Search results for: specific heat consumption
12066 Effectiveness of the Community Health Assist Scheme in Reducing Market Failure in Singapore’s Healthcare Sector
Authors: Matthew Scott Lau
Abstract:
This study addresses the research question: How effective has the Community Health Assist Scheme (CHAS) been in reducing market failure in Singapore’s healthcare sector? The CHAS policy, introduced in 2012 in Singapore, aims to improve accessibility and affordability of healthcare by offering subsidies to low and middle-income groups and elderly individuals for general practice consultations and healthcare. The investigation was undertaken by acquiring and analysing primary and secondary research data from 3 main sources, including handwritten survey responses of 334 individuals who were valid CHAS subsidy recipients (CHAS cardholders) from 5 different locations in Singapore, interview responses from two established general practitioner doctors with working knowledge of the scheme, and information from literature available online. Survey responses were analysed to determine how CHAS has affected the affordability and consumption of healthcare, and other benefits or drawbacks for CHAS users. The interview responses were used to explain the benefits of healthcare consumption and provide different perspectives on the impacts of CHAS on the various parties involved. Online sources provided useful information on changes in healthcare consumerism and Singapore’s government policies. The study revealed that CHAS has been largely effective in reducing market failure as the subsidies granted to consumers have improved the consumption of healthcare. This has allowed for the external benefits of healthcare consumption to be realized, thus reducing market failure. However, the study also revealed that CHAS cannot be fully effective in reducing market failure as the scope of CHAS prevents healthcare consumption from fully reaching the socially optimal level. Hence, the study concluded that CHAS has been effective to a large extent in reducing market failure in Singapore’s healthcare sector, albeit with some benefits to third parties yet to be realised. There are certain elements of the investigation, which may limit the validity of the conclusion, such as the means used to determine the socially optimal level of healthcare consumption, and the survey sample size.Keywords: healthcare consumption, health economics, market failure, subsidies
Procedia PDF Downloads 15912065 Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods
Authors: Morteza Hadi
Abstract:
This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking.Keywords: Cu-Ge-Ni alloy, homogenization. solution treatment, rollability
Procedia PDF Downloads 5212064 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.Keywords: flux, free impinging jet, solid-surface, uniform wall temperature
Procedia PDF Downloads 47912063 Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure
Authors: Piotr Kacejko, Lukasz Grabowski, Zdzislaw Kaminski
Abstract:
This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators.Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, power generation
Procedia PDF Downloads 21112062 Optimization of Electrocoagulation Process Using Duelist Algorithm
Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti
Abstract:
The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption
Procedia PDF Downloads 46912061 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.Keywords: bio-heat, boussinesq, conduction, convection, eye
Procedia PDF Downloads 34512060 Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)
Authors: Pradipta Risang Ratna Sambawa, Driya Herseta, Mahendra Fajri Nugraha
Abstract:
In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year.Keywords: fertilizer, phosphate fertilizer, wastewater, wastewater treatment, water management
Procedia PDF Downloads 2612059 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine
Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta
Abstract:
The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient
Procedia PDF Downloads 10612058 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone
Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.Keywords: energy simulation, office building, tropical climate, zero energy buildings
Procedia PDF Downloads 18412057 Unsteady Forced Convection Flow and Heat Transfer Past a Blunt Headed Semi-Circular Cylinder at Low Reynolds Numbers
Authors: Y. El Khchine, M. Sriti
Abstract:
In the present work, the forced convection heat transfer and fluid flow past an unconfined semi-circular cylinder is investigated. The two-dimensional simulation is employed for Reynolds numbers ranging from 10 ≤ Re ≤ 200, employing air (Pr = 0.71) as an operating fluid with Newtonian constant physics property. Continuity, momentum, and energy equations with appropriate boundary conditions are solved using the Computational Fluid Dynamics (CFD) solver Ansys Fluent. Various parameters flow such as lift, drag, pressure, skin friction coefficients, Nusselt number, Strouhal number, and vortex strength are calculated. The transition from steady to time-periodic flow occurs between Re=60 and 80. The effect of the Reynolds number on heat transfer is discussed. Finally, a developed correlation of Nusselt and Strouhal numbers is presented.Keywords: forced convection, semi-circular cylinder, Nusselt number, Prandtl number
Procedia PDF Downloads 10912056 Effect of Welding Parameters on Dilution and Bead Height for Variable Plate Thickness in Submerged Arc Welding
Authors: Harish Kumar Arya, Kulwant Singh, R. K Saxena, Deepti Jaiswal
Abstract:
The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on bead geometry and dilution. The penetration reduces with increase in plate thickness due to heat loss in thickness direction, while bead width and reinforcement increases for thicker plate due to faster cooling.Keywords: submerged arc welding, plate thickness, bead geometry, cooling rate
Procedia PDF Downloads 28912055 Tetraploid Induction in the Yellowtail Tetra Astyanax altiparanae
Authors: Nivaldo Ferreira do Nascimento, Matheus Pereira-Santos, Nycolas Levy-Pereira, José Augusto Senhorini, George Shigueki Yasui, Laura Satiko Okada Nakaghi
Abstract:
Tetraploid individuals, which could produce diploid gametes, can be used for production of 100% triploid fish. Therefore, the aim of this study was to develop a tetraploidization protocol for A. altiparanae. We tested the effect of heat shock (40 °C; 2 min) at 16, 18, 20, 22, 24 and 26 minutes post fertilization (mpf). Untreated eggs were used as control. After hatching, ploidy status of the larvae was checked by flow cytometry. No difference were observed for the hatching rate between all treatments (P = 0.5974). However, we observed an increase in the larval abnormality in the heat shock treatments, in special at 22 (82.17 ± 6.66%) 24 (78.31 ±7.28%) and 26 mpf (79.01 ± 7.85%) in comparison with the control group (12.87 ± 4.46%). No tetraploid was observed at 16 and 18 mpf. The higher number of tetraploid individuals (52/55) was observed at 26 mpf. Our results showed that high percentages of tetraploids are obtained by heat shock (40°C; 2min) at 26 mpf, which could enable the mass production of triploid individuals in A. altiparanae.Keywords: chromosome manipulation, polyploidy, flow cytometry, tetraploidization
Procedia PDF Downloads 33312054 Analysis of Marketing: Frozen Fruit and Vegetables Sector in Turkey
Authors: Pınar Aydın, Şule Turhan
Abstract:
Today, with the change of people's consumption habits, the importance of frozen fruit and vegetable sector has been increased. In Turkey, sector is based on export. It is growing very fast and external demand is constantly increasing. About 80% of frozen fruits and vegetables produced in Turkey are being exported. More than 90% of the exports go to European Union countries. About 49% of frozen fruits and vegetables in Turkey is being exported to Germany, England and France. In the sector which the abroad demand is continuously increasing, although it has been estimated that around 25% of the average annual growth rate, the domestic consumption is very low. Although the frozen food consumption per person in Turkey is about %2 of United States, the growing rate of the sector is higher than the United States and Europe. This situation reflects that it is such a sector that has a growing demand in both domestic and foreign markets.Keywords: frozen food, fruit and vegetable sector, exports, Turkey
Procedia PDF Downloads 33412053 Energy Consumption and Economic Growth Nexus: a Sustainability Understanding from the BRICS Economies
Authors: Smart E. Amanfo
Abstract:
Although the exact functional relationship between energy consumption and economic growth and development remains a complex social science, there is a sustained growing of agreement among energy economists and the likes on direct or indirect role of energy use in the development process, and as sustenance for many of societal achieved socio-economic and environmental developments in any economy. According to OECD, the world economy will double by 2050 in which the two members of BRICS (Brazil, Russia, India, China and South Africa) countries: China and India lead. There is a global apprehension that if countries constituting the epicenter of the present and future economic growth follow the same trajectory as during and after Industrial Revolution, involving higher energy throughputs, especially fossil fuels, the already known and models predicted threats of climate change and global warming could be exacerbated, especially in the developing economies. The international community’s challenge is how to address the trilemma of economic growth, social development, poverty eradication and stability of the ecological systems. This paper aims at providing the estimates of economic growth, energy consumption, and carbon dioxide emissions using BRICS members’ panel data from 1980 to 2017. The preliminary results based on fixed effect econometric model show positive significant relationship between energy consumption and economic growth. The paper further identified a strong relationship between economic growth and CO2 emissions which suggests that the global agenda of low-carbon-led growth and development is not a straight forward achievable The study therefore highlights the need for BRICS member states to intensify low-emissions-based production and consumption policies, increase renewables in order to avoid further deterioration of climate change impacts.Keywords: BRICS, sustainability, sustainable development, energy consumption, economic growth
Procedia PDF Downloads 9612052 Energy System for Algerian Green Building in Tlemcen, North Africa
Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair
Abstract:
This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.Keywords: green building, heat pump, insulation, climate change
Procedia PDF Downloads 21912051 Satellite Based Assessment of Urban Heat Island Effects on Major Cities of Pakistan
Authors: Saad Bin Ismail, Muhammad Ateeq Qureshi, Rao Muhammad Zahid Khalil
Abstract:
In the last few decades, urbanization worldwide has been sprawled manifold, which is denunciated in the growth of urban infrastructure and transportation. Urban Heat Island (UHI) can induce deterioration of the living environment, disabilities, and rises in energy usages. In this study, the prevalence/presence of Surface Urban Heat Island (SUHI) effect in major cities of Pakistan, including Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar has been investigated. Landsat and SPOT satellite images were acquired for the assessment of urban sprawl. MODIS Land Surface Temperature product MOD11A2 was acquired between 1000-1200 hours (local time) for assessment of urban heat island. The results of urban sprawl informed that the extent of Islamabad and Rawalpindi urban area increased from 240 km2 to 624 km2 between 2000 and 2016, accounted 24 km2 per year, Lahore 29 km2, accounted 1.6 km2 per year, Karachi 261 km2, accounted for 16 km2/ per year, Peshawar 63 km2, accounted 4 km2/per year, and Quetta 76 km2/per year, accounted 5 km2/per year approximately. The average Surface Urban Heat Island (SUHI) magnitude is observed at a scale of 0.63 ᵒC for Islamabad and Rawalpindi, 1.25 ᵒC for Lahore, and 1.16 ᵒC for Karachi, which is 0.89 ᵒC for Quetta, and 1.08 ᵒC for Peshawar from 2000 to 2016. The pixel-based maximum SUHI intensity reaches up to about 11.40 ᵒC for Islamabad and Rawalpindi, 15.66 ᵒC for Lahore, 11.20 ᵒC for Karachi, 14.61 ᵒC for Quetta, and 15.22 ᵒC for Peshawar from the baseline of zero degrees Centigrade (ᵒC). The overall trend of SUHI in planned cities (e.g., Islamabad) is not found to increase significantly. Spatial and temporal patterns of SUHI for selected cities reveal heterogeneity and a unique pattern for each city. It is well recognized that SUHI intensity is modulated by land use/land cover patterns (due to their different surface properties and cooling rates), meteorological conditions, and anthropogenic activities. The study concluded that the selected cities (Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar) are examples where dense urban pockets observed about 15 ᵒC warmer than a nearby rural area.Keywords: urban heat island , surface urban heat island , urbanization, anthropogenic source
Procedia PDF Downloads 32212050 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid
Authors: Cha’o-Kuang Chen, Ching-Chang Cho
Abstract:
This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall
Procedia PDF Downloads 26612049 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 7212048 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.Keywords: grade 70, GTAW, hybrid welding, SAW, SMAW
Procedia PDF Downloads 33912047 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region
Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio
Abstract:
The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker
Procedia PDF Downloads 52812046 On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition
Authors: Bashiru Abdullahi, Isah Bala Yabo, Ibrahim Yakubu Seini
Abstract:
In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature.Keywords: heat transfer, thermal radiation, porous channel, MHD, transient, convective boundary condition
Procedia PDF Downloads 12112045 Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG
Authors: R. Hariti, M. Saighi, H. Saidani-Scott
Abstract:
A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values.Keywords: tank, storage, liquefied natural gas, natural convection, thermal radiation, numerical simulation
Procedia PDF Downloads 54212044 Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)
Authors: Ravi Prakash
Abstract:
The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results.Keywords: hydrogen storage, metal hydrides, bcc alloy, heat treatment
Procedia PDF Downloads 7612043 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride
Procedia PDF Downloads 39912042 Predicting Intention and Readiness to Alcohol Consumption Reduction and Cessation among Thai Teenagers Using Scales Based on the Theory of Planned Behavior
Authors: Rewadee Watakakosol, Arunya Tuicomepee, Panrapee Suttiwan, Sakkaphat T. Ngamake
Abstract:
Health problems caused by alcohol consumption not only have short-term effects at the time of drinking but also leave long-lasting health conditions. Teenagers who start drinking in their middle-high or high school years or before entering college have higher likelihood to increase their alcohol use and abuse, and they were found to be less healthy compared with their non-drinking peers when entering adulthood. This study aimed to examine factors that predict intention and readiness to reduce and quit alcohol consumption among Thai teenagers. Participants were 826 high-school and vocational school students, most of whom were females (64.4%) with the average age of 16.4 (SD = 0.9) and the average age of first drinking at 13.7 (SD = 2.2). Instruments included the scales that developed based on the Theory of Planned Behaviour theoretical framework. They were the Attitude toward Alcohol Reduction and Cessation Scale, Normative Group and Influence Scale, Perceived Behavioral Control toward Alcohol Reduction and Cessation Scale, Behavioral Intent toward Alcohol Reduction and Cessation Scale, and Readiness to Reduce and Quit Alcohol Consumption Scale. Findings revealed that readiness to reduce / quit alcohol was the most powerful predictive factor (β=. 53, p < .01), followed by attitude of easiness in alcohol reduction and cessation (β=.46, p < .01), perceived behavioral control toward alcohol reduction and cessation (β =.41, p < .01), normative group and influence (β=.15, p < .01), and attitude of being accepted from alcohol reduction and cessation (β = -.12, p < .01), respectively. Attitude of improved health after alcohol reduction and cessation did not show statistically significantly predictive power. All factors significantly predict teenagers’ alcohol reduction and cessation behavior and accounted for 59 percent of total variance of alcohol consumption reduction and cessation.Keywords: alcohol consumption reduction and cessation, intention, readiness to change, Thai teenagers
Procedia PDF Downloads 33512041 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia
Authors: Wasihun Girma Hailemariam
Abstract:
Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussedKeywords: energy analysis, organic fertilizer, resource management, sugarcane
Procedia PDF Downloads 15812040 Effect of Surfactant on Thermal Conductivity of Ethylene Glycol/Silver Nanofluid
Authors: E. C. Muhammed Irshad
Abstract:
Nanofluids are a new class of solid-liquid colloidal mixture consisting of nanometer sized (< 100nm) solid particles suspended in heat transfer fluids such as water, ethylene/propylene glycol etc. Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids and it leads to enhancement of the heat transfer coefficient. In the present study, silver nanoparticles are dispersed in ethylene glycol water mixture. Low volume concentrations (0.05%, 0.1% and 0.15%) of silver nanofluids were synthesized. The thermal conductivity of these nanofluids was determined with thermal property analyzer (KD2 pro apparatus) and heat transfer coefficient was found experimentally. Initially, the thermal conductivity and viscosity of nanofluids were calculated with various correlations at different concentrations and were compared. Thermal conductivity of silver nanofluid at 0.02% and 0.1% concentration of silver nanoparticle increased to 23.3% and 27.7% for Sodium Dodecyl Sulfate (SDS) and to 33.6% and 36.7% for Poly Vinyl Pyrrolidone (PVP), respectively. The nanofluid maintains the stability for two days and it starts to settle down due to high density of silver. But it shows good improvement in the thermal conductivity for low volume concentration and it also shows better improvement with Poly Vinyl Pyrrolidone (PVP) surfactant than Sodium Dodecyl Sulfate (SDS).Keywords: k-thermal conductivity, sodium dodecyl sulfate, vinyl pyrrolidone, mechatronics engineering
Procedia PDF Downloads 31312039 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.Keywords: combined effect, delay addition, heat stimulation, flow of mortar
Procedia PDF Downloads 20212038 Thermal Comfort in Office Rooms in a Historic Building with Modernized Heating, Ventilation and Air Conditioning Systems
Authors: Hossein Bakhtiari, Mathias Cehlin, Jan Akander
Abstract:
Envelopes with low thermal performance is a common characteristic in many European historic buildings which leads to higher energy demand for heating and cooling as well as insufficient thermal comfort for the occupants. This paper presents the results of a study on the thermal comfort in the City Hall (Rådhuset) in Gävle, Sweden. This historic building is currently used as an office building. It is equipped with two relatively modern mechanical heat recovery ventilation systems with displacement ventilation supply devices in the offices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from an electric heat pump that rejects heat into the exhaust ventilation air. A building management system controls HVAC equipment (heating, ventilation and air conditioning). The methodology is based on on-site measurements, data logging on the management system and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. The main aim of the study is to investigate whether or not it is enough to have modernized HVAC systems to get adequate thermal comfort in a historic building with poor envelope performance used as an office building in Nordic climate conditions.Keywords: historic buildings, on-site measurements, standardized questionnaire, thermal comfort
Procedia PDF Downloads 37412037 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 89