Search results for: abnormal activity detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9844

Search results for: abnormal activity detection

9754 Plant Disease Detection Using Image Processing and Machine Learning

Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra

Abstract:

One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.

Keywords: plant diseases, machine learning, image processing, deep learning

Procedia PDF Downloads 14
9753 A Comparative Study of Virus Detection Techniques

Authors: Sulaiman Al amro, Ali Alkhalifah

Abstract:

The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses.

Keywords: computer viruses, virus detection, signature-based, behaviour-based, heuristic-based

Procedia PDF Downloads 486
9752 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up

Procedia PDF Downloads 322
9751 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 101
9750 The Impact of Psychopathology Course on Students' Attitudes towards Mental Illness

Authors: Lorato Itumeleng Kenosi

Abstract:

Background: Negative attitudes towards the mentally ill are widespread and a course for concern as they have a detrimental impact on individuals affected by mental illness. A possible avenue for changing attitudes towards mental illness is through mental health literacy. In a college or university setting, an abnormal psychology course may be introduced in an attempt to change student’s attitudes towards the mentally ill. Objective: To determine if and how students’ attitudes towards the mentally ill change as a result of taking a course in abnormal psychology. Methods: Twenty nine (29) students were recruited from an abnormal psychology class at the University of Botswana. Attitude Scale for Mental Illness (ASMI) questionnaire was administered to participants at the beginning and end of the semester. SPSS was employed to analyze data. Pooled means were used to determine whether the student’s attitudes towards mental illness were negative or positive. A mean of 2.5 translated to negative attitude for both total attitude and attitudes in different domains of the scale. Paired sample t-test was then used to assess whether any changes noted in attitudes were statistically significant or not. Statistical significance was assumed at p < 0.05. Results: Students’ general attitude towards mental illness remained positive although the pooled mean value increased from 2.08 to 2.24. The change was not statistically significant. In relation to different sub scales, the values of the pooled means for all the sub scales showed an increase although the changes were not statistically significant except for the Stereotyping sub scale (p = 0.031). The stereotyping domain reflected a statistically significant change in student’s attitude from positive attitude to negative (X² = 2.06 to X² = 2.55). For the pessimistic prediction domain, students consistently showed a negative attitude (X² = 3.34 to X² = 3.55). The other 4 domains indicated that students had positive attitude toward mentally ill throughout. Discussion: Abnormal psychology students have a positive attitude towards the mentally ill generally. This could be attributed to the fact that all students in the abnormal psychology course are majoring in psychology and research has shown that interest in psychology can affect one’s attitude towards mental illness. The students continuously held the view that people with mental illness are unlikely to improve as evidenced by a high score for Pessimistic prediction domain for both pre and post-test. Students initially had no stereotyping attitude towards the mentally ill, but at the end of the course, they were of the opinion that people with mental illness can be defined in a certain behavioural pattern and mental ability. This results could be an indication that students have learnt well how to differentiate abnormal from normal behaviour not necessarily that students had developed a negative attitude. Conclusion: A course in abnormal psychology does have an impact on the students’ attitudes towards the mentally ill. The impact does not solely depend on knowledge of mental illness but also on several other factors such as contact with the mentally ill, interest in psychology, and teaching methods. However, it should be noted that sometimes improved knowledge in mental illness can be misunderstood for a negative attitude. For example, stereotyping attitudes may be a reflection of the ability to differentiate between abnormal and normal behaviour.

Keywords: attitudes, mental illness, psychopathology, students

Procedia PDF Downloads 289
9749 The Effect of Pixelation on Face Detection: Evidence from Eye Movements

Authors: Kaewmart Pongakkasira

Abstract:

This study investigated how different levels of pixelation affect face detection in natural scenes. Eye movements and reaction times, while observers searched for faces in natural scenes rendered in different ranges of pixels, were recorded. Detection performance for coarse visual detail at lower pixel size (3 x 3) was better than with very blurred detail carried by higher pixel size (9 x 9). The result is consistent with the notion that face detection relies on gross detail information of face-shape template, containing crude shape structure and features. In contrast, detection was impaired when face shape and features are obscured. However, it was considered that the degradation of scenic information might also contribute to the effect. In the next experiment, a more direct measurement of the effect of pixelation on face detection, only the embedded face photographs, but not the scene background, will be filtered.

Keywords: eye movements, face detection, face-shape information, pixelation

Procedia PDF Downloads 317
9748 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as P_f Vs P_d for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: spectrum sensing, energy detection, fading channels, probability of detection, probability of false alarm

Procedia PDF Downloads 532
9747 Seminal Attributes, Cooling Procedure and Post Thaw Quality of Semen of Indigenous Khari Bucks (Capra hircus) of Nepal

Authors: Pankaj Kumar Jha, Saroj Sapkota, Dil Bahadur Gurung, Raju Kadel, Neena Amatya Gorkhali, Bhola Shankar Shrestha

Abstract:

The study was conducted to evaluate the seminal attributes, effectiveness of cooling process and post-thawed semen quality of a Nepalese indigenous Khari buck. Thirty-two ejaculates, 16 from each buck were studied for seminal attributes of fresh semen: volume, color, mass activity, motility, viability, sperm concentration, and morphology. The pooled mean values for each seminal attributes were: volume 0.7±0.3 ml; colour 3.1±0.3 (milky white); mass activity 3.8±0.4 (rapid wave motion with formation of eddies at the end of waves to very rapid wave motion with distinct eddies formation); sperm motility 80.9±5.6%; sperm viability 94.6±2.0%; sperm concentration 2597.0±406.8x106/ml; abnormal acrosome, mid-piece and tail 10.7±1.8% and abnormal head 5±1.7%. For freezing semen, further 6 ejaculates from each buck were studied with Tris based egg yolk citrate extender. The pooled mean values of motility and viability of post diluted semen for 90 and 120 minutes each for cooling and glycerol equilibration were 73.8±4.8%, 88.1±2.6% and 69.2±6.0%, 85.0±1.7%, respectively. The pooled mean values of post thaw motility and viability with advancement of preservation time were: 0hour 49.0±4.6%, 81.2±1.9%; 2nd day 41±2.2%, 79±1%; 5th day 41±2.2%, 78.6±0.9% and 10th day 41±2.2%, 78.6±0.9%. We concluded from the above study that the seminal attributes and results of post-thaw semen quality were satisfactory and in accordance with other work in foreign countries, which indicated the feasibility of cryopreserving buck semen. For more validation, research with large number of bucks, different types of diluents and freezing trials by removing seminal plasma followed by pregnancy rate is recommended.

Keywords: cryopreservation, Nepalese indigenous Khari (Hill goat) buck, post-thaw semen quality, seminal attributes

Procedia PDF Downloads 403
9746 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 156
9745 Exposing Investor Sentiment In Stock Returns

Authors: Qiang Bu

Abstract:

This paper compares the explanatory power of sentiment level and sentiment shock. The preliminary test results show that sentiment shock plays a more significant role in explaining stocks returns, including the raw return and abnormal return. We also find that sentiment shock beta has a higher statistical significance than sentiment beta. These finding sheds new light on the relationship between investor sentiment and stock returns.

Keywords: sentiment level, sentiment shock, explanatory power, abnormal stock return, beta

Procedia PDF Downloads 138
9744 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques

Authors: John Onyima, Ikechukwu Ezepue

Abstract:

Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.

Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection

Procedia PDF Downloads 308
9743 Survey on Malware Detection

Authors: Doaa Wael, Naswa Abdelbaky

Abstract:

Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment.

Keywords: malware analysis, blockchain, malware attacks, malware detection approaches

Procedia PDF Downloads 88
9742 Mental Health Difficulties and Abnormal Feeding Regulation during a Crisis: A Mixed-Methods Approach

Authors: Leja Salciute

Abstract:

Mental health difficulties are one of the reasons for abnormal feeding behaviour. This is especially evident in a crisis situation. Abnormal feeding behaviour occurs when individuals use food as a method to provide relief for these negative emotions. The study aimed to discover an association between emotional regulation, mental health difficulties and disruption in feeding behaviours in the UK in times of crisis. A mixed-methods design was used. Abnormal feeding behaviour was measured using the Binge Eating Disorder Screener-7, SCOFF scale, Crisis impact scale, Difficulties in Emotion Regulation Scale and demographics. The sample comprised 342 participants with a history of excessive overeating. The participants (male= 198, female= 141 and other= 3) came from the general population and they were aged 16 and over. Participants ranged in age from 16 to 89. Findings from the survey concluded that difficulties with emotion regulation were found to be associated with abnormal feeding behaviours. Mental health difficulties correlated significantly with changes in individuals’ lives, such as work or routines. Individuals differed in their abnormal feeding behaviour in terms of their age, that is, younger individuals showed less struggle with their eating patterns while older individuals faced greater struggles with their abnormal feeding behaviour. Emotion regulation significantly influenced abnormal feeding behaviour. Results from qualitative data suggest four common themes that were identified: demonstration of gratitude, negative emotions, disruptions to social life, and financial loss. For example, participants developed and gained an awareness of being grateful for the simple things in life even when participants experienced hardships. The results also suggested that emotional eating acted like a sedative that allowed the participant to run away from their painful reality. Crisis situation negatively affected relationships among participants and induced negativity related to social interaction. Finally, the respondents highlighted that the presence of uncertainty made it hard to plan ahead and look forward to the future. Although respondents experienced negative emotions and financial losses, some of them still managed to allocate time for themselves and enjoy their time off during crisis. However, majority of respondents referred to their inability to control their external circumstances and turned to and relied upon food overconsumption instead. This had a negative effect on their mental health and presented disruptions in feeding behaviour. It was recommended for individuals in times of crisis to seek psychological support in the form of Cognitive Behavioural Therapy (CBT).

Keywords: binge eating, maladaptive eating behaviours, mental health, negative emotions in crisis

Procedia PDF Downloads 72
9741 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 96
9740 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137

Authors: Abdulsalam M. Alhawsawi

Abstract:

Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.

Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137

Procedia PDF Downloads 117
9739 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 415
9738 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)

Authors: Abdul Mannan Akhtar

Abstract:

In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.

Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection

Procedia PDF Downloads 464
9737 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 124
9736 Rapid Detection System of Airborne Pathogens

Authors: Shigenori Togashi, Kei Takenaka

Abstract:

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above 'mist labeling'. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Keywords: viruses, sampler, mist, detection, fluorescent dyes, microreaction

Procedia PDF Downloads 476
9735 Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions

Authors: Igor Izosimov

Abstract:

This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions.

Keywords: actinides/lanthanides detection, laser spectroscopy with time resolution, luminescence/chemiluminescence, solutions

Procedia PDF Downloads 336
9734 Financial Market Reaction to Non-Financial Reports

Authors: Petra Dilling

Abstract:

This study examines the market reaction to the publication of integrated reports for a sample of 316 global companies for the reporting year 2018. Applying event study methodology, we find significant cumulative average abnormal returns (CAARs) after the publication date. To ensure robust estimation resultsthe three-factor model, according to Fama and French, is used as well as a market-adjusted model, a CAPM and a Frama-French model taking GARCH effects into account. We find a significant positive CAAR after the publication day of the integrated report. Our results suggest that investors react to information provided in the integrated report and that they react differently to the annual financial report. Furthermore, our cross-sectional analysis confirms that companies with a significant positive cumulative average abnormal show certain characteristic. It was found that European companies have a higher likelihood to experience a stronger significant positive market reaction to their integrated report publication.

Keywords: integrated report, event methodology, cumulative abnormal return, sustainability, CAPM

Procedia PDF Downloads 152
9733 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection

Authors: Jyoti Bharti, M. K. Gupta, Astha Jain

Abstract:

This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.

Keywords: face detection, Viola Jones, false positives, OpenCV

Procedia PDF Downloads 407
9732 Clinical Trial of VEUPLEXᵀᴹ TBI Assay to Help Diagnose Traumatic Brain Injury by Quantifying Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase L1 in the Serum of Patients Suspected of Mild TBI by Fluorescence Immunoassay

Authors: Moon Jung Kim, Guil Rhim

Abstract:

The clinical sensitivity of the “VEUPLEXTM TBI assay”, a clinical trial medical device, in mild traumatic brain injury was 28.6% (95% CI, 19.7%-37.5%), and the clinical specificity was 94.0% (95% CI, 89.3%). -98.7%). In addition, when the results analyzed by marker were put together, the sensitivity was higher when interpreting the two tests together than the two tests, UCHL1 and GFAP alone. Additionally, when sensitivity and specificity were analyzed based on CT results for the mild traumatic brain injury patient group, the clinical sensitivity for 2 CT-positive cases was 50.0% (95% CI: 1.3%-98.7%), and 19 CT-negative cases. The clinical specificity for cases was 68.4% (95% CI: 43.5% - 87.4%). Since the low clinical sensitivity for the two CT-positive cases was not statistically significant due to the small number of samples analyzed, it was judged necessary to secure and analyze more samples in the future. Regarding the clinical specificity analysis results for 19 CT-negative cases, there were a large number of patients who were actually clinically diagnosed with mild traumatic brain injury but actually received a CT-negative result, and about 31.6% of them showed abnormal results on VEUPLEXTM TBI assay. Although traumatic brain injury could not be detected in 31.6% of the CT scans, the possibility of actually suffering a mild brain injury could not be ruled out, so it was judged that this could be confirmed through follow-up observation of the patient. In addition, among patients with mild traumatic brain injury, CT examinations were not performed in many cases because the symptoms were very mild, but among these patients, about 25% or more showed abnormal results in the VEUPLEXTM TBI assay. In fact, no damage is observed with the naked eye immediately after traumatic brain injury, and traumatic brain injury is not observed even on CT. But in some cases, brain hemorrhage may occur (delayed cerebral hemorrhage) after a certain period of time, so the patients who did show abnormal results on VEUPLEXTM TBI assay should be followed up for the delayed cerebral hemorrhage. In conclusion, it was judged that it was difficult to judge mild traumatic brain injury with the VEUPLEXTM TBI assay only through clinical findings without CT results, that is, based on the GCS value. Even in the case of CT, it does not detect all mild traumatic brain injury, so it is difficult to necessarily judge that there is no traumatic brain injury, even if there is no evidence of traumatic brain injury in CT. And in the long term, more patients should be included to evaluate the usefulness of the VEUPLEXTM TBI assay in the detection of microscopic traumatic brain injuries without using CT.

Keywords: brain injury, traumatic brain injury, GFAP, UCHL1

Procedia PDF Downloads 105
9731 Change Detection Method Based on Scale-Invariant Feature Transformation Keypoints and Segmentation for Synthetic Aperture Radar Image

Authors: Lan Du, Yan Wang, Hui Dai

Abstract:

Synthetic aperture radar (SAR) image change detection has recently become a challenging problem owing to the existence of speckle noises. In this paper, an unsupervised distribution-free change detection for SAR image based on scale-invariant feature transform (SIFT) keypoints and segmentation is proposed. Firstly, the noise-robust SIFT keypoints which reveal the blob-like structures in an image are extracted in the log-ratio image to reduce the detection range. Then, different from the traditional change detection which directly obtains the change-detection map from the difference image, segmentation is made around the extracted keypoints in the two original multitemporal SAR images to obtain accurate changed region. At last, the change-detection map is generated by comparing the two segmentations. Experimental results on the real SAR image dataset demonstrate the effectiveness of the proposed method.

Keywords: change detection, Synthetic Aperture Radar (SAR), Scale-Invariant Feature Transformation (SIFT), segmentation

Procedia PDF Downloads 387
9730 Optimized Road Lane Detection Through a Combined Canny Edge Detection, Hough Transform, and Scaleable Region Masking Toward Autonomous Driving

Authors: Samane Sharifi Monfared, Lavdie Rada

Abstract:

Nowadays, autonomous vehicles are developing rapidly toward facilitating human car driving. One of the main issues is road lane detection for a suitable guidance direction and car accident prevention. This paper aims to improve and optimize road line detection based on a combination of camera calibration, the Hough transform, and Canny edge detection. The video processing is implemented using the Open CV library with the novelty of having a scale able region masking. The aim of the study is to introduce automatic road lane detection techniques with the user’s minimum manual intervention.

Keywords: hough transform, canny edge detection, optimisation, scaleable masking, camera calibration, improving the quality of image, image processing, video processing

Procedia PDF Downloads 96
9729 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: fall detection, machine learning, deep learning, pose estimation, tracking

Procedia PDF Downloads 189
9728 Biological Activity of Essential Oils from Salvia nemorosa L.

Authors: Abdol-Hassan Doulah

Abstract:

In this study, antimicrobial activity of essential oil and ethyl acetate and ether extracts of S. nemorosa were examined against some species of bacteria and fungi. The essential oil of the aerial part of S. nemorosa was examined by GC and GC-MS. In the essential oil of S. nemorosa 26 Compounds have been identified. 2-Nonanone (44.09 %), 2-Undecanone (33.79 %), E-Caryophyllene (3.74 %) and 2-Decanone (2.89 %) were the main components of the essential oil. The essential oil analysis showed greatest antimicrobial activity against Staphylococcus epidermidis (5.3 μg/ml) and S. cerevisiae (9.3 μg/ml). The ethyl acetate showed greatest antimicrobial activity against Bacillus subtilis (106.7 μg/ml), Candida albicans (5.3 μg/ml) and ether extract showed greatest antimicrobial activity against Klebseilla pneumoniae (10.7 μg/ml) and Saccharomyces cerevisiae (10.7 μg/ml). In conclusion, we suggest that the antimicrobial activity of S. nemorosa may be due to its content of germacrene and linalool.

Keywords: antibacterial activity, antifungal activity, Salvia nemorosa L., essential oils, biological activity

Procedia PDF Downloads 494
9727 A Framework for Review Spam Detection Research

Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim

Abstract:

With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a high-quality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.

Keywords: fake reviews, feature collection, opinion spam, spam detection

Procedia PDF Downloads 413
9726 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
9725 Cultural and Group Understandings of Disability and Sexuality

Authors: Luke Galvani

Abstract:

The cultural representations of people with disabilities are frequently biased which can lead to a general misunderstanding of disability. Representations of disabled deviance are especially problematic given that they typify or generally abstract disability as being abnormal, which then begin to take root in the cultural mind. This study utilizes critical discourse analysis to investigate how discourses of disabled sexual deviance are promoted within two major films that portray disabled sexual subjects. The findings indicate that perceptions of disabled sexual deviance are heightened by cinematic representations of sex and disability, which characterize disabled sexual expression as being undesirable due to the ephemeral and abnormal qualities ascribed to it.

Keywords: deviance, disability, discourse analysis, sexuality

Procedia PDF Downloads 170