90%.Keywords: ANFIS, dissolved gas analysis, Doernenberg ratio method, Duval triangular method, IEC ratio method, transformer
Procedia PDF Downloads 14719984 The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22
Authors: Adnan I. O. Zaid
Abstract:
Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index.Keywords: addition, grain refinement, mechanical characteristics, microstructure, rare earth elements, ZA-22, Zinc- aluminum alloy
Procedia PDF Downloads 52119983 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter
Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy
Abstract:
So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline
Procedia PDF Downloads 16019982 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study
Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.
Abstract:
Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧGKeywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation
Procedia PDF Downloads 14719981 A Finite Element Based Predictive Stone Lofting Simulation Methodology for Automotive Vehicles
Authors: Gaurav Bisht, Rahul Rathnakumar, Ravikumar Duggirala
Abstract:
Predictive simulations are one of the key focus areas in safety-critical industries such as aerospace and high-performance automotive engineering. The stone-chipping study is one such effort taken up by the industry to predict and evaluate the damage caused due to gravel impact on vehicles. This paper describes a finite elements based method that can simulate the ejection of gravel chips from a vehicle tire. The FE simulations were used to obtain the initial ejection velocity of the stones for various driving conditions using a computational contact mechanics approach. To verify the accuracy of the tire model, several parametric studies were conducted. The FE simulations resulted in stone loft velocities ranging from 0–8 m/s, regardless of tire speed. The stress on the tire at the instant of initial contact with the stone increased linearly with vehicle speed. Mesh convergence studies indicated that a highly resolved tire mesh tends to result in better momentum transfer between the tire and the stone. A fine tire mesh also showed a linearly increasing relationship between the tire forward speed and stone lofting speed, which was not observed in coarser meshes. However, it also highlighted a potential challenge, in that the ejection velocity vector of the stone seemed to be sensitive to the mesh, owing to the FE-based contact mechanical formulation of the problem.Keywords: abaqus, contact mechanics, foreign object debris, stone chipping
Procedia PDF Downloads 26119980 QCARNet: Networks for Quality-Adaptive Compression Artifact
Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho
Abstract:
We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.Keywords: compression artifact reduction, deblocking, image denoising, image restoration
Procedia PDF Downloads 13519979 Evaluating the Performance of Passive Direct Methanol Fuel Cell under Varying Operating and Structural Conditions
Authors: Rahul Saraswat
Abstract:
More recently, a focus has been given to replacing machined stainless steel metal flow fields with inexpensive wire mesh current collectors. The flow fields are based on simple woven wire mesh screens of various stainless steels, which are sandwiched between a thin metal plate of the same material to create a bipolar plate/flow field configuration for use in a stack. Major advantages of using stainless steel wire screens include the elimination of expensive raw materials as well as machining and/or other special fabrication costs. The objective of the project is to improve the performance of the passive direct methanol fuel cell without increasing the cost of the cell and to make it as compact and light as possible. From the literature survey, it was found that very little is done in this direction, and the following methodology was used. 1. The passive direct methanol fuel cell (DMFC) can be made more compact, lighter, and less costly by changing the material used in its construction. 2. Controlling the fuel diffusion rate through the cell improves the performance of the cell. A passive liquid feed direct methanol fuel cell (DMFC) was fabricated using a given MEA (Membrane Electrode Assembly) and tested for different current collector structures. Mesh current collectors of different mesh densities along with different support structures, were used, and the performance was found to be better. Methanol concentration was also varied. Optimisation of mesh size, support structure, and fuel concentration was achieved. Cost analysis was also performed hereby. From the performance analysis study of DMFC, we can conclude with the following points: Area specific resistance (ASR) of wire mesh current collectors is lower than the ASR of stainless steel current collectors. Also, the power produced by wire mesh current collectors is always more than that produced by stainless steel current collectors. 1. Low or moderate methanol concentrations should be used for better and stable DMFC performance. 2. Wiremesh is a good substitute for stainless steel for current collector plates of passive DMFC because of its lower cost (by about 27 %), flexibility, and light in weight characteristics of wire mesh.Keywords: direct methanol fuel cell, membrane electrode assembly, mesh, mesh size, methanol concentration, support structure
Procedia PDF Downloads 7919978 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 14519977 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System
Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour
Abstract:
This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.Keywords: adaptive control, active steering, pole placement, vehicle dynamics
Procedia PDF Downloads 46419976 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM
Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins
Abstract:
In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS
Procedia PDF Downloads 26019975 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller
Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu
Abstract:
This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression
Procedia PDF Downloads 14419974 Representing a Methodology for Refinement of Strategic Objectives in Strategy Map Establishment: Combining Quality Function Deployment and Fuzzy Screening
Authors: Bijan Nahavandi, Navid Jafarinejad, Somayeh Mehrafzad
Abstract:
Strategy maps represent the way of value creation in in each organization. Nowadays, implementation of strategy is the main concern for all organizations. Strategy map establishment is the start-up point of strategy implementation and this shows the critical importance of this concept. After some years past since emergence of strategy map, there are some shortcomings in its methodology that frequently quoted by many of researchers. One of these shortcomings is the shortage of a mechanism for refinement of objectives candidate for entrance to map. Organizations in practice have obsession and avidity to determine more number of objectives in strategy map. This study wants to represent a step by step approach to help obviate this problem using quality function deployment (QFD) as a helpful tool and fuzzy screening method. Finally, represented approach applies in a practical case and conclusions have been explained.Keywords: balanced scorecard, fuzzy screening, house of strategic objectives (HoSO), quality function deployment, strategy map
Procedia PDF Downloads 351