Search results for: smart house
942 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 129941 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health
Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo
Abstract:
The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.Keywords: chromatography, DNA damage, environmental risk, water pollution
Procedia PDF Downloads 231940 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network
Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert
Abstract:
The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy
Procedia PDF Downloads 136939 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 254938 Design and Identification of Mycobacterium tuberculosis Glutamate Racemase (MurI) Inhibitors
Authors: Prasanthi Malapati, R. Reshma, Vijay Soni, Perumal Yogeeswari, Dharmarajan Sriram
Abstract:
In the present study, we attempted to develop Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose, glutamate racemase (coded by MurI gene) was selected. This enzyme racemize L-glutamate to D-glutamate required for the construction of peptidoglycan in the bacterial cell wall synthesis process. Furthermore this enzyme is neither expressed nor its product, D-glutamate is normally found in mammals, and hence designing inhibitors against this enzyme will not affect the host system as well act as potential antitubercular drugs. A library of BITS in house compounds were screened against Mtb MurI enzyme. Based on docking score, interactions and synthetic feasibility one hit lead was identified. Further optimization of lead was attempted and its derivatives were synthesized. Forty eight derivatives of 2-phenylbenzo[d]oxazole and 2-phenylbenzo[d]thiazole were synthesized and evaluated for Mtb MurI inhibition study, in vitro activities against Mtb, cytotoxicity against RAW 264.7 cell line. Chemical derivatization of the lead resulted in compounds NR-1213 AND NR-1124 as the potent M. tuberculosis glutamate racemase inhibitors with IC50 of 4-5µM which are remarkable and were found to be non-cytotoxic. Molecular dynamics, dormant models and cardiotoxicity studies of the most active molecules are in process.Keywords: cell wall biosynthesis, dormancy, glutamate racemase, tuberculosis
Procedia PDF Downloads 270937 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 101936 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 125935 Air Pollution and Respiratory-Related Restricted Activity Days in Tunisia
Authors: Mokhtar Kouki Inès Rekik
Abstract:
This paper focuses on the assessment of the air pollution and morbidity relationship in Tunisia. Air pollution is measured by ozone air concentration and the morbidity is measured by the number of respiratory-related restricted activity days during the 2-week period prior to the interview. Socioeconomic data are also collected in order to adjust for any confounding covariates. Our sample is composed by 407 Tunisian respondents; 44.7% are women, the average age is 35.2, near 69% are living in a house built after the 1980, and 27.8% have reported at least one day of respiratory-related restricted activity. The model consists on the regression of the number of respiratory-related restricted activity days on the air quality measure and the socioeconomic covariates. In order to correct for zero-inflation and heterogeneity, we estimate several models (Poisson, Negative binomial, Zero inflated Poisson, Poisson hurdle, Negative binomial hurdle and finite mixture Poisson models). Bootstrapping and post-stratification techniques are used in order to correct for any sample bias. According to the Akaike information criteria, the hurdle negative binomial model has the greatest goodness of fit. The main result indicates that, after adjusting for socioeconomic data, the ozone concentration increases the probability of positive number of restricted activity days.Keywords: bootstrapping, hurdle negbin model, overdispersion, ozone concentration, respiratory-related restricted activity days
Procedia PDF Downloads 258934 Analyzing Risk and Expected Return of Lenders in the Shared Mortgage Program of Korea
Authors: Keunock Lew, Seungryul Ma
Abstract:
The paper analyzes risk and expected return of lenders who provide mortgage loans to households in the shared mortgage program of Korea. In 2013, the Korean government introduced the mortgage program to help low income householders to convert their renting into purchasing houses. The financial source for the mortgage program is the Urban Housing Fund set up by the Korean government. Through the program, low income households can borrow money from lenders to buy a house at a very low interest rate (e.g. 1 % per year) for a long time. The motivation of adopting this mortgage program by the Korean government is that the cost of renting houses has been rapidly increased especially in large urban areas during the past decade, which became financial difficulties to low income households who do not have their own houses. As the analysis methodology, the paper uses a spread sheet model for projecting cash flows of the mortgage product over the period of loan contract. It also employs Monte Carlo simulation method to analyze the risk and expected yield of the lenders with assumption that the future housing price and market rate of interest follow a stochastic process. The study results will give valuable implications to the Korean government and lenders who want to stabilize the mortgage program and innovate the related loan products.Keywords: expected return, Monte Carlo simulation, risk, shared mortgage program
Procedia PDF Downloads 275933 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.Keywords: deployment, sensors, wireless sensor networks, forest fires
Procedia PDF Downloads 437932 Effects of AI-driven Applications on Bank Performance in West Africa
Authors: Ani Wilson Uchenna, Ogbonna Chikodi
Abstract:
This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)
Procedia PDF Downloads 16931 Ex Situ Conservation of Neutraceutical Banana-Musa paradisiaca cv. Karibale Monthan
Authors: V. Krishna, Shashikumar
Abstract:
Edible Bananas (Musa spp.) are the major staple food for rural and urban consumers in India and an important source of rural income. The cultivar Musa paradisiaca cv. Karibale Monthan is an endemic cultivar of Malnad region of Karnataka and used as a glomolueroprotective neutraceutical to solve kidney problems. The protocol for mass multiplication of plantlets for this indigenous banana cultivar Karibale Monthan has not yet been standardized so far. In the present study, an attempt has been made to develop high frequency in vitro regeneration protocol and evaluation of morphoagronomic characteristics in the farmyard. The high frequency shoot initiation (93.33 %) was recorded at the synergetic effect of BAP (2 to 8mg/L), TDZ (0.1 to 1.2mg/L) and coconut water (0.1 to 1.2ml/L). It was optimized at the concentration 5 mg/l BAP, 0.5 mg/l TDZ and 0.5 ml/l coconut water with 15.90 ± 1.66 frequency of shoots per propagule. Supplementation of 1.0 mg/l IBA induces 5.33 ± 1.21 numbers of roots with a mean root length of 7.50 ± 1.87 roots. 99% of plantlets with distinct roots and shoots were successfully acclimatized in the green house and transferred to the field to evaluate the agro-morphological variations. The micropropagated plants showed significantly higher morphometric values for height of the plant (16.80±2.17), number of leaves (12.40±1.14), length of the bunch (56.20±2.17), weight of the bunch (13.60±1.14), number of hands in a bunch (11.40±1.14) and girth of the pseudostem (49.80±1.48) when compared with in vivo plants.Keywords: banana cv. Karibale Monthan, neutraceutical, high-frequency regeneration, morphometric evaluation
Procedia PDF Downloads 289930 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 127929 A Phenomenal Study of Parental Attitudes towards the Professional Education of Their Daughters in Karachi
Authors: Nusrat Ali, Muhammad Saleem Khan
Abstract:
Education is the process of bringing individuals aware of their own reality in a manner that leads them to the effective adjustment with the environment. Females’ participation is vital to reducing hunger and poverty and promoting the family welfare. Education is the right of men and women both. Female education is more needed rural areas as compared to urban areas. Without educating the women of the country we cannot think of developing our nation. It is a fact that women are the first teachers of their children. Hence, if mothers are well educated, they can play an important role in shaping and molding of their sons and daughters. The main purpose of study was to identify the barriers of female education and the attitude among the parents. The present study researchers selected a quantitative study to explore the highlighting problem in the particular areas. Through the stratified random sampling selected a sample size from each stratum and generalized whole population. Chi-square test was used to test the validity of the data. The conclusion shows attitudes of parents somehow influence their daughters’ education, particularly those who are living in countryside. Another a big challenge of female education is co-education system in our society is higher which directly subjected to parents unfavorable attitude towards their daughters’ education. In this modern era various organizations are working for female education in rural areas where females are considered as house working ladies, now it’s time to work more to change parent’s attitude towards their daughter’s education.Keywords: parental attitude, professional education, daughter, unfavorable attitude
Procedia PDF Downloads 299928 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon
Authors: Nadine Yehya, Chantal Maatouk
Abstract:
Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach
Procedia PDF Downloads 222927 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization
Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja
Abstract:
In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel
Procedia PDF Downloads 148926 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs
Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani
Abstract:
Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation
Procedia PDF Downloads 517925 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection
Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor
Abstract:
Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing
Procedia PDF Downloads 206924 The Smart Record and Replay Mechanism for Android
Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu, Hsiao-Han Huang
Abstract:
The number of Android applications (Apps) has increased rapidly in recent years. In order to get better programmatic control over Apps, we designed a record-and-replay mechanism to record Android input events and accessibility service events then make shortcuts. The shortcut is useful for complicated routine works and to Android beginners. We also generated graphical user interface (GUI) API by these shortcuts. GUI API helps developers make integrated Apps which can control other third-party Apps even if the official API is not offered by their providers. We demonstrated the usage of GUI API with two integrated Apps: Universal Bank App and Universal Communication App. Universal Bank App integrates three accounts from different banks and Universal Communication App integrates Line with WhatsApp. Both of them show the advantage of extendable GUI API. Furthermore, using our mechanism, shortcuts could replay almost all of the Top-100 Apps on Google Play correctly. In sum, the approach we present can help both Android developers and general users.Keywords: graphical user interface, GUI API, record-and-replay, third-party apps
Procedia PDF Downloads 408923 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 225922 Sociological Analysis of Fulfillment Regarding Basic Needs of Females(Women) at Home with Special Reference of Balochistan (Pakistan)
Authors: Shabana Mohammad, Muhammad Irfan
Abstract:
The aim of this study was to bring out the facts regarding the effects of gender discrimination in fulfilling the basic needs of females at home. The purpose of the study was to observe whether gender discrimination affects the fulfillment of their basic needs in comparison to male siblings. Balochistan is the largest province of Pakistan geographically and has a tribal system. Due to having tribal systems, the women are not treated equally as men at home because males are considered the strength and privilege of tribes; males are more valuable because they support their families economically as well, and females are not allowed to work outside the home. That’s why females are deprived of their basic needs of life. The females (women) are neglected to have better nourishment, health facilities, easy access to get an education, safe house, and self-confidence. The type of research is quantitative, and data was collected from all government girls’ degree colleges of Quetta city (the capital of Balochistan province) under the age of 18. Two hundred (200) Students of all FA arts faculty (first year) were selected through simple random sampling (fishbowl draw). Data were analyzed by SPSS, and a coefficient test was applied to test the hypothesis. The regression of coefficient has a significant association between gender discrimination and basic needs (P-value =.000). The results showed that women are underprivileged from all basic needs (fundamental rights) of life, which are entitled to everyone by their birth because of male preference that creates gender disparity between men and women.Keywords: basic needs, discrimination, value of women at home, hurdles of women
Procedia PDF Downloads 115921 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: pantograph models, phase plots, structural health monitoring, damage detection
Procedia PDF Downloads 363920 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 167919 Indonesia's War on Terror and the Consequences on Indonesian Political System
Authors: Salieg L. Munestri
Abstract:
War on Terror became a principal war after the 9/11 attacks on U.S. homeland. Instead of helping to build up worldwide efforts to condemn terror and suicide bombings, the U.S.-led war on terror has given opportunities for the vast spread of terror. In much of Muslim world recently, the Bush’s Doctrine pushing all nations to choose sides in a war that is not truly a war has resulted worse effects. In the world’s most populous Muslim nation, Indonesia, more terror occurred since then. Instead of reinforcing the well-trained anti-terror military forces, Indonesian government established US-funded Special Detachment 88 to guarantee the accomplishment of war on terror in Indonesia and significantly to bring impact on regional security atmosphere. Indonesia is a potential power in Asia but it lacked off sophisticated military equipments. Consequently, Indonesia agrees to become a U.S. mutual partner in combating terrorism managed by Defense Security Cooperation Agency. The formation of elite anti-terror forces and U.S. partnerships perform Indonesia’s commitment to take a position beside the U.S. in coping with terrorism issue. However, this undeniably brings consequences on Indonesian political athmosphere, which encourages the writer to dig deep the consequences on the domestic environment of Indonesian political system. The establishment of the elite forces has aroused fluctuations within government, chiefly Indonesian House, concerning the establishment urgency, the large amount of funding, and the unpleasant performances, particularly the treatment toward suspected terrorists. Hence, evaluation process upon the Detachment 88 is highly demanding.Keywords: anti-terror forces, Indonesia, political system, war on terror
Procedia PDF Downloads 347918 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 82917 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 89916 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 70915 One Building at a Time for Tambak Lorok
Authors: Etika Sukma Adiyanti, H. N. Nurul Huda Putu Ekapraja, Gugun Gunawan
Abstract:
Global warming causes climate change and sea level rise. This is a threat for coastal regions, especially for coastal settlements with activities that are influenced by this natural phenomenon. Consequences are damage of houses, humid house environment, sustainability of the houses, obstructed economic activities and domestic works, disruption of sanitation facilities, lack of electricity, failure of transport system, psychological issues and other. Icons Tambak Lorok as 'Fisherman Village' is not something familiar to residents of the city of Semarang. Especially for the housewife who every day have to buy the ingredients high in protein and omega fish auction which is adjacent to the main street market in the village of Tambak Lorok. However, there are major problems that are being experienced by this small neighborhood. In fact, this issue includes seven infrastructure that should spoil the fishermen in activity with marine life. With this research, we will investigate water urbanism and climate change resiliency in Semarang, specifically the traditional fisher community of Tambak Lorok. We intend to find out how the local people in the fisher settlement Tambak Lorok deal with water urbanism, proverty and living with floods. So, we have a good solution for this problem, Floating Stage. We think that Tambak Lorok needs a new design for the common future. With this, One Building at A Time for Tambak Lorok, will be a good solution.Keywords: fisher community, environment, climate change, settlement
Procedia PDF Downloads 216914 Increasing the Mastery of Kanji with Language Learning Strategies through Multimedia
Authors: Sherly Ferro Lensun, Donal Matheos Ratu, Elni Jeini Usoh, Helena M. L. Pandi, Mayske Rinny Liando
Abstract:
This study aims to gain a deep understanding of the process and the increase resulting in mastery of Kanji with a Language Learning Strategies through multimedia. This research aims to gain scientific data on process and the result of improving kanji mastery by using Chokusetsu strategy in Kanji learning. The method used in this research is Action Research developed by Kemmis and Mc. Taggart is known as Spiral Model. This model consists of following stages: planning, implementation, observation, and reflection. The research results in following findings: (1) Kanji mastery comprises 4 major aspects, those are reading, writing, the use in sentence, and memorizing, and those aspects show gradual improvement from time to time. (2) Students have more participation in learning activities which can be identified from some positive behaviours such giving respond in finishing exercise in class. (3) Students’ better attention to the lesson shown by active behaviour in giving more questions or asking for more explanation to the lecturers, memorizing Kanji card, finishing the task of making Kanji card/house, doing the exercises more seriously, and finishing homework assignment punctually. (4) More attractive learning activities and tasks in the forms of more engaging colour and pictures enables students to conduct self-evaluation on their learning process.Keywords: Kanji, action research, language learning strategies, multimedia
Procedia PDF Downloads 177913 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling
Authors: C. Trapp, A. Vijay, M. Khorasani
Abstract:
Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP
Procedia PDF Downloads 183