Search results for: robust diagnosis
2294 Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks
Authors: Eman I. Raslan, Haitham S. Hamza, Reda A. El-Khoribi
Abstract:
Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques.Keywords: fiber-wireless (FiWi), dynamic bandwidth allocation (DBA), passive optical networks (PON), media access control (MAC)
Procedia PDF Downloads 5312293 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 932292 Metastasis of Breast Cancer to the Lungs: Implications of Molecular Biology and Treatment Options
Authors: Fakhrosadat Sajjadian
Abstract:
The majority of deaths in cancer patients are caused by distant metastasis. Breast cancer shows a unique spread pattern, often affecting bone, liver, lung, and brain. Breast cancer can be categorized into various subtypes according to gene expression patterns, and these subtypes exhibit specific preferences for organs where metastasis occurs. Breast tumors with luminal characteristics have a preference for spreading to the bone, whereas basal-like breast cancer (BLBC) shows a tendency to metastasize to the lungs. Still, the mechanisms behind this particular pattern of metastasis in organs have yet to be fully understood. In this evaluation, we will outline the latest progress in molecular signaling pathways and treatment methods for breast cancer lung metastasis.Keywords: lung cancer, liver cancer, diagnosis, BLBC, metastasis
Procedia PDF Downloads 482291 Chip Less Microfluidic Device for High Throughput Liver Spheroid Generation
Authors: Sourita Ghosh, Falguni Pati, Suhanya Duraiswamy
Abstract:
Spheroid, a simple three-dimensional cellular aggregate, allows us to simulate the in-vivo complexity of cellular signaling and interactions in greater detail than traditional 2D cell culture. It can be used as an in-vitro model for drug toxicity testing, tumor modeling and many other such applications specifically for cancer. Our work is focused on the development of an affordable, user-friendly, robust, reproducible, high throughput microfluidic device for water in oil droplet production, which can, in turn, be used for spheroids manufacturing. Here, we have investigated the droplet breakup between two non-Newtonian fluids, viz. silicone oil and decellularized liver matrix, which acts as our extra cellular matrix (ECM) for spheroids formation. We performed some biochemical assays to characterize the liver ECM, as well as rheological studies on our two fluids and observed a critical dependence of capillary number (Ca) on droplet breakup and homogeneous drop formationKeywords: chip less, droplets, extracellular matrix, liver spheroid
Procedia PDF Downloads 892290 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys
Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio
Abstract:
Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling
Procedia PDF Downloads 2212289 Discover a New Technique for Cancer Recognition by Analysis and Determination of Fractal Dimension Images in Matlab Software
Authors: Saeedeh Shahbazkhany
Abstract:
Cancer is a terrible disease that, if not diagnosed early, therapy can be difficult while it is easily medicable if it is diagnosed in early stages. So it is very important for cancer diagnosis that medical procedures are performed. In this paper we introduce a new method. In this method, we only need pictures of healthy cells and cancer cells. In fact, where we suspect cancer, we take a picture of cells or tissue in that area, and then take some pictures of the surrounding tissues. Then, fractal dimension of images are calculated and compared. Cancer can be easily detected by comparing the fractal dimension of images. In this method, we use Matlab software.Keywords: Matlab software, fractal dimension, cancer, surrounding tissues, cells or tissue, new method
Procedia PDF Downloads 3542288 Binarization and Recognition of Characters from Historical Degraded Documents
Authors: Bency Jacob, S.B. Waykar
Abstract:
Degradations in historical document images appear due to aging of the documents. It is very difficult to understand and retrieve text from badly degraded documents as there is variation between the document foreground and background. Thresholding of such document images either result in broken characters or detection of false texts. Numerous algorithms exist that can separate text and background efficiently in the textual regions of the document; but portions of background are mistaken as text in areas that hardly contain any text. This paper presents a way to overcome these problems by a robust binarization technique that recovers the text from a severely degraded document images and thereby increases the accuracy of optical character recognition systems. The proposed document recovery algorithm efficiently removes degradations from document images. Here we are using the ostus method ,local thresholding and global thresholding and after the binarization training and recognizing the characters in the degraded documents.Keywords: binarization, denoising, global thresholding, local thresholding, thresholding
Procedia PDF Downloads 3442287 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2032286 Telemedicine Services in Ophthalmology: A Review of Studies
Authors: Nasim Hashemi, Abbas Sheikhtaheri
Abstract:
Telemedicine is the use of telecommunication and information technologies to provide health care services that would often not be consistently available in distant rural communities to people at these remote areas. Teleophthalmology is a branch of telemedicine that delivers eye care through digital medical equipment and telecommunications technology. Thus, teleophthalmology can overcome geographical barriers and improve quality, access, and affordability of eye health care services. Since teleophthalmology has been widespread applied in recent years, the aim of this study was to determine the different applications of teleophthalmology in the world. To this end, three bibliographic databases (Medline, ScienceDirect, Scopus) were comprehensively searched with these keywords: eye care, eye health care, primary eye care, diagnosis, detection, and screening of different eye diseases in conjunction with telemedicine, telehealth, teleophthalmology, e-services, and information technology. All types of papers were included in the study with no time restriction. We conducted the search strategies until 2015. Finally 70 articles were surveyed. We classified the results based on the’type of eye problems covered’ and ‘the type of telemedicine services’. Based on the review, from the ‘perspective of health care levels’, there are three level for eye health care as primary, secondary and tertiary eye care. From the ‘perspective of eye care services’, the main application of teleophthalmology in primary eye care was related to the diagnosis of different eye diseases such as diabetic retinopathy, macular edema, strabismus and aged related macular degeneration. The main application of teleophthalmology in secondary and tertiary eye care was related to the screening of eye problems i.e. diabetic retinopathy, astigmatism, glaucoma screening. Teleconsultation between health care providers and ophthalmologists and also education and training sessions for patients were other types of teleophthalmology in world. Real time, store–forward and hybrid methods were the main forms of the communication from the perspective of ‘teleophthalmology mode’ which is used based on IT infrastructure between sending and receiving centers. In aspect of specialists, early detection of serious aged-related ophthalmic disease in population, screening of eye disease processes, consultation in an emergency cases and comprehensive eye examination were the most important benefits of teleophthalmology. Cost-effectiveness of teleophthalmology projects resulted from reducing transportation and accommodation cost, access to affordable eye care services and receiving specialist opinions were also the main advantages of teleophthalmology for patients. Teleophthalmology brings valuable secondary and tertiary care to remote areas. So, applying teleophthalmology for detection, treatment and screening purposes and expanding its use in new applications such as eye surgery will be a key tool to promote public health and integrating eye care to primary health care.Keywords: applications, telehealth, telemedicine, teleophthalmology
Procedia PDF Downloads 3742285 A Microfluidic Biosensor for Detection of EGFR 19 Deletion Mutation Targeting Non-Small Cell Lung Cancer on Rolling Circle Amplification
Authors: Ji Su Kim, Bo Ram Choi, Ju Yeon Cho, Hyukjin Lee
Abstract:
Epidermal growth factor receptor (EGFR) 19 deletion mutation gene is over-expressed in carcinoma patient. EGFR 19 deletion mutation is known as typical biomarker of non-small cell lung cancer (NSCLC), which one section in the coding exon 19 of EGFR is deleted. Therefore, there have been many attempts over the years to detect EGFR 19 deletion mutation for replacing conventional diagnostic method such as PCR and tissue biopsy. We developed a simple and facile detection platform based on Rolling Circle Amplification (RCA), which provides highly amplified products in isothermal amplification of the ligated DNA template. Limit of detection (~50 nM) and a faster detection time (~30 min) could be achieved by introducing RCA.Keywords: EGFR19, cancer, diagnosis, rolling circle amplification (RCA), hydrogel
Procedia PDF Downloads 2552284 Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure
Authors: Tarek Aly
Abstract:
The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure.Keywords: recurrent, anterior gleno-humeral instability, latarjet, unstable shoulder
Procedia PDF Downloads 842283 Denial among Women Living with Cancer: An Exploratory Study to Understand the Consequences of Cancer and the Denial Mechanism
Authors: Judith Partouche-Sebban, Saeedeh Rezaee Vessal
Abstract:
Because of the rising number of new cases of cancer, especially among women, it is more than essential to better understand how women experience cancer in order to bring them adapted to support and care and enhance their well-being and patient experience. Cancer stands for a traumatic experience in which the diagnosis, its medical treatments, and the related side effects lead to deep physical and psychological changes that may arouse considerable stress and anxiety. In order to reduce these negative emotions, women tend to use various defense mechanisms, among which denial has been defined as the most frequent mechanism used by breast cancer patients. This study aims to better understand the consequences of the experience of cancer and their link with the adoption of a denial strategy. The empirical research was done among female cancer survivors in France. Since the topic of this study is relatively unexplored, a qualitative methodology and open-ended interviews were employed. In total, 25 semi-directive interviews were conducted with a female with different cancers, different stages of treatment, and different ages. A systematic inductive method was performed to analyze data. The content analysis enabled to highlight three different denial-related behaviors among women with cancer, which serve a self-protective function. First, women who expressed high levels of anxiety confessed they tended to completely deny the existence of their cancer immediately after the diagnosis of their illness. These women mainly exhibit many fears and a deep distrust toward the medical context and professionals. This coping mechanism is defined by the patient as being unconscious. Second, other women deliberately decided to deny partial information about their cancer, whether this information is related to the stages of the illness, the emotional consequences, or the behavioral consequences of the illness. These women use this strategy as a way to avoid the reality of the illness and its impact on the different aspects of their life as if cancer does not exist. Third, some women tend to reinterpret and give meaning to their cancer as a way to reduce its impact on their life. To this end, they may use magical thinking or positive reframing, or reinterpretation. Because denial may lead to delays in medical treatments, this topic deserves a deep investigation, especially in the context of oncology. As denial is defined as a specific defense mechanism, this study contributes to the existing literature in service marketing which focuses on emotions and emotional regulation in healthcare services which is a crucial issue. Moreover, this study has several managerial implications for healthcare professionals who interact with patients in order to implement better care and support for the patients.Keywords: cancer, coping mechanisms, denial, healthcare services
Procedia PDF Downloads 852282 Economic Impact and Benefits of Integrating Augmented Reality Technology in the Healthcare Industry: A Systematic Review
Authors: Brenda Thean I. Lim, Safurah Jaafar
Abstract:
Augmented reality (AR) in the healthcare industry has been gaining popularity in recent years, principally in areas of medical education, patient care and digital health solutions. One of the drivers in deciding to invest in AR technology is the potential economic benefits it could bring for patients and healthcare providers, including the pharmaceutical and medical technology sectors. Works of literature have shown that the benefits and impact of AR technologies have left trails of achievements in improving medical education and patient health outcomes. However, little has been published on the economic impact of AR in healthcare, a very resource-intensive industry. This systematic review was performed on studies focused on the benefits and impact of AR in healthcare to appraise if they meet the founded quality criteria so as to identify relevant publications for an in-depth analysis of the economic impact assessment. The literature search was conducted using multiple databases such as PubMed, Cochrane, Science Direct and Nature. Inclusion criteria include research papers on AR implementation in healthcare, from education to diagnosis and treatment. Only papers written in English language were selected. Studies on AR prototypes were excluded. Although there were many articles that have addressed the benefits of AR in the healthcare industry in the area of medical education, treatment and diagnosis and dental medicine, there were very few publications that identified the specific economic impact of technology within the healthcare industry. There were 13 publications included in the analysis based on the inclusion criteria. Out of the 13 studies, none comprised a systematically comprehensive cost impact evaluation. An outline of the cost-effectiveness and cost-benefit framework was made based on an AR article from another industry as a reference. This systematic review found that while the advancements of AR technology is growing rapidly and industries are starting to adopt them into respective sectors, the technology and its advancements in healthcare were still in their early stages. There are still plenty of room for further advancements and integration of AR into different sectors within the healthcare industry. Future studies will require more comprehensive economic analyses and costing evaluations to enable economic decisions for or against implementing AR technology in healthcare. This systematic review concluded that the current literature lacked detailed examination and conduct of economic impact and benefit analyses. Recommendations for future research would be to include details of the initial investment and operational costs for the AR infrastructure in healthcare settings while comparing the intervention to its conventional counterparts or alternatives so as to provide a comprehensive comparison on impact, benefit and cost differences.Keywords: augmented reality, benefit, economic impact, healthcare, patient care
Procedia PDF Downloads 2072281 Morphological Features Fusion for Identifying INBREAST-Database Masses Using Neural Networks and Support Vector Machines
Authors: Nadia el Atlas, Mohammed el Aroussi, Mohammed Wahbi
Abstract:
In this paper a novel technique of mass characterization based on robust features-fusion is presented. The proposed method consists of mainly four stages: (a) the first phase involves segmenting the masses using edge information’s. (b) The second phase is to calculate and fuse the most relevant morphological features. (c) The last phase is the classification step which allows us to classify the images into benign and malignant masses. In this step we have implemented Support Vectors Machines (SVM) and Artificial Neural Networks (ANN), which were evaluated with the following performance criteria: confusion matrix, accuracy, sensitivity, specificity, receiver operating characteristic ROC, and error histogram. The effectiveness of this new approach was evaluated by a recently developed database: INBREAST database. The fusion of the most appropriate morphological features provided very good results. The SVM gives accuracy to within 64.3%. Whereas the ANN classifier gives better results with an accuracy of 97.5%.Keywords: breast cancer, mammography, CAD system, features, fusion
Procedia PDF Downloads 5992280 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 1382279 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 1692278 Reliability and Validity Examinations of the Child Behavior Checklist (CBCL): One of the Achenbach System of Empirically Based Assessment
Authors: Zhidong Zhang, Zhi-Chao Zhang
Abstract:
In this study, three Chinese versions of the Achenbach systems of empirically based assessment (ASEBA) scales were used to examine adolescent psychological and behavioral problems. These three scales are CBCL, TRF, and YSR. In order to further understand the robustness of these scales, their reliability and construct validity have been examined. Each scale consists of about 113 items plus relevant background variables. These 113 items were further classified into 8 psychological and behavioral problems: emotionally reactive, anxious/depressed, somatic complaints, withdrawn, attention problems, aggressive behavior, social problems, thought problems, and association problems. The study explored the item and construct correlation relations and the correlations between the corresponding constructs among three scales. The results indicated that the associations between item and constructs varied. The construct validities were very robust.Keywords: ASEBA, construct validity, psychological and behavioral problems, reliability
Procedia PDF Downloads 6922277 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML
Procedia PDF Downloads 1372276 Metachromatic Leukodystrophy: A Case Report
Authors: Mary Rose Eunice S. Gundayao, Manolo M. Fernandez
Abstract:
Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder with an autosomal recessive inheritance pattern. Lysosomal storage disorders are often severe, follow a progressively neurodegenerative path, and may result in multi-organ failure, potentially leading to death within 5 to 6 years in cases of early-onset forms. There are limited data regarding cases of MLD in Filipino children. This is the case of a 2-year-old Filipino girl who presented with progressive neurological deterioration and was diagnosed with metachromatic leukodystrophy by molecular genetic testing. This case report aims to present this patient’s clinical history, neurological findings, diagnosis and novel genetic mutations causing MLD. A concise review of updated literature on MLD will be discussed.Keywords: metachromatic leukodystrophy, ARSA gene, peripheral neuropathy, case report, demyelinating disease
Procedia PDF Downloads 192275 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 182274 Anti-Phospholipid Antibody Syndrome Presenting with Seizure, Stroke and Atrial Mass: A Case Report
Authors: Rajish Shil, Amal Alduhoori, Vipin Thomachan, Jamal Teir, Radhakrishnan Renganathan
Abstract:
Background: Antiphospholipid antibody syndrome (APS) has a broad spectrum of thrombotic and non-thrombotic clinical manifestations. We present a case of APS presenting with seizure, stroke, and atrial mass. Case Description: A 38-year-old male presented with headache of 10 days duration and tonic-clonic seizure. The neurological examination was normal. Magnetic resonance imaging of brain showed small acute right cerebellar infarct. Magnetic resonance angiography of brain and neck showed a focal narrowing in the origin of the internal carotid artery bilaterally. Electroencephalogram was normal. He was started on aspirin, atorvastatin, and carbamazepine. Transthoracic and trans-esophageal echocardiography showed a pedunculated and lobular atrial mass, measuring 1 X 1.5 cm, which was freely mobile across mitral valve opening across the left ventricular inflow. Autoimmune screening showed positive Antiphospholipid antibodies in high titer (Cardiolipin IgG > 120 units/ml, B2 glycoprotein IgG 90 units/mL). Anti-nuclear antibody was negative. Erythrocyte sedimentation rate and C-reactive protein levels were normal. Platelet count was low (111 x 109/L). The patient underwent successful surgical removal of the mass, which looked like a thrombotic clot, and Histopathological analysis confirmed it as a fibrinous clot, with no evidence of tumor cells. The patient was started on full anticoagulation treatment and was followed up regularly in the clinic, where our patient did not have any further complications from the disease. Discussion: Our patient was diagnosed to have APS based on the features of high positive anticardiolipin antibody IgG and B2 glycoprotein IgG levels, Stroke, thrombocytopenia, and abnormal echo findings. Thrombotic vegetation can mimic an atrial myxoma on echo. Conclusion: APS can present with neurological and cardiac manifestations, and therefore a high index of suspicion is necessary for a diagnosis of the disease as it can affect both short and long term treatment plans and prognosis. Therefore, in patients presenting with neurological symptoms like seizures, weakness and radiological diagnosis of stroke in a young patient, where atrial masses could be thought to be the cause of stroke, they should be screened for any concomitant findings of thrombocytopenia and/or activated partial thromboplastin time prolongation, which should raise the suspicion of vasculitis, specifically APS to be the primary cause of the clinical presentation.Keywords: antiphospholipid syndrome, seizures, atrial mass, stroke
Procedia PDF Downloads 1132273 Investigation of Bremsstrahlung, Braking Radiation from Beta-Emitting Radioactive Sources
Authors: Metin Kömsöken, Ayşe Güneş Tanır, Onur Karaman
Abstract:
Usage of high energy charged particles for diagnosis and treatment has been widespread in medicine. The main purpose is to investigate that Bremsstrahlung which occurs by tissue interactions with charged particles should not be neglected. Nuclear stopping power (Bremsstrahlung) was calculated for lung, brain, skin, muscle, bone (cortical) and water targets for the energies of electrons obtained from LINAC used in radiotherapy and of β+ sources used in positron emission tomography (PET). These calculations were done by using the four different analytical functions including classical Bethe-Bloch, Tsoulfanidis, modified Bethe-Bloch and modified Tsoulfanidis equations. It was concluded that obtained results were compatible with that of National Institute of Standards and Technology (NIST-ESTAR).Keywords: β- emitting source, bremsstrahlung, therapeutic radionuclides, LINAC
Procedia PDF Downloads 3332272 Contribution to the Success of the Energy Audit in the Industrial Environment: A Case Study about Audit of Interior Lighting for an Industrial Site in Morocco
Authors: Abdelkarim Ait Brik, Abdelaziz Khoukh, Mustapha Jammali, Hamid Chaikhy
Abstract:
The energy audit is the essential initial step to ensure a good definition of energy control actions. The in-depth study of the various energy-consuming equipments makes it possible to determine the actions and investments with best cost for the company. The analysis focuses on the energy consumption of production equipment and utilities (lighting, heating, air conditioning, ventilation, transport). Successful implementation of this approach requires, however, to take into account a number of prerequisites. This paper proposes a number of useful recommendations concerning the energy audit in order to achieve better results, and a case study concerning the lighting audit of a Moroccan company by showing the gains that can be made through this audit.Keywords: energy audit, energy diagnosis, consumption, electricity, energy efficiency, lighting audit
Procedia PDF Downloads 6952271 Thermal Spraying of Titanium-Based Alloys on Steel and Aluminum Substrates
Authors: Ionut Claudiu Roata, Catalin Croitoru
Abstract:
Thermal spraying emerges as a versatile and robust technique for enhancing construction steel with protective coatings tailored for anti-corrosion, insulation, and aesthetics. This study showcases the successful application of flame thermal sprayed titanium-based coatings on EN-S273JR steel substrates and on aluminum. Optimizing the process at a 150 mm spray distance and employing argon as a carrier gas, we achieved coatings with characteristic morphologies and a minimal amount of oxides presence at particle boundaries. Corrosion tests in 3.5% wt. NaCl solution confirmed the coatings’ superior performance, displaying an improved corrosion resistance increase over uncoated steel or aluminum. These results underscore the efficacy of thermal spraying in significantly bolstering the durability of construction steel and aluminum, marking it as a pivotal technique for multifunctional coating applications.Keywords: thermal spraying, corrosion resistance, surface properties, mechanical properties
Procedia PDF Downloads 222270 Recognition of Grocery Products in Images Captured by Cellular Phones
Authors: Farshideh Einsele, Hassan Foroosh
Abstract:
In this paper, we present a robust algorithm to recognize extracted text from grocery product images captured by mobile phone cameras. Recognition of such text is challenging since text in grocery product images varies in its size, orientation, style, illumination, and can suffer from perspective distortion. Pre-processing is performed to make the characters scale and rotation invariant. Since text degradations can not be appropriately defined using wellknown geometric transformations such as translation, rotation, affine transformation and shearing, we use the whole character black pixels as our feature vector. Classification is performed with minimum distance classifier using the maximum likelihood criterion, which delivers very promising Character Recognition Rate (CRR) of 89%. We achieve considerably higher Word Recognition Rate (WRR) of 99% when using lower level linguistic knowledge about product words during the recognition process.Keywords: camera-based OCR, feature extraction, document, image processing, grocery products
Procedia PDF Downloads 4062269 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis
Authors: Carlos Huertas, Reyes Juarez-Ramirez
Abstract:
Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.Keywords: biomarker discovery, cancer, feature selection, mass spectrometry
Procedia PDF Downloads 3382268 Generation of Symmetric Key Using Randomness of Hash Function
Authors: Sai Charan Kamana, Harsha Vardhan Nakkina, B.R. Chandavarkar
Abstract:
In a highly secure and robust key generation process, a key role is played by randomness and random numbers when current real-world cryptosystems are observed. Most of the present-day cryptographic protocols depend upon the Random Number Generators (RNG), Pseudo-Random Number Generator (PRNG). These protocols often use noisy channels such as Disk seek time, CPU temperature, Mouse pointer movement, Fan noise to obtain true random values. Despite being cost-effective, these noisy channels may need additional hardware devices to continuously communicate with them. On the other hand, Hash functions are Pseudo-Random (because of their requirements). So, they are a good replacement for these noisy channels and have low hardware requirements. This paper discusses, some of the key generation methodologies, and their drawbacks. This paper explains how hash functions can be used in key generation, how to combine Key Derivation Functions with hash functions.Keywords: key derivation, hash based key derivation, password based key derivation, symmetric key derivation
Procedia PDF Downloads 1612267 Neural Nets Based Approach for 2-Cells Power Converter Control
Authors: Kamel Laidi, Khelifa Benmansour, Ouahid Bouchhida
Abstract:
Neural networks-based approach for 2-cells serial converter has been developed and implemented. The approach is based on a behavioural description of the different operating modes of the converter. Each operating mode represents a well-defined configuration, and for which is matched an operating zone satisfying given invariance conditions, depending on the capacitors' voltages and the load current of the converter. For each mode, a control vector whose components are the control signals to be applied to the converter switches has been associated. Therefore, the problem is reduced to a classification task of the different operating modes of the converter. The artificial neural nets-based approach, which constitutes a powerful tool for this kind of task, has been adopted and implemented. The application to a 2-cells chopper has allowed ensuring efficient and robust control of the load current and a high capacitors voltages balancing.Keywords: neural nets, control, multicellular converters, 2-cells chopper
Procedia PDF Downloads 8342266 A Case Study on Utility of 18FDG-PET/CT Scan in Identifying Active Extra Lymph Nodes and Staging of Breast Cancer
Authors: Farid Risheq, M. Zaid Alrisheq, Shuaa Al-Sadoon, Karim Al-Faqih, Mays Abdulazeez
Abstract:
Breast cancer is the most frequently diagnosed cancer worldwide, and a common cause of death among women. Various conventional anatomical imaging tools are utilized for diagnosis, histological assessment and TNM (Tumor, Node, Metastases) staging of breast cancer. Biopsy of sentinel lymph node is becoming an alternative to the axillary lymph node dissection. Advances in 18-Fluoro-Deoxi-Glucose Positron Emission Tomography/Computed Tomography (18FDG-PET/CT) imaging have facilitated breast cancer diagnosis utilizing biological trapping of 18FDG inside lesion cells, expressed as Standardized Uptake Value (SUVmax). Objective: To present the utility of 18FDG uptake PET/CT scans in detecting active extra lymph nodes and distant occult metastases for breast cancer staging. Subjects and Methods: Four female patients were presented with initially classified TNM stages of breast cancer based on conventional anatomical diagnostic techniques. 18FDG-PET/CT scans were performed one hour post 18FDG intra-venous injection of (300-370) MBq, and (7-8) bed/130sec. Transverse, sagittal, and coronal views; fused PET/CT and MIP modality were reconstructed for each patient. Results: A total of twenty four lesions in breast, extended lesions to lung, liver, bone and active extra lymph nodes were detected among patients. The initial TNM stage was significantly changed post 18FDG-PET/CT scan for each patient, as follows: Patient-1: Initial TNM-stage: T1N1M0-(stage I). Finding: Two lesions in right breast (3.2cm2, SUVmax=10.2), (1.8cm2, SUVmax=6.7), associated with metastases to two right axillary lymph nodes. Final TNM-stage: T1N2M0-(stage II). Patient-2: Initial TNM-stage: T2N2M0-(stage III). Finding: Right breast lesion (6.1cm2, SUVmax=15.2), associated with metastases to right internal mammary lymph node, two right axillary lymph nodes, and sclerotic lesions in right scapula. Final TNM-stage: T2N3M1-(stage IV). Patient-3: Initial TNM-stage: T2N0M1-(stage III). Finding: Left breast lesion (11.1cm2, SUVmax=18.8), associated with metastases to two lymph nodes in left hilum, and three lesions in both lungs. Final TNM-stage: T2N2M1-(stage IV). Patient-4: Initial TNM-stage: T4N1M1-(stage III). Finding: Four lesions in upper outer quadrant area of right breast (largest: 12.7cm2, SUVmax=18.6), in addition to one lesion in left breast (4.8cm2, SUVmax=7.1), associated with metastases to multiple lesions in liver (largest: 11.4cm2, SUV=8.0), and two bony-lytic lesions in left scapula and cervicle-1. No evidence of regional or distant lymph node involvement. Final TNM-stage: T4N0M2-(stage IV). Conclusions: Our results demonstrated that 18FDG-PET/CT scans had significantly changed the TNM stages of breast cancer patients. While the T factor was unchanged, N and M factors showed significant variations. A single session of PET/CT scan was effective in detecting active extra lymph nodes and distant occult metastases, which were not identified by conventional diagnostic techniques, and might advantageously replace bone scan, and contrast enhanced CT of chest, abdomen and pelvis. Applying 18FDG-PET/CT scan early in the investigation, might shorten diagnosis time, helps deciding adequate treatment protocol, and could improve patients’ quality of life and survival. Trapping of 18FDG in malignant lesion cells, after a PET/CT scan, increases the retention index (RI%) for a considerable time, which might help localize sentinel lymph node for biopsy using a hand held gamma probe detector. Future work is required to demonstrate its utility.Keywords: axillary lymph nodes, breast cancer staging, fluorodeoxyglucose positron emission tomography/computed tomography, lymph nodes
Procedia PDF Downloads 3132265 Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM
Authors: Mohamed Moustafa Mahmoud Sedky
Abstract:
In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance.Keywords: line start permanent magnet, synchronous machine, static eccentricity, dynamic eccentricity, mixed eccentricity
Procedia PDF Downloads 379