Search results for: sheet metal manufacturing
3537 Designing Active Sites on Amicyanin Using Histidine S Plus Cobalt, and Measuring Their Functional Activity
Authors: Han-Bin Kim, Sooim Shin, Moonsung Choi
Abstract:
There is a growing interest in introducing a desired functional group on enzymes in the field of protein engineering. In here, various redox centers were newly created using histidine tag, which is widely used for protein purification, plus cobalt in one of cupredoxins, amicyanin. The coordination of Cobalt-His tag and reactivity of the Co²⁺ loaded His-tag also were characterized. 3xHis-tag, 6xHis-tag, and 9xHis-tag were introduced on amicyanin by site-directed mutagenesis, and then Co²⁺ was loaded on each His-tagged amicyanin. The spectral changes at 330 nm corresponding to cobalt binding on His-tag site indicated the binding ratio of 3xHis-tag, 6xHis-tag, and 9xHis-tag to cobalt as 1:1, 1:2, 1:3 respectively. Based on kinetic studies of binding cobalt to 3xHis-tag, 6xHis-tag, and 9xHis-tagged amicyanin, the nature of the sites was elucidated. In addition, internal electron transfer properties between Cu¹⁺ site and engineered site of amicyanin were determined. These results provide insight into improvement of metal coordination and alternation of the redox properties of metal as a new catalytic site on proteins.Keywords: amicyanin, cobalt, histidine, protein engineering
Procedia PDF Downloads 1623536 Exoskeleton-Enhanced Manufacturing: A Study Exploring Psychological and Physical Effects on Assembly Operators' Wellbeing
Authors: Iveta Eimontaite, Sarah R. Fletcher, Michele Surico, Alfio Minissale, Fabio F. Abba
Abstract:
Industry 4.0 offers possibilities for increased production volumes and greater efficiency whilst at the same time presenting new opportunities and challenges for the human workforce. Exoskeletons have been used in healthcare and are now starting to be adopted in manufacturing. The potential benefits of reducing fatigue and physical strain are attractive prospects of the technology for industry; however, the novelty of exoskeletons and surrounding ethical issues raise concerns amongst the stakeholders. The current case study investigated the introduction of an upper body exoskeleton designed to support posture but not increase physical strength in a factory over three time points: before the exoskeleton was introduced, and one and two months post-introduction once operators had experienced working with it. The main focus was to evaluate changes in operators' workload, situation awareness, technology self-efficacy, and physical discomfort following the introduction of the exoskeleton. After using the exoskeleton over two months, operators reported a decrease in temporal demand and an increase in performance of the NASA TLX instrument. Furthermore, over the second month, operators' self-reported technology self-efficacy scores increased, but at the same time, their situation awareness decreased. Interestingly, operators' physical discomfort after using the exoskeleton for two months increased from not uncomfortable to quite uncomfortable in the shoulder, arm, and middle back regions. The results suggest that self-perceived task efficiency improved; however, increased discomfort and decreased situation awareness scores indicate that two months might not be long enough for the exoskeleton to be integrated into operators’ mental body schema. The paper will discuss further implications and suggestions for exoskeleton introduction to manufacturing environments.Keywords: exoskeleton, manufacturing, mental workload, physical discomfort, situation awareness, technology self-efficacy
Procedia PDF Downloads 1323535 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions
Authors: Siba Soren, Purnendu Parhi
Abstract:
Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene
Procedia PDF Downloads 1943534 Assessment of Trace Metal Concentration of Soils Contaminated with Carbide in Abraka, Delta State, Nigeria
Authors: O.M. Agbogidi, I.M. Onochie
Abstract:
An investigation was carried out on trace metal concentration of soils contaminated with carbide in Abraka, Delta State, Nigeria in 2014 with a view to providing baseline formation on their status relative to the control plants and to the tolerable limits recommended by World standard bodies including WHO and FAO. The metals were analyzed using the Atomic Absorption Spectrophotometer which showed an elevated level when compared with the control plots. High level of metals including Fe, Pb, Zn, Cu, Cd, Ni, Cr and arsenic were recorded and these values were significantly different (P<0.05) from values obtained from the control plots. These results are indicative of the fact that carbide polluted soil had higher level of trace metals and because these metals are non-biodegradable elements in the ecosystem, a rise to their lethal levels in food chains is envisaged due to the interdependency of plants and animals stemming from soil-water organisms interrelationship.Keywords: bio-concentration, carbide contaminated soils, heavy metals, trace metals
Procedia PDF Downloads 2753533 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing
Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling
Abstract:
The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing.Keywords: outreach, education and public engagement, careers, peer interactions
Procedia PDF Downloads 1523532 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 1883531 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova
Abstract:
Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.Keywords: heavy metals, accumulation, safflower, polluted soils, phytoremediation
Procedia PDF Downloads 2633530 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process
Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma
Abstract:
As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis
Procedia PDF Downloads 1003529 Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite
Authors: A. M. Ahmed, Mona A. Darwish
Abstract:
Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions.Keywords: waste water, nickel, bentonite, adsorption
Procedia PDF Downloads 2583528 Understanding the Common Antibiotic and Heavy Metal Resistant-Bacterial Load in the Textile Industrial Effluents
Authors: Afroza Parvin, Md. Mahmudul Hasan, Md. Rokunozzaman, Papon Debnath
Abstract:
The effluents of textile industries have considerable amounts of heavy metals, causing potential microbial metal loads if discharged into the environment without treatment. Aim: In this present study, both lactose and non-lactose fermenting bacterial isolates were isolated from textile industrial effluents of a specific region of Bangladesh, named Savar, to compare and understand the load of heavy metals in these microorganisms determining the effects of heavy metal resistance properties on antibiotic resistance. Methods: Five different textile industrial canals of Savar were selected, and effluent samples were collected in 2016 between June to August. Total bacterial colony (TBC) was counted for day 1 to day 5 for 10-6 dilution of samples to 10-10 dilution. All the isolates were isolated and selected using 4 differential media, and tested for the determination of minimum inhibitory concentration (MIC) of heavy metals and antibiotic susceptibility test with plate assay method and modified Kirby-Bauer disc diffusion method, respectively. To detect the combined effect of heavy metals and antibiotics, a binary exposure experiment was performed, and to understand the plasmid profiling plasmid DNA was extracted by alkaline lysis method of some selective isolates. Results: Most of the cases, the colony forming units (CFU) per plate for 50 ul diluted sample were uncountable at 10-6 dilution, however, countable for 10-10 dilution and it didn’t vary much from canal to canal. A total of 50 Shigella, 50 Salmonella, and 100 E.coli (Escherichia coli) like bacterial isolates were selected for this study where the MIC was less than or equal to 0.6 mM for 100% Shigella and Salmonella like isolates, however, only 3% E. coli like isolates had the same MIC for nickel (Ni). The MIC for chromium (Cr) was less than or equal to 2.0 mM for 16% Shigella, 20% Salmonella, and 17% E. coli like isolates. Around 60% of both Shigella and Salmonella, but only 20% of E.coli like isolates had a MIC of less than or equal to 1.2 mM for lead (Pb). The most prevalent resistant pattern for azithromycin (AZM) for Shigella and Salmonella like isolates was found 38% and 48%, respectively; however, for E.coli like isolates, the highest pattern (36%) was found for sulfamethoxazole-trimethoprim (SXT). In the binary exposure experiment, antibiotic zone of inhibition was mostly increased in the presence of heavy metals for all types of isolates. The highest sized plasmid was found 21 Kb and 14 Kb for lactose and non-lactose fermenting isolates, respectively. Conclusion: Microbial resistance to antibiotics and metal ions, has potential health hazards because these traits are generally associated with transmissible plasmids. Microorganisms resistant to antibiotics and tolerant to metals appear as a result of exposure to metal-contaminated environments.Keywords: antibiotics, effluents, heavy metals, minimum inhibitory concentration, resistance
Procedia PDF Downloads 3153527 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert
Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman
Abstract:
This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters
Procedia PDF Downloads 4323526 In situ One-Step Synthesis of Graphene Quantum Dots-Metal Free and Zinc Phthalocyanines Conjugates: Investigation of Photophysicochemical Properties
Authors: G. Fomo, O. J. Achadu, T. Nyokong
Abstract:
Nanoconjugates of graphene quantum dots (GQDs) and 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyanine (H₂Pc(OPyF₃)₄) or 4-(tetrakis-5-(trifluoromethyl)-2-mercaptopyridinephthalocyaninato) zinc (II) (ZnPc(OPyF₃)₄) were synthesized via a novel in situ one-step route. The bottom-up approach for the prepared conjugates could ensure the intercalation of the phthalocyanines (Pcs) directly onto the edges or surface of the GQDs and or non-covalent coordination using the π-electron systems of both materials. The as-synthesized GQDs and their Pcs conjugates were characterized using different spectroscopic techniques and their photophysicochemical properties evaluated. The singlet oxygen quantum yields of the Pcs in the presence of GQDs were enhanced due to Förster resonance energy transfer (FRET) occurrence within the conjugated hybrids. Hence, these nanoconjugates are potential materials for photodynamic therapy (PDT) and photocatalysis applications.Keywords: graphene quantum dots, metal free fluorinated phthalocyanine, zinc fluorinated phthalocyanine, photophysicochemical properties
Procedia PDF Downloads 1823525 Domestic Trade, Misallocation and Relative Prices
Authors: Maria Amaia Iza Padilla, Ibai Ostolozaga
Abstract:
The objective of this paper is to analyze how transportation costs between regions within a country can affect not only domestic trade but also the allocation of resources in a given region, aggregate productivity, and relative domestic prices (tradable versus non-tradable). On the one hand, there is a vast literature that analyzes the transportation costs faced by countries when trading with the rest of the world. However, this paper focuses on the effect of transportation costs on domestic trade. Countries differ in their domestic road infrastructure and transport quality. There is also some literature that focuses on the effect of road infrastructure on the price difference between regions but not on relative prices at the aggregate level. On the other hand, this work is also related to the literature on resource misallocation. Finally, the paper is also related to the literature analyzing the effect of trade on the development of the manufacturing sector. Using the World Bank Enterprise Survey database, it is observed cross-country differences in the proportion of firms that consider transportation as an obstacle. From the International Comparison Program, we obtain a significant negative correlation between GDP per worker and relative prices (manufacturing sector prices relative to the service sector). Furthermore, there is a significant negative correlation between a country’s transportation quality and the relative price of manufactured goods with respect to the price of services in that country. This is consistent with the empirical evidence of a negative correlation between transportation quality and GDP per worker, on the one hand, and the negative correlation between GDP per worker and domestic relative prices, on the other. It is also shown that in a country, the share of manufacturing firms whose main market is at the local (regional) level is negatively related to the quality of the transportation infrastructure within the country. Similarly, this index is positively related to the share of manufacturing firms whose main market is national or international. The data also shows that those countries with a higher proportion of manufacturing firms operating locally have higher relative prices. With this information in hand, the paper attempts to quantify the effects of the allocation of resources between and within sectors. The higher the trade barriers caused by transportation costs, the less efficient allocation, which causes lower aggregate productivity. Second, it is built a two-sector model where regions within a country trade with each other. On the one hand, it is found that with respect to the manufacturing sector, those countries with less trade between their regions will be characterized by a smaller variety of goods, less productive manufacturing firms on average, and higher relative prices for manufactured goods relative to service sector prices. Thus, the decline in the relative price of manufactured goods in more advanced countries could also be explained by the degree of trade between regions. This trade allows for efficient intra-industry allocation (traders are more productive, and resources are allocated more efficiently)).Keywords: misallocation, relative prices, TFP, transportation cost
Procedia PDF Downloads 843524 Preparation of Ternary Metal Oxide Aerogel Catalysts for Carbon Dioxide and Propylene Oxide Cycloaddition Reaction
Abstract:
CO2 is the primary greenhouse gas which causes global warming in recent years. As the carbon capture and storage (CCS) getting maturing, the reuse of carbon dioxide which made from CCS is the important issue. In this way, the most common method is the synthesis of cyclic carbonate chemicals from the cycloaddition reaction of carbon dioxide and epoxide. The catalyst plays an important role in the CO2/epoxide cycloaddition reactions. The Lewis acid and base sites are both needed on the catalyst surface for the help of epoxide ring opening, leading to the synthesis of cyclic carbonate. Furthermore, the larger specific surface area and more active site of the catalyst are also needed to enhance the efficiency of the CO2/epoxide cycloaddition reactions. Aerogel is a mesoporous nanomaterial (pore size between 2~50 nm) with high specific surface area and porosity (at least 90%) and low density. In this study, the ternary metal oxide aerogels, Mg-doped Al2O3 aerogels, with higher specific surface area and Lewis acid and base sites on the aerogel surface are successfully prepared by using a facile sol-gel reaction. The as-prepared Mg-doped Al2O3 aerogels are also served as heterogenous catalyst for the CO2/propylene- oxide cycloaddition reaction. Compared to the pristine Al2O3 aerogels, the Mg-doped Al2O3 aerogels possessed both Lewis acid and base sites on the surface are able to enhance the efficiency of the CO2/propylene oxide cycloaddition reactions. As a result, the as-prepared Mg-doped Al2O3 aerogels are a promising and novel catalyst for the CO2/epoxide cycloaddition reactions.Keywords: ternary, metal oxide aerogel, CO2 reuse, cycloaddition, propylene oxide
Procedia PDF Downloads 2613523 Magnetic Resonance Imaging in Cochlear Implant Patients without Magnet Removal: A Safe and Effective Workflow Management Program
Authors: Yunhe Chen, Xinyun Liu, Qian Wang, Jianan Li
Abstract:
Background Cochlear implants (CIs) are currently the primary effective treatment for severe or profound sensorineural hearing loss. As China's population ages and the number of young children rises, the demand for MRI for CI patients is expected to increase. Methods Reviewed MRI cases of 25 CI patients between 2015 and 2024, assessed imaging auditory outcomes and adverse reactions. Use the adverse event record sheet and accompanying medication sheet to record follow-up measures. Results Most CI patients undergoing MRI may face risks such as artifacts, pain, redness, swelling, tissue damage, bleeding, and magnet displacement or demagnetization. Twenty-five CI patients in our hospital were reviewed. Seven patient underwent 3.0 T MR, the others underwent 1.5 T MR. The manufacturers are 18 cases in Austria, 5 cases in Australia and 2 cases in Nurotron. Among them, one patient with bilateral CI underwent 1.5 T MR examination after head pressure bandaging, and the left magnet was displaced (CI24RE Series, Australia). This patient underwent surgical replacement of the magnet under general anesthesia. Six days after the operation, the patient's feedback indicated that the performance of the cochlear implant was consistent with the previous results following the reactivation of the external device. Based on the experience of our hospital, we proposed the feasible management scheme of MRI examination procedure for CI patients. This plan should include a module for confirming MRI imaging parameters, informed consent, educational materials for patients, and other safety measures to ensure that patients receive imaging results safely and effectively, implify clinical. Conclusion As indications for both MRI and cochlear implantation expand,the number of MRI studies recommended for patients with cochlear implants will also increase. The process and management scheme proposed in this study can help to obtain imaging results safely and effectively, and reduce clinical stress.Keywords: cochlear implantation, MRI, magnet, displacement
Procedia PDF Downloads 143522 Dendrimer-Encapsulated N, Pt Co-Doped TiO₂ for the Photodegration of Contaminated Wastewater
Authors: S. K. M. Nzaba, H. H. Nyoni, B. Ntsendwana, B. B. Mamba, A. T. Kuvarega
Abstract:
Azo dye effluents, released into water bodies are not only toxic to the ecosystem but also pose a serious impact on human health due to the carcinogenic and mutagenic effects of the compounds present in the dye discharge. Conventional water treatment methods such as adsorption, flocculation/coagulation and biological processes are not effective in completely removing most of the dyes and their natural degradation by-products. Advanced oxidation processes (AOPs) have proven to be effective technologies for complete mineralization of these recalcitrant pollutants. Therefore, there is a need for new technology that can solve the problem. Thus, this study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal codoped TiO₂. N, Pt co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PAMAM G0), amine-terminated polyamidoamine dendrimer generation 1 ( PAMAM G1) and hyperbranched polyethyleneimine (HPEI) as templates and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier- transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet /visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25 revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N, Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of brilliant black (BB) dye. The N, metal codoped TiO₂ containing 0.5 wt. % of the metal consisted mainly of the anatase phase as confirmed by XRD results of all three samples, with a particle size range of 13–30 nm. The particles were largely spherical and shifted the absorption edge well into the visible region. Band gap reduction was more pronounced for the N, Pt HPEI (Pt 0.5 wt. %) codoped TiO₂ compared to PAMAM G0 and PAMAM G1. Consequently, codoping led to an enhancement in the photocatalytic activity of the materials for the degradation of brilliant black (BB).Keywords: codoped TiO₂, dendrimer, photodegradation, wastewater
Procedia PDF Downloads 1733521 Industrial Ergonomics Improvement at a Refrigerator Manufacturing Company in Iran: An Approach on Interventional Ergonomics
Authors: Hassan S. Naeini
Abstract:
Nowadays a lot of people are working in several sorts of industrial sectors in which there are some risk factors which threaten human being especially in developing countries. One of the main problems which effect on workers’ health refers to Ergonomics. Ergonomics as multidisciplinary science concerns workers’ health and safety in terms of somatic and mental concepts. Surely ergonomics interventions and improvement make a better condition for workers and change the quality of working life to better condition. In this study, one of the factories in Iran which is producing some kinds of small and medium size of refrigerators was chosen as the sample. The preliminary ergonomics observation of the mentioned factory showed that there are some risk factors in terms of ergonomics aspects, so an ergonomic intervention was defined, then some ergonomic assessment methods such as NMQ,OWAS, and Environmental Ergonomic Assessment were used. Also Anthropometric measurement was done. This study shows that there are some workstations and plants which suffer some degrees of ergonomic problems. Considering with the gathered data, illumination, noise control and workstation design in metal workstation are known as the priority actions. Some parts of the mentioned interventions are ongoing actions. it seems that the mentioned intervention and workstations design make a better condition for workers, because ergonomics make a safer and more sustainable environments for human being.Keywords: anthropometry, ergonomics, health, NMQ, OWAS
Procedia PDF Downloads 7553520 The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄
Authors: Burcu Kiren, Alattin CAkan, Nezihe Ayas
Abstract:
Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite.Keywords: sodium borohydride, hydrolysis, catalyst, Ni/dolomite, hydrogen
Procedia PDF Downloads 1663519 Impact of Anthropogenic Activities on Soil Quality Using the Land Snail Cantareus apertus as Bioindicator of Heavy Metals Accumulation in The Bejaia Region (Northeastern Algeria)
Authors: Benbelil-Tafoughalt Saida, Tababouchet Meriem
Abstract:
The main goal of this study was to investigate the impact of anthropogenic activities on soil quality using the land snail Cantareusapertus as a bioindicator of heavy metal accumulation. Concentrations of cadmium, copper, and zinc were measured in various body organs, viz: viscera and foot of the land snail Cantareusapertus. The snails were collected from two different sites in the Bejaia region (Northeastern Algeria), exposed to different sources of contamination by trace metals. The first sampling site is an urban areas, and the second is characterized by heavy industry, a potential source of soil pollution via heavy metal contamination. The concentrations of heavy metal in all viscera and foot samples were measured using an atomic absorption spectrophotometer. Bioconcentration of the trace metals Cu, Zn, and Cd varied between the viscera and the foot with the viscera having the highest concentration (µgg-1) of all metals than the foots; Cu, 2.03 – 5.8 (Viscera), 0.05 – 3.30 (Foot), Zn, 23.64 – 45.02 (Viscera), 1.87 – 15.15 (Foot) and Cd, 0.36 – 15.26 (Viscera), 0.18 – 13.73 (Foot), which suggest that ingestion may be the main uptake route of these essential metals. On the other hand, the levels of heavy metals varied significantly among the sampling area (P<0.001). in fact, in the foots as well as in the viscera, the concentrations of all studied metals is significantly higher in the snails sampled from sites closest to potential sources of pollution compared to those collected from urban areas characterized by moderate pollution.Keywords: anthropogenic activities, Bioconcentration, Cantareus apertus, trace metals
Procedia PDF Downloads 1793518 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing
Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares
Abstract:
In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms
Procedia PDF Downloads 1903517 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models
Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel
Abstract:
In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids
Procedia PDF Downloads 3783516 Automated Resin Transfer Moulding of Carbon Phenolic Composites
Authors: Zhenyu Du, Ed Collings, James Meredith
Abstract:
The high cost of composite materials versus conventional materials remains a major barrier to uptake in the transport sector. This is exacerbated by a shortage of skilled labour which makes the labour content of a hand laid composite component (~40 % of total cost) an obvious target for reduction. Automation is a method to remove labour cost and improve quality. This work focuses on the challenges and benefits to automating the manufacturing process from raw fibre to trimmed component. It will detail the experimental work required to complete an automation cell, the control strategy used to integrate all machines and the final benefits in terms of throughput and cost.Keywords: automation, low cost technologies, processing and manufacturing technologies, resin transfer moulding
Procedia PDF Downloads 2923515 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties
Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski
Abstract:
The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide
Procedia PDF Downloads 2003514 Promoting Creative and Critical Thinking in Mathematics
Authors: Ana Maria Reis D'Azevedo Breda, Catarina Maria Neto da Cruz
Abstract:
The Japanese art of origami provides a rich context for designing exploratory mathematical activities for children and young people. By folding a simple sheet of paper, fascinating and surprising planar and spatial configurations emerge. Equally surprising is the unfolding process, which also produces striking patterns. The procedure of folding, unfolding, and folding again allows the exploration of interesting geometric patterns. When adequately and systematically done, we may deduce some of the mathematical rules ruling origami. As the child/youth folds the sheet of paper repeatedly, he can physically observe how the forms he obtains are transformed and how they relate to the pattern of the corresponding unfolding, creating space for the understanding/discovery of mathematical principles regulating the folding-unfolding process. As part of a 2023 Summer Academy organized by a Portuguese university, a session entitled “Folding, Thinking and Generalizing” took place. Twenty-three students attended the session, all enrolled in the 2nd cycle of Portuguese Basic Education and aged between 10 and 12 years old. The main focus of this session was to foster the development of critical cognitive and socio-emotional skills among these young learners using origami. These skills included creativity, critical analysis, mathematical reasoning, collaboration, and communication. Employing a qualitative, descriptive, and interpretative analysis of data collected during the session through field notes and students’ written productions, our findings reveal that structured origami-based activities not only promote student engagement with mathematical concepts in a playful and interactive but also facilitate the development of socio-emotional skills, which include collaboration and effective communication between participants. This research highlights the value of integrating origami into educational practices, highlighting its role in supporting comprehensive cognitive and emotional learning experiences.Keywords: skills, origami rules, active learning, hands-on activities
Procedia PDF Downloads 673513 Graphene Transistors Based Microwave Amplifiers
Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi
Abstract:
Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.Keywords: graphene, microwave FETs, microwave amplifiers, transistors
Procedia PDF Downloads 4933512 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice
Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi
Abstract:
The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature
Procedia PDF Downloads 3433511 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites
Authors: L. Onal
Abstract:
The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding routeKeywords: twintex, flexural properties, automobile composites, sandwich structures
Procedia PDF Downloads 4313510 How Accountants Can Save the World
Authors: Todd Sayre
Abstract:
The proprietary balance sheet represents equity as the shareholders’ net worth. FASB (1985) codified the proprietary format with the justification that shareholders, like partners and proprietors, owned and had “ownership interests” in the net assets. The results of the hypotheses tests imply that shareholders do not resemble owners nor do they have ownership interests in the net assets. Accordingly, the paper argues that replacing the proprietary format with an entity format in corporate reporting would not only help corporate reports to be more representationally faithful, but would also help people to recognize that are entities onto themselves.Keywords: proprietary theory, entity theory, earned capital approach, corporate governance
Procedia PDF Downloads 223509 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 1733508 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing
Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo
Abstract:
Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.Keywords: additive manufacturing, locking compression plate, finite element, topology optimization
Procedia PDF Downloads 198