Search results for: intelligent memory structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5937

Search results for: intelligent memory structures

4797 Modelling the Effects of External Factors Affecting Concrete Carbonation

Authors: Abhishek Mangal, Kunal Tongaria, S. Mandal, Devendra Mohan

Abstract:

Carbonation of reinforced concrete structures has emerged as one of the major challenges for Civil engineers across the world. With increasing emissions from various activities, carbon dioxide concentration in the atmosphere has been eve rising, enhancing its penetration in porous concrete, reaching steel bars and ultimately leading to premature failure. Several literatures have been published dealing with the various interdependent variables related to carbonation. However, with innumerable variability a generalization of these data proves to be a troublesome task. This paper looks into this carbonation anomaly in concrete structures caused by various external variables such as relative humidity, concentration of CO2, curing period and ambient temperature. Significant discussions and comparisons have been presented on the basis of various studies conducted with an aim to predict the depth of carbonation as a function of these multidimensional parameters using various numerical and statistical modelling techniques.

Keywords: carbonation, curing, exposure conditions, relative humidity

Procedia PDF Downloads 249
4796 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 433
4795 Ultra High Performance Concrete Using Special Aggregates for Irregular Structures (the New Concrete Technology)

Authors: Arjun, A. D. Singh

Abstract:

Concrete the basic material using in construction across the global these days. The purpose of this special concrete is to provide extra strength and stability for irregular structure where the center of gravity is disturbed. In this paper an effort has been made to use different type of material aggregates has been discussed. We named As "STAR Aggregates" which has qualities to resist Shear, tension and compression forces. We have been divided into coarse aggregates and fine aggregates according to their sizes. Star Aggregates has interlocking behavior and cutting edge technology. Star aggregates had been draft and deign in Auto CAD and then analysis in ANSYS software. by using special aggregates we deign concrete grade of M40 for mega structures and irregular structure. This special concrete with STAR aggregates use in construction for irregular structure like Bridges, Skyscrapers or in deigned buildings.

Keywords: star aggregates, high performance concrete, material aggregates, interlocking

Procedia PDF Downloads 561
4794 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures

Authors: Egor Stadnichuk

Abstract:

Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.

Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model

Procedia PDF Downloads 163
4793 Geographic and Territorial Knowledge as Epistemic Contexts for Intercultural Curriculum Development

Authors: Verónica Muñoz-Rivero

Abstract:

The historically marginalized indigenous communities in the Atacama Desert continue to experience and struggle curricular hegemony in a prevalent monocultural educational context that denies heritage, culture and epistemologies in a documented attempted knowledge negation by the educational policies, the national curriculum and educational culture. The ancestral indigenous community of Toconce demands a territorial-based intercultural education and a school in their ancestral land to prevent the progressive cultural loss as they reclaim their memory and identity negated. This case study makes use of the intercultural theoretical framework and open qualitative methodology to analyze local socio-educational reality integrating aspects related to the educational experience, education demands for future generations and importance given to formal education. The interlocutors: elders, parents, caretakers and former teachers raised the educational experience for the indigenous childhood as an intergenerational voice that experienced discrimination, exclusion and racism on their K-12 trajectories. By center, the indigenous epistemologies, geography and memory, this research proposes a project-based learning approach anchored to the Limpia de Canales ceremony to develop a situated territorial intercultural curriculum unpacking from the local epistemology and structure thinking. The work on terraces gives students the opportunity to co-create a real-life application with practical purpose and present the importance of reinforcing notions related to the relevance of a situated intercultural curriculum for social justice in the formative development of prospective teachers.

Keywords: cultural studies, decolonial education, epistemic symmetry, intercultural curriculum, multidimensional curriculum

Procedia PDF Downloads 188
4792 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test

Authors: Gee-Cheol Kim, Joo-Won Kang

Abstract:

Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.

Keywords: arch structure, seismic response, shaking table, spatial structure

Procedia PDF Downloads 362
4791 Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads

Authors: W. Badla

Abstract:

A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures.

Keywords: seismic design, RC frames, infill panels, non linear dynamic analysis

Procedia PDF Downloads 541
4790 Role of Selenium and Vitamin E in Occupational Exposure to Heavy Metals (Mercury, Lead and Cadmium): Impact of Working in Lamp Factory

Authors: Tarek Elnimr, Rabab El-kelany

Abstract:

Heavy metals are environmental contaminants that may pose long-term health risks. Unfortunately, the consequent implementation of preventive measures was generally delayed, causing important negative effects to the exposed populations. The objective of this study was to determine whether co-consumption of nutritional supplements as selenium and vitamin E would treat the hazardous effects of exposure to mercury, lead and cadmium. 108 workers (60 males and 48 females) were the subject of this study, their ages ranged from 19-63 years, (M = 29.5±10.12). They were working in lamp factory for an average of 0.5-40 years (M= 5.3±8.8). Twenty control subjects matched for age and gender were used for comparison. All workers were subjected to neuropsychiatric evaluation. General Health Questionnaire (GHQ-28) revealed that 44.4% were complaining of anxiety, 52.7% of depression, 41.6% of social dysfunction and 22.2% of somatic symptoms. Cognitive tests revealed that long-term memory was not affected significantly when compared with controls, while short term memory and perceptual ability were affected significantly. Blood metal levels were measured by Inductively Coupled Plasma – optical emission spectrometry(ICP-OES), and revealed that the mean blood mercury, lead and cadmium concentrations before treatment were 1.6 mg/l, 0.39 mg/l and 1.7 µg/l, while they decreased significantly after treatment to 1.2 mg/l, 0.29 mg/l and 1.3 µg/l respectively. Anti-oxidative enzymes (paraoxonase and catalase) and lipid peroxidation product (malondialdehyde) were measured before and after treatment with selenium and vitamin E, and showed significant improvement. It could be concluded that co-consumption of selenium and vitamin E produces significant decrease in mercury, lead and cadmium levels in blood.

Keywords: mercury, lead, cadmium, neuropsychiatric impairment, selenium, vitamin E

Procedia PDF Downloads 343
4789 Rescaled Range Analysis of Seismic Time-Series: Example of the Recent Seismic Crisis of Alhoceima

Authors: Marina Benito-Parejo, Raul Perez-Lopez, Miguel Herraiz, Carolina Guardiola-Albert, Cesar Martinez

Abstract:

Persistency, long-term memory and randomness are intrinsic properties of time-series of earthquakes. The Rescaled Range Analysis (RS-Analysis) was introduced by Hurst in 1956 and modified by Mandelbrot and Wallis in 1964. This method represents a simple and elegant analysis which determines the range of variation of one natural property (the seismic energy released in this case) in a time interval. Despite the simplicity, there is complexity inherent in the property measured. The cumulative curve of the energy released in time is the well-known fractal geometry of a devil’s staircase. This geometry is used for determining the maximum and minimum value of the range, which is normalized by the standard deviation. The rescaled range obtained obeys a power-law with the time, and the exponent is the Hurst value. Depending on this value, time-series can be classified in long-term or short-term memory. Hence, an algorithm has been developed for compiling the RS-Analysis for time series of earthquakes by days. Completeness time distribution and locally stationarity of the time series are required. The interest of this analysis is their application for a complex seismic crisis where different earthquakes take place in clusters in a short period. Therefore, the Hurst exponent has been obtained for the seismic crisis of Alhoceima (Mediterranean Sea) of January-March, 2016, where at least five medium-sized earthquakes were triggered. According to the values obtained from the Hurst exponent for each cluster, a different mechanical origin can be detected, corroborated by the focal mechanisms calculated by the official institutions. Therefore, this type of analysis not only allows an approach to a greater understanding of a seismic series but also makes possible to discern different types of seismic origins.

Keywords: Alhoceima crisis, earthquake time series, Hurst exponent, rescaled range analysis

Procedia PDF Downloads 318
4788 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 133
4787 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.

Keywords: instability, torsion, flexural, buckling, modified newmark method stability

Procedia PDF Downloads 352
4786 Investigation of Water Absorption and Compressive Strength of Resin Coated Mortar

Authors: Yasir Ali, Zain Ul Abdin, Muhammad Wisal Khattak

Abstract:

Nowadays various advanced techniques are used to enhance the performance of materials in the field of construction engineering. Structures exposed to an aggressive, humid and hostile environment are experiencing severe negative impacts which lead to premature failure. Polyester resin is one of the advanced material used for improving performance of structural materials especially for repair/ refurbish purpose of structures and protection from contaminated environmental effect/ hazards. This study investigated the aptness of the polyester resin as coating agent on the mortar and assessed its performance in an ambient environment of Pakistan. Cubical specimens of mortar were fabricated. These specimens were tested for water absorption and compressive strength after one day and sixty days. These tests were performed under different exposure conditions (ambient environment and submerged in water). The specimens were coated with one, two and three layers and results were compared to control (no/ zero resin layer) specimens. Test results indicated that there is a significant decrease in water absorption of mortar coated with resin when compared to controlled specimens. The compressive strength test results revealed that resin coated specimen had higher strength when compared to controlled specimens. The results suggested that resin is a promising material and can be used effectively in structures which are exposed to high temperatures. The study would be helpful in improving performance of the structural material in a hazardous environment.

Keywords: ambient environment, coating, mortar, polyester resin

Procedia PDF Downloads 353
4785 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio

Authors: Tamal Roy, Anuradha Bhat

Abstract:

Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.

Keywords: algorithm, associative cue, habitat complexity, population, spatial learning

Procedia PDF Downloads 284
4784 Geotechnical Education in the USA: A Comparative Analysis of Academic Schooling vs. Industry Needs in the Area of Earth Retaining Structures

Authors: Anne Lemnitzer, Eric Tavarez

Abstract:

The academic rigor of the geotechnical engineering curriculum indicates strong institutional and geographical variations. Geotechnical engineering deals with the most challenging civil engineering material, as opposed to structural engineering, environmental studies, transportation engineering, and water resources. Yet, technical expectations posed by the practicing professional community do not necessarily consider the challenges inherent to the disparity in academic rigor and disciplinary differences. To recognize the skill shortages among current graduates as well as identify opportunities to better equip graduate students in specific fields of geotechnical engineering, a two-part survey was developed in collaboration with the Earth Retaining Structures (ERS) Committee of the American Society of Civil Engineers. Earth Retaining Structures are critical components of infrastructure systems and integral components to many major engineering projects. Within the geotechnical curriculum, Earth Retaining Structures is either taught as a separate course or major subject within a foundation design class. Part 1 of the survey investigated the breadth and depth of the curriculum with respect to ERS by requesting faculty across the United States to provide data on their curricular content, integration of practice-oriented course content, student preparation for professional licensing, and level of technical competency expected upon student graduation. Part 2 of the survey enables a comparison of training provided versus training needed. This second survey addressed practicing geotechnical engineers in all sectors of the profession (e.g., private engineering consulting, governmental agencies, contractors, suppliers/manufacturers) and collected data on the expectations with respect to technical and non-technical skills of engineering graduates entering the professional workforce. Results identified skill shortages in soft skills, critical thinking, analytical and language skills, familiarity with design codes and standards, and communication with various stakeholders. The data will be used to develop educational tools to advance the proficiency and expertise of geotechnical engineering students to meet and exceed the expectations of the profession and to stimulate a lifelong interest in advancing the field of geotechnical engineering.

Keywords: geotechnical engineering, academic training, industry requirements, earth retaining structures

Procedia PDF Downloads 119
4783 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri

Abstract:

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Keywords: JAX-WS, SMTP, SOAP, web service, XML

Procedia PDF Downloads 491
4782 Energy Saving, Heritage Conserving Renovation Methods in Case of Historical Building Stock

Authors: Viktória Sugár, Zoltán Laczó, András Horkai, Gyula Kiss, Attila Talamon

Abstract:

The majority of the building stock of Budapest inner districts was built around the turn of the 19th and 20th century. Although the structural stability of the buildings is not questioned, as the load bearing structures are in sufficient state, the secondary structures are aged, resulting unsatisfactory energetic state. The renovation of these historical buildings requires special methodology and technology: their ornamented facades and custom-made fenestration cannot be insulated or exchanged with conventional solutions without damaging the heritage values. The present paper aims to introduce and systematize the possible technological solutions for heritage respecting energy retrofit in case of a historical residential building stock. Through case study, the possible energy saving potential is also calculated using multiple renovation scenarios.

Keywords: energy efficiency, heritage, historical building, renovation

Procedia PDF Downloads 292
4781 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 95
4780 On Compression Properties of Honeycomb Structures Using Flax/PLA Composite as Core Material

Authors: S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishaks

Abstract:

Sandwich structures based on cellular cores are increasingly being utilized as energy-absorbing components in the industry. However, determining ideal structural configurations remains challenging. This chapter compares the compression properties of flax fiber-reinforced polylactic acid (PLA) of empty honeycomb core, foam-filled honeycomb and double cell wall square interlocking core sandwich structure under quasi-static compression loading. The square interlocking core is fabricated through a slotting technique, whereas the honeycomb core is made using a corrugated mold that was initially used to create the corrugated core composite profile, which is then cut into corrugated webs and assembled to form the honeycomb core. The sandwich structures are tested at a crosshead displacement rate of 2 mm/min. The experimental results showed that honeycomb outperformed the square interlocking core in terms of their strength capability and SEA by around 14% and 34%, respectively. It is observed that the foam-filled honeycomb collapse in a progressive mode, exhibiting noticeable advantages over the empty honeycomb; this is attributed to the interaction between the honeycomb wall and foam filler. Interestingly, the average SEAs of foam-filled and empty honeycomb cores have no significant difference, around 8.7kJ/kg and 8.2kJ/kg, respectively. In contrast, its strength capability is clearly pronounced, in which the foam-filled core outperforms the empty counterparts by around 33%. Finally, the results for empty and foam-filled cores were significantly superior to aluminum cores published in the literature.

Keywords: compressive strength, flax, honeycomb core, specific energy absorption

Procedia PDF Downloads 81
4779 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: ferroresonance, wavelet transform, intelligent electronic device, transformer

Procedia PDF Downloads 492
4778 A Prototype of an Information and Communication Technology Based Intervention Tool for Children with Dyslexia

Authors: Rajlakshmi Guha, Sajjad Ansari, Shazia Nasreen, Hirak Banerjee, Jiaul Paik

Abstract:

Dyslexia is a neurocognitive disorder, affecting around fifteen percent of the Indian population. The symptoms include difficulty in reading alphabet, words, and sentences. This can be difficult at the phonemic or recognition level and may further affect lexical structures. Therapeutic intervention of dyslexic children post assessment is generally done by special educators and psychologists through one on one interaction. Considering the large number of children affected and the scarcity of experts, access to care is limited in India. Moreover, unavailability of resources and timely communication with caregivers add on to the problem of proper intervention. With the development of Educational Technology and its use in India, access to information and care has been improved in such a large and diverse country. In this context, this paper proposes an ICT enabled home-based intervention program for dyslexic children which would support the child, and provide an interactive interface between expert, parents, and students. The paper discusses the details of the database design and system layout of the program. Along with, it also highlights the development of different technical aids required to build out personalized android applications for the Indian dyslexic population. These technical aids include speech database creation for children, automatic speech recognition system, serious game development, and color coded fonts. The paper also emphasizes the games developed to assist the dyslexic child on cognitive training primarily for attention, working memory, and spatial reasoning. In addition, it talks about the specific elements of the interactive intervention tool that makes it effective for home based intervention of dyslexia.

Keywords: Android applications, cognitive training, dyslexia, intervention

Procedia PDF Downloads 288
4777 Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters

Authors: J. García-Pérez

Abstract:

An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables.

Keywords: importance factors, optimum parameters, seismic losses, seismic risk, total cost

Procedia PDF Downloads 281
4776 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease

Authors: Saida Haider, Syeda Madiha

Abstract:

Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.

Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease

Procedia PDF Downloads 98
4775 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 64
4774 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency

Authors: Haruo Okabayashi

Abstract:

Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.

Keywords: anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE

Procedia PDF Downloads 236
4773 Conserved Stem-Loop Structure at the End of Short Interspersed Nuclear Elements (SINE) and Long Interspersed Nuclear Elements (LINE) Pairs of Different Species

Authors: Daria Grechishnikova, Maria Poptsova

Abstract:

Transposable elements play an important role in the evolution of various species from bacteria to human. Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs) are two major classes of retrotransposons that occupy a considerable part of any genome and their copy numbers can range form several hundreds to a million. Both LINEs and SINEs multiply through a copy-and-paste mechanism. LINEs encode proteins, which make them capable of self-propagation while SINEs are parasitic and require the machinery of LINEs to multiply. The mechanisms how LINE and SINE RNA is recognized by the LINE-encoded reverse transcriptase (RT) remain unclear. For some SINE-LINE pairs, it was shown that they share a common 3’-end with a stem-loop structure. Majority of the SINE-LINE pairs do not have a common 3’-end. Recently we have shown that in the human genome Alu-L1 pairs have structurally similar stem-loop structure at the 3’-end. Here we extended our analysis to a wide range of species and analyzed LINEs from 161 different species from Repbase and 217 SINE sequences from SINEBase. It appeared that all of the analyzed sequences contained stem-loop structures at the 3’-end. Here we conclude that it is very likely that a common evolutionary mechanism of transposon RNA recognition requires the presence of stem-loop structures at their 3’-end.

Keywords: LINE, SINE, mechanisms of retrotransposition, retrotransposons, stem-loop, stem-loop structures, transposons

Procedia PDF Downloads 348
4772 Artificial Intelligence and Personhood: An African Perspective

Authors: Meshandren Naidoo, Amy Gooden

Abstract:

The concept of personhood extending from the moral status of an artificial intelligence system has been explored – but predominantly from a Western conception of personhood. African personhood, however, is distinctly different from Western personhood in that communitarianism is central rather than individualism. Given the decolonization projects happening in Africa, it’s paramount to consider these views. This research demonstrates that the African notion of personhood may extend for an artificial intelligent system where the pre-conditions are met.

Keywords: artificial intelligence, ethics, law, personhood, policy

Procedia PDF Downloads 120
4771 Electronic and Optical Properties of Li₂S Antifluorite Material

Authors: Brahim Bahloul, Khatir Babesse, Azzedine Dkhira, Yacine Bahloul, Dalila Hammoutene

Abstract:

In this paper, we investigate with ab initio calculations some structural and optoelectronic properties of Li₂S compound. The structural and electronic properties of the Li₂S antifluorite structure have been studied by first-principles calculations within the density functional theory (DFT), whereas the optical properties have been obtained using empirical relationships such as the modified Moss relation. Our calculated lattice parameters are in good agreement with the experimental data and other theoretical calculations. The electronic band structures and density of states were obtained. The anti-fluorite Li₂S present an indirect band gap of 3.388 eV at equilibrium. The top of the valence bands reflects the p electronic character for both structures. The calculated energy gaps and optical constants are in good agreement with experimental measurements.

Keywords: Ab initio calculations, antifluorite, electronic properties, optical properties

Procedia PDF Downloads 286
4770 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity

Procedia PDF Downloads 273
4769 Half-Metallic Ferromagnetism in CdCoTe and CdMnTe: Ab-Initio Study

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Using the first-principles method, we investigate the structural, electronic, and magnetic properties of the diluted magnetic semiconductors CdCoTe and CdMnTe in the zinc blende phase with 12.5% of Cr. The calculations are performed by a developed full potential augmented plane wave (FP-L/APW) method within the spin density functional theory (DFT). As exchange–correlation potential, we used the new generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and local moments. Finally, CdCoTe and CdMnTe in the zinc-blend phase show the half-metallic ferromagnetic nature and are expected to be potential materials for spintronic devices.

Keywords: DFT, GGA, band structures, half-metallic, spintronics

Procedia PDF Downloads 447
4768 Design and Development of On-Line, On-Site, In-Situ Induction Motor Performance Analyser

Authors: G. S. Ayyappan, Srinivas Kota, Jaffer R. C. Sheriff, C. Prakash Chandra Joshua

Abstract:

In the present scenario of energy crises, energy conservation in the electrical machines is very important in the industries. In order to conserve energy, one needs to monitor the performance of an induction motor on-site and in-situ. The instruments available for this purpose are very meager and very expensive. This paper deals with the design and development of induction motor performance analyser on-line, on-site, and in-situ. The system measures only few electrical input parameters like input voltage, line current, power factor, frequency, powers, and motor shaft speed. These measured data are coupled to name plate details and compute the operating efficiency of induction motor. This system employs the method of computing motor losses with the help of equivalent circuit parameters. The equivalent circuit parameters of the concerned motor are estimated using the developed algorithm at any load conditions and stored in the system memory. The developed instrument is a reliable, accurate, compact, rugged, and cost-effective one. This portable instrument could be used as a handy tool to study the performance of both slip ring and cage induction motors. During the analysis, the data can be stored in SD Memory card and one can perform various analyses like load vs. efficiency, torque vs. speed characteristics, etc. With the help of the developed instrument, one can operate the motor around its Best Operating Point (BOP). Continuous monitoring of the motor efficiency could lead to Life Cycle Assessment (LCA) of motors. LCA helps in taking decisions on motor replacement or retaining or refurbishment.

Keywords: energy conservation, equivalent circuit parameters, induction motor efficiency, life cycle assessment, motor performance analysis

Procedia PDF Downloads 375