Search results for: fuzz fiber
138 Numerical Simulation of Precast Concrete Panels for Airfield Pavement
Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička
Abstract:
Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement
Procedia PDF Downloads 256137 The Role of Nutrition and Food Engineering in Promoting Sustainable Food Systems
Authors: Sara Khan Mohammadi
Abstract:
The world is facing a major challenge of feeding a growing population while ensuring the sustainability of food systems. The United Nations estimates that the global population will reach 9.7 billion by 2050, which means that food production needs to increase by 70% to meet the demand. However, this increase in food production should not come at the cost of environmental degradation, loss of biodiversity, and climate change. Therefore, there is a need for sustainable food systems that can provide healthy and nutritious food while minimizing their impact on the environment. Nutrition and Food Engineering: Nutrition and food engineering play a crucial role in promoting sustainable food system. Nutrition is concerned with the study of nutrients in foods, their absorption, metabolism, and their effects on health. Food engineering involves the application of engineering principles to design, develop, and optimize food processing operations. Together, nutrition and food engineering can help to create sustainable food systems by: 1. Developing Nutritious Foods: Nutritionists and food engineers can work together to develop foods that are rich in nutrients such as vitamins, minerals, fiber, and protein. These foods can be designed to meet the nutritional needs of different populations while minimizing waste. 2. Reducing Food Waste: Food waste is a major problem globally as it contributes to greenhouse gas emissions and wastes resources such as water and land. Nutritionists and food engineers can work together to develop technologies that reduce waste during processing, storage, transportation, and consumption. 3. Improving Food Safety: Unsafe foods can cause illnesses such as diarrhea, cholera, typhoid fever among others which are major public health concerns globally. Nutritionists and food engineers can work together to develop technologies that improve the safety of foods from farm to fork. 4. Enhancing Sustainability: Sustainable agriculture practices such as conservation agriculture can help reduce soil erosion while improving soil fertility. Nutritionists and food engineers can work together to develop technologies that promote sustainable agriculture practices.Keywords: sustainable food, developing food, reducing food waste, food safety
Procedia PDF Downloads 85136 Occurrence of Broiler Chicken Breast White Striping Meat in Brazilian Commercial Plant
Authors: Talita Kato, Moises Grespan, Elza I. Ida, Massami Shimokomaki, Adriana L. Soares
Abstract:
White Striping (WS) is becoming a concern for the poultry industry, as it affects the look of breast broiler chicken meat leading it to rejection by the consumers. It is characterized by the appearance of varying degrees of white striations on the Pectoralis major muscle surface following the direction of the muscle fiber. The etiology of this myopathy is still unknown, however it is suggested to be associated with increased weight gain rate and age of the bird, attributing the phenomenon to the genetically bird’s selection for efficiently higher meat production. The aim of this study was to evaluate the occurrence of Pectoralis major WS in a commercial plant in southern Brazil and its chemical characterization. The breast meat samples (n=660) from birds of 47 days of age, were classified as: Normal NG (no apparent white striations), Moderate MG (when the fillets present thin lines <1 mm) and Severe SG (white striations present ˃1 mm thick covering a large part of the fillet surface). Thirty samples (n = 10 for each level of severity) were analyzed for pH, color (L*, a*, b*), proximate chemical composition (moisture, protein, ash and lipids contents) and hydroxyproline in order to determine the collagen content. The results revealed the occurrence for NG group was 16.97%, 51.67% for MG group and 31.36% for SG group. Although the total protein content did not differ significantly, the collagen index was 42% higher in favor to SG in relation to NG. Also the lipid fraction was 27% higher for SG group. The NG presented the lowest values of the parameters L* and a* (P ≤ 0.05), as there was no white striations on its surface and highest b* value in SG, because of the maximum lipid contents. These results indicate there was a contribution of the SG muscle cells to oversynthesize connective tissue components on the muscle fascia. In conclusion, this study revealed a high incidence of White Striping on broiler commercial line in Brazil thus, there is a need to identify the causes of this abnormality in order to diminish or to eliminate it.Keywords: collagen content, commercial line, pectoralis major muscle, proximate composition
Procedia PDF Downloads 251135 New Environmentally Friendly Material for the Purification of the Fresh Water from Oil Pollution
Authors: M. A. Ashour
Abstract:
As it is known Egypt is one of the countries having oldest sugarcane industry, which goes back to the year 710 AD. Cane plantations are the main agricultural product in five governorates in Upper Egypt (El-Menia, Sohag, Qena, Luxor, and Aswan), producing not less than 16 million tons a year. Eight factories (Abou-korkas, Gena, Nagaa-Hamadi, Deshna, Kous, Armant, Edfuo, and Komombo), located in such upper Egypt governorates generates huge amount of wastes during the manufacturing stage, the so called bagasse which is the fibrous, and cellulosic materials remaining after the era of the sugarcane and the juice extraction, presents about 30% of such wastes. The amount of bagasse generated yearly through the manufacturing stage of the above mentioned 8 factories is approximately about 2.8 million tons, getting red safely of such huge amount, presents a serious environmental problem. Storage of that material openly in the so hot climate in upper Egypt, may cause its self-ignition under air temperature reaches 50 degrees centigrade in summer, due to the remained residual content of sugar. At the same time preparing places for safely storage for such amount is very expensive with respect to the valueless of it. So the best way for getting rid of bagasse is converting it into an added value environmentally friendly material, especially till now the utilization of it is so limited. Since oil pollution became a serious concern, the issue of environmental cleaning arises. With the structure of sugarcane bagasse, which contains fiber and high content of carbon, it can be an adsorbent to adsorb the oil contamination from the water. The present study is a trail to introduce a new material for the purification of water systems to score two goals at once, the first is getting rid of that harmful waste safely, the second is converting it to a commercial valuable material for cleaning, and purifying the water from oil spills, and petroleum pollution. Introduced the new material proved very good performance, and higher efficiency than other similar materials available in the local market, in both closed and open systems. The introduced modified material can absorb 10 times its weight of oil, while don't absorb any water.Keywords: environment, water resources, agricultural wastes, oil pollution control, sugarcane
Procedia PDF Downloads 189134 Phytochemical Content and Bioactive Properties of Wheat Sprouts
Authors: Jasna Čanadanović-Brunet, Lidija Jevrić, Gordana Ćetković, Vesna Tumbas Šaponjac, Jelena Vulić, Slađana Stajčić
Abstract:
Wheat contains high amount of nutrients such as dietary fiber, resistant starch, vitamins, minerals and microconstituents, which are building blocks of body tissues, but also help in the prevention of diseases such as cardiovascular disease, cancer and diabetes. Sprouting enhances the nutritional value of whole wheat through biosynthesis of tocopherols, polyphenols and other valuable phytochemicals. Since the nutritional and sensory benefits of germination have been extensively documented, using of sprouted grains in food formulations is becoming a trend in healthy foods. The present work addressed the possibility of using freeze-dried sprouted wheat powder, obtained from spelt-wheat cv. ‘Nirvana’ (Triticum spelta L.) and winter wheat cv. ‘Simonida’ (Triticum aestivum L. ssp. vulgare var. lutescens), as a source of phytochemicals, to improve the functional status of the consumer. The phytochemicals' content (total polyphenols, flavonoids, chlorophylls and carotenoids) and biological activities (antioxidant activity on DPPH radicals and antiinflammatory activity) of sprouted wheat powders were assessed spectrophotometrically. The content of flavonoids (216.52 mg RE/100 g), carotenoids (22.84 mg β-carotene/100 g) and chlorophylls (131.23 mg/100 g), as well as antiinflammatory activity (EC50=3.70 mg/ml) was found to be higher in sprouted spelt-wheat powder, while total polyphenols (607.21 mg GAE/100 g) and antioxidant activity on DDPPH radicals (EC50=0.27 mmol TE/100 g) was found to be higher in sprouted winter wheat powders. Simulation of gastro-intestinal digestion of sprouted wheat powders clearly shows that intestinal digestion caused a higher release of polyphenols than gastric digestion for both samples, which indicates their higher bioavailability in the colon. The results of the current study have shown that wheat sprouts can provide a high content of phytochemicals and considerable bioactivities. Moreover, data reported show that they contain a unique pattern of bioactive molecules, which make these cereal sprouts attractive functional foods for a health-promoting diet.Keywords: wheat, sprouts, phytochemicals, bioactivity
Procedia PDF Downloads 463133 Learning Fashion Construction and Manufacturing Methods from the Past: Cultural History and Genealogy at the Middle Tennessee State University Historic Clothing Collection
Authors: Teresa B. King
Abstract:
In the millennial age, with more students desiring a fashion major yet fewer having sewing and manufacturing knowledge, this increases demand on academicians to adequately educate. While fashion museums have a prominent place for historical preservation, the need for apparel education via working collections of handmade or mass manufactured apparel is lacking in most universities in the United States, especially in the Southern region. Created in 1988, Middle Tennessee State University’s historic clothing collection provides opportunities to study apparel construction methods throughout history, to compare and apply to today’s construction and manufacturing methods, as well as to learn the cyclical nature/importance of historic styles on current and upcoming fashion. In 2019, a class exercise experiment was implemented for which students researched their family genealogy using Ancestry.com, identified the oldest visual media (photographs, etc.) available, and analyzed the garment represented in said media. The student then located a comparable garment in the historic collection and evaluated the construction methods of the ancestor’s time period. A class 'fashion' genealogy tree was created and mounted for public viewing/education. Results of this exercise indicated that student learning increased due to the 'personal/familial connection' as it triggered more interest in historical garments as related to the student’s own personal culture. Students better identified garments regarding the historical time period, fiber content, fabric, and construction methods utilized, thus increasing learning and retention. Students also developed increased learning and recognition of custom construction methods versus current mass manufacturing techniques, which impact today’s fashion industry. A longitudinal effort will continue with the growth of the historic collection and as students continue to utilize the historic clothing collection.Keywords: ancestry, clothing history, fashion history, genealogy, historic fashion museum collection
Procedia PDF Downloads 134132 Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers
Authors: Omar Asad Ahmad, Mohammed Awwad
Abstract:
Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively.Keywords: polypropylene, effects, compressive, tensile, strengths, concrete, construction
Procedia PDF Downloads 543131 Food Waste and Sustainable Management
Authors: Farhana Nosheen, Moeez Ahmad
Abstract:
Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.Keywords: food waste, tomato, bioactive compound, sustainable management
Procedia PDF Downloads 109130 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates
Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia
Abstract:
In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation
Procedia PDF Downloads 212129 Multiscale Process Modeling of Ceramic Matrix Composites
Authors: Marianna Maiaru, Gregory M. Odegard, Josh Kemppainen, Ivan Gallegos, Michael Olaya
Abstract:
Ceramic matrix composites (CMCs) are typically used in applications that require long-term mechanical integrity at elevated temperatures. CMCs are usually fabricated using a polymer precursor that is initially polymerized in situ with fiber reinforcement, followed by a series of cycles of pyrolysis to transform the polymer matrix into a rigid glass or ceramic. The pyrolysis step typically generates volatile gasses, which creates porosity within the polymer matrix phase of the composite. Subsequent cycles of monomer infusion, polymerization, and pyrolysis are often used to reduce the porosity and thus increase the durability of the composite. Because of the significant expense of such iterative processing cycles, new generations of CMCs with improved durability and manufacturability are difficult and expensive to develop using standard Edisonian approaches. The goal of this research is to develop a computational process-modeling-based approach that can be used to design the next generation of CMC materials with optimized material and processing parameters for maximum strength and efficient manufacturing. The process modeling incorporates computational modeling tools, including molecular dynamics (MD), to simulate the material at multiple length scales. Results from MD simulation are used to inform the continuum-level models to link molecular-level characteristics (material structure, temperature) to bulk-level performance (strength, residual stresses). Processing parameters are optimized such that process-induced residual stresses are minimized and laminate strength is maximized. The multiscale process modeling method developed with this research can play a key role in the development of future CMCs for high-temperature and high-strength applications. By combining multiscale computational tools and process modeling, new manufacturing parameters can be established for optimal fabrication and performance of CMCs for a wide range of applications.Keywords: digital engineering, finite elements, manufacturing, molecular dynamics
Procedia PDF Downloads 98128 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3
Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris
Abstract:
Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition
Procedia PDF Downloads 291127 Snails and Fish as Pollution Biomarkers in Lake Manzala and Laboratory B: Lake Manzala Fish
Authors: Hanaa M. M. El-Khayat, Hanan S. Gaber, Hoda Abdel-Hamid, Kadria M. A. Mahmoud, Hoda M. A. Abu Taleb
Abstract:
This work aimed to examine Oreochromis niloticus fish from Lake Manzala in Port Said, Dakahlya and Damietta governorates, Egypt, as a bio-indicator for the lake water pollution through recording alterations in their hematological, physiological, and histopathological parameters. All fish samples showed a significant increase in levels of alkaline phosphatase (ALP), creatinine and glutathione-S-transferase (GST); only Dakahlya samples showed a significant increase (p<0.01) in aspartate aminotransferase (AST) level and most Dakahlya and Damietta samples showed reversed albumin and globulin ratio and a significant increase in γ-glutamyltransferase (GGT) level. Port-Said and Damietta samples showed a significant decrease of hemoglobin (Hb) while Dakahlya samples showed a significant decrease in white blood cell (WBC) count. Histopathological investigation for different fish organs showed that Port-Said and Dakahlya samples were more altered than Damietta. The muscle and gill followed by intestine were the most affected organs. The muscle sections showed severe edema, neoplasia, necrotic change, fat vacuoles and splitting of muscle fiber. The gill sections showed dilated blood vessels of the filaments, curling of gill lamellae, severe hyperplasia, edema and blood vessels congestion of filaments. The intestine sections revealed degeneration, atrophy, dilation in blood vessels and necrotic changes in sub-mucosa and mucosa with edema in between. The recorded significant alterations, in most of the physiological and histological parameters in O. niloticus samples from Lake Manzala, were alarming for water pollution impacts on lake fish community, which constitutes the main diet and the main source of income for the people inhabiting these areas, and were threatening their public health and economy. Also, results evaluate the use of O. niloticus fish as important bio-indicator for their habitat stressors.Keywords: Lake Manzala, Oreochromis niloticus fish, water pollution, physiological, hematological and histopathological parameters
Procedia PDF Downloads 312126 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model
Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters
Procedia PDF Downloads 64125 Exploration of Copper Fabric in Non-Asbestos Organic Brake-Pads for Thermal Conductivity Enhancement
Authors: Vishal Mahale, Jayashree Bijwe, Sujeet K. Sinha
Abstract:
Range of thermal conductivity (TC) of Friction Materials (FMs) is a critical issue since lower TC leads to accumulation of frictional heat on the working surface, which results in excessive fade while higher TC leads to excessive heat flow towards back-plate resulting in boiling of brake-fluid leading to ‘spongy brakes’. This phenomenon prohibits braking action, which is most undesirable. Therefore, TC of the FMs across the brake pads should not be high while along the brake pad, it should be high. To enhance TC, metals in the forms of powder and fibers are used in the FMs. Apart from TC improvement, metals provide strength and structural integrity to the composites. Due to higher TC Copper (Cu) powder/fiber is a most preferred metallic ingredient in FM industry. However, Cu powders/fibers are responsible for metallic wear debris generation, which has harmful effects on aquatic organisms. Hence to get rid of a problem of metallic wear debris generation and to keep the positive effect of TC improvement, incorporation of Cu fabric in NAO brake-pads can be an innovative solution. Keeping this in view, two realistic multi-ingredient FM composites with identical formulations were developed in the form of brake-pads. Out of which one composite series consisted of a single layer of Cu fabric in the body of brake-pad and designated as C1 while double layer of Cu fabric was incorporated in another brake-pad series with designation of C2. Distance of Cu fabric layer from the back-plate was kept constant for C1 and C2. One more composite (C0) was developed without Cu fabric for the sake of comparison. Developed composites were characterized for physical properties. Tribological performance was evaluated on full scale inertia dynamometer by following JASO C 406 testing standard. It was concluded that Cu fabric successfully improved fade resistance by increasing conductivity of the composite and also showed slight improvement in wear resistance. Worn surfaces of pads and disc were analyzed by SEM and EDAX to study wear mechanism.Keywords: brake inertia dynamometer, copper fabric, non-asbestos organic (NAO) friction materials, thermal conductivity enhancement
Procedia PDF Downloads 131124 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature
Abstract:
Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties
Procedia PDF Downloads 338123 Dietary Quality among U.S. Adults with Diabetes, Osteoarthritis, and Rheumatoid Arthritis: Age-Specific Associations from NHANES 2011-2022
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Limited research has examined the variations in dietary quality among U.S. adults diagnosed with chronic conditions like diabetes mellitus (DM), osteoarthritis (OA), and rheumatoid arthritis (RA), particularly across different age groups. Understanding how diet differs in relation to these conditions is crucial to developing targeted nutritional interventions. This cross-sectional study analyzed data from adult participants in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2021. Dietary quality was measured using the Healthy Eating Index (HEI)-2015 scores, encompassing both total and component scores for different dietary factors. Self-reported disease statuses for DM, OA, and RA were obtained, with age groups stratified into younger adults (20–59 years, n = 10,050) and older adults (60 years and older, n = 5,200). Logistic regression models, adjusted for demographic factors like sex, race/ethnicity, education, income, weight status, physical activity, and smoking, were used to examine the relationship between disease status and dietary quality, accounting for NHANES' complex survey design. Among younger adults, 8% had DM, 10% had OA, and 4% had RA. Among older adults, 22% had DM, 35% had OA, and 7% had RA. The results showed a consistent association between excess added sugar intake and DM in both age groups. In younger adults, excess sodium intake was also linked to DM, while low seafood and plant protein intake was associated with a higher prevalence of RA. Among older adults, a poor overall dietary pattern was strongly associated with RA, while OA showed varying associations depending on the intake of specific nutrients like fiber and saturated fats. The dietary quality of U.S. adults with DM, OA, and RA varies significantly by age group and disease type. Younger adults with these conditions demonstrated more specific dietary inadequacies, such as high sodium and low protein intake, while older adults exhibited a broader pattern of poor dietary quality, particularly in relation to RA. These findings suggest that personalized nutritional strategies are needed to address the unique dietary challenges faced by individuals with chronic conditions in different age groups.Keywords: dietary, diabetes, osteoarthritis, rheumatoid arthritis, logistic regression
Procedia PDF Downloads 8122 Comparative Analysis of Polish Traditional Bread and Teff Injera: Culinary Heritage and Nutritional Perspectives
Authors: Temesgen Minase Woldegebriel
Abstract:
This study undertakes a comparative analysis of two distinct staples from diverse culinary heritages: Polish traditional bread and Teff Injera. Despite originating from disparate cultural contexts, both these foods hold significant roles in their respective societies, serving as dietary staples rich in cultural symbolism and nutritional value. Our investigation delves into the historical, cultural, and nutritional dimensions of Polish bread and Teff Injera, shedding light on their ingredients, preparation methods, and consumption patterns. Firstly, we explore the rich history and cultural significance embedded within Polish traditional bread, tracing its evolution through centuries of tradition and craftsmanship. From the ubiquitous Polish Rye bread to the intricate regional variations, we unravel the socio-cultural narratives intertwined with each loaf, reflecting Polish identity and culinary heritage. In contrast, our analysis extends to Teff Injera, a staple of Ethiopian and Eritrean cuisine known for its spongy texture and tangy flavor. We delve into the ancient origins of Teff cultivation, highlighting its pivotal role in Ethiopian culture and its symbolic significance in communal dining practices, such as the traditional Ethiopian coffee ceremony. Furthermore, we undertake a comparative examination of the nutritional profiles of Polish bread and Teff Injera, assessing their respective contributions to dietary health and well-being. Through comprehensive nutritional analysis, we elucidate the unique attributes of each staple, considering factors such as gluten content, fiber composition, and micronutrient density. Moreover, our study investigates the contemporary relevance of these traditional staples in the context of shifting dietary preferences and global culinary trends. We analyze consumer perceptions and market dynamics surrounding Polish bread and Teff Injera, discerning patterns of consumption and avenues for innovation in a rapidly evolving food landscape. In conclusion, our comparative analysis illuminates the multifaceted dimensions of Polish traditional bread and Teff Injera, transcending mere culinary discourse to encompass broader themes of cultural heritage, nutrition, and gastronomic diversity.Keywords: bread, culinary, injera, teff
Procedia PDF Downloads 15121 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology
Authors: Markus Remm, Sebastian Dienert
Abstract:
Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.Keywords: design freedom, interior material processing, laser technology, passive safety
Procedia PDF Downloads 121120 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading
Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat
Abstract:
Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section
Procedia PDF Downloads 144119 Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications
Authors: Gonzalo Reyes, Magdalena Walczak, Esteban Ramos-Moore, Jorge Ramos-Grez
Abstract:
Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process.Keywords: Cu-Al-Ni alloys, direct laser fabrication, shape memory alloy, self-centering seismic dampers
Procedia PDF Downloads 516118 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis
Procedia PDF Downloads 353117 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 167116 Gas Chromatography and Mass Spectrometry in Honey Fingerprinting: The Occurrence of 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one
Authors: Igor Jerkovic
Abstract:
Owing to the attractive sensory properties and low odour thresholds, norisoprenoids (degraded carotenoid-like structures with 3,5,5-trimethylcyclohex-2-enoic unit) have been identified as aroma contributors in a number of different matrices. C₁₃-Norisoprenoids have been found among volatile organic compounds of various honey types as well as C₉//C₁₀-norisoprenoids or C₁₄/C₁₅-norisoprenoids. Besides degradation of abscisic acid (which produces, e.g., dehydrovomifoliol, vomifoliol, others), the cleavage of the C(9)=C(10) bond of other carotenoid precursors directly generates nonspecific C₁₃-norisoprenoids such as trans-β-damascenone, 3-hydroxy-trans-β-damascone, 3-oxo-α-ionol, 3-oxo-α-ionone, β-ionone found in various honey types. β-Damascenone and β-ionone smelling like honey, exhibit the lowest odour threshold values of all C₁₃-norisoprenoids. The presentation is targeted on two uncommon C₁₃-norisoprenoids in the honey flavor that could be used as specific or nonspecific chemical markers of the botanical origin. Namely, after screening of different honey types, the focus was directed on Centaruea cyanus L. and Allium ursinum L. honey. The samples were extracted by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) and the extracts were analysed by gas chromatography and mass spectrometry (GC-MS). SPME fiber with divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating was applied for the research of C. cyanus honey headspace and predominant identified compound was 3,4-dihydro-3-oxoedulan (2,5,5,8a-tetramethyl-2,3,5,6,8,8a-hexahydro-7H-chromen-7-one also known as 2,3,5,6,8,8a-hexahydro-2,5,5,8a-tetramethyl-7H-1-benzo-pyran-7-one). The oxoedulan structure contains epoxide and it is more volatile in comparison with its hydroxylated precursors. This compound has not been found in other honey types and can be considered specific for C. cyanus honey. The dichloromethane extract of A. ursinum honey contained abundant (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one that was previously isolated as dominant substance from the ether extracts of New Zealand thyme honey. Although a wide variety of degraded carotenoid-like substances have been identified from different honey types, this appears to be rare situation where 3,4-dihydro-3-oxoedulan and (E)-4-(r-1',t-2',c-4'-trihydroxy-3',6',6'-trimethylcyclohexyl)-but-3-en-2-one have been found that is of great importance for chemical fingerprinting and identification of the chemical biomarkers that can complement the pollen analysis as the major method for the honey classification.Keywords: 3, 4-dihydro-3-oxoedulan, (E)-4-(r-1', t-2', c-4'-trihydroxy-3', 6', 6'-trimethylcyclohexyl)-but-3-en-2-one, honey flavour, C₁₃-norisoprenoids
Procedia PDF Downloads 331115 Ecosystem Services and Human Well-Being: Case Study of Tiriya Village, Bastar India
Authors: S. Vaibhav Kant Sahu, Surabhi Bipin Seth
Abstract:
Human well-being has multiple constituents including the basic material for a good life, freedom and choice, health, good social relations, and security. Poverty is also multidimensional and has been defined as the pronounced deprivation of well-being. Dhurwa tribe of Bastar (India) have symbiotic relation with nature, it provisions ecosystem service such as food, fuel and fiber; regulating services such as climate regulation and non-material benefits such as spiritual or aesthetic benefits and they are managing their forest from ages. The demand for ecosystem services is now so great that trade-off among services become rule. Aim of study to explore evidences for linkages between ecosystem services and well-being of indigenous community, how much it helps them in poverty reduction and interaction between them. Objective of study was to find drivers of change and evidence concerning link between ecosystem, human development and sustainability, evidence in decision making does it opt for multi sectoral objectives. Which means human well-being as the central focus for assessment, while recognizing that biodiversity and ecosystems also have intrinsic value. Ecosystem changes that may have little impact on human well-being over days or weeks may have pronounced impacts over years or decades; so assessments needed to be conducted at spatial and temporal scales under social, political, economic scales to have high-resolution data. Researcher used framework developed by Millennium ecosystem assessment; since human action now directly or unknowingly virtually alter ecosystem. Researcher used ethnography study to get primary qualitative data, secondary data collected from panchayat office. The responses were transcribed and translated into English, as interview held in Hindi and local indigenous language. Focus group discussion were held with group of 10 women at Tiriya village. Researcher concluded with well-being is not just gap between ecosystem service supply but also increases vulnerability. Decision can have consequences external to the decision framework these consequences are called externalities because they are not part of the decision-making calculus.Keywords: Bastar, Dhurwa tribe, ecosystem services, millennium ecosystem assessment, sustainability
Procedia PDF Downloads 302114 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants
Authors: Shengyi Huang, Chenju Liang
Abstract:
Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution
Procedia PDF Downloads 211113 Characterization of Kevlar 29 for Multifunction Applications
Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia
Abstract:
Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.
Procedia PDF Downloads 80112 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 111111 Optical Coherence Tomography in Parkinson’s Disease: A Potential in-vivo Retinal α-Synuclein Biomarker in Parkinson’s Disease
Authors: Jessica Chorostecki, Aashka Shah, Fen Bao, Ginny Bao, Edwin George, Navid Seraji-Bozorgzad, Veronica Gorden, Christina Caon, Elliot Frohman
Abstract:
Background: Parkinson’s Disease (PD) is a neuro degenerative disorder associated with the loss of dopaminergic cells and the presence α-synuclein (AS) aggregation in of Lewy bodies. Both dopaminergic cells and AS are found in the retina. Optical coherence tomography (OCT) allows high-resolution in-vivo examination of retinal structure injury in neuro degenerative disorders including PD. Methods: We performed a cross-section OCT study in patients with definite PD and healthy controls (HC) using Spectral Domain SD-OCT platform to measure the peripapillary retinal nerve fiber layer (pRNFL) thickness and total macular volume (TMV). We performed intra-retinal segmentation with fully automated segmentation software to measure the volume of the RNFL, ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), and the outer nuclear layer (ONL). Segmentation was performed blinded to the clinical status of the study participants. Results: 101 eyes from 52 PD patients (mean age 65.8 years) and 46 eyes from 24 HC subjects (mean age 64.1 years) were included in the study. The mean pRNFL thickness was not significantly different (96.95 μm vs 94.42 μm, p=0.07) but the TMV was significantly lower in PD compared to HC (8.33 mm3 vs 8.58 mm3 p=0.0002). Intra-retinal segmentation showed no significant difference in the RNFL volume between the PD and HC groups (0.95 mm3 vs 0.92 mm3 p=0.454). However, GCL, IPL, INL, and ONL volumes were significantly reduced in PD compared to HC. In contrast, the volume of OPL was significantly increased in PD compared to HC. Conclusions: Our finding of the enlarged OPL corresponds with mRNA expression studies showing localization of AS in the OPL across vertebrate species and autopsy studies demonstrating AS aggregation in the deeper layers of retina in PD. We propose that the enlargement of the OPL may represent a potential biomarker of AS aggregation in PD. Longitudinal studies in larger cohorts are warranted to confirm our observations that may have significant implications in disease monitoring and therapeutic development.Keywords: Optical Coherence Tomography, biomarker, Parkinson's disease, alpha-synuclein, retina
Procedia PDF Downloads 437110 Assessment of the Physical Activity Level and the Nutritional Status among Students in Bowen University, Iwo, Osun State, Nigeria
Authors: Fakunle Egbo, Kammalchukwu A., Akinremi T.
Abstract:
Physical activity and nutritional status influence the health status and cognition of young adults. Lack of physical activity increases the likelihood of developing obesity which leads to the risk of heart diseases and other risk factors like high blood pressure, high blood cholesterol, diabetes etc. The study employed a cross-sectional study design. The study used a multi stage sampling technique multi- stage sampling technique; Purposive, for the selection of colleges that would be used, stratified random sampling for stratifying the colleges into departments and the simple random sampling for the selection of each respondent from the departments. Structured questionnaires were used to obtain data from the respondents and pre-tested anthropometric instruments were used to get the weight and height of the respondents and statistically analyzed using SPSS version 22.0 and the TDA (Total dietary allowance) software which was used to analyze the nutrient intake of the respondents. This study showed that they comprised of 50.1% males and 40.9% females. Slightly above average 51.8% were between ages of 15-19 with mean age being 19.57 years; ages 20-24 were slightly below average at 45.7%. The male students 58.7% had vigorous physical activity, whereas majority of females 76.5% had light physical activity level. 39.1% of the male students carried out physical activity 2-3 times per week while One third of the female students (38.3%) carried out physical activity 6-7 times per week. Majority of the respondents had Inadequate Protein- 63.8%, Carbohydrate- 60.2%, and Dietary fiber- 88.8. 36% eat rice 4-6 times per week. Majority of the respondents had inadequate fruit and vegetables (Efo, Banana,) at 47.7%, 40.6% respectively. Using Body mass index, (63.2%) have normal weight. 22.9% are overweight, 6.8% are underweight, 5.4% have grade 1 obesity and 1.6% have grade II obesity. There was a statistically significant association between the physical activity of the respondents with their nutritional status (p=0.037), physical activity and sex (p=0.000), nutritional status and amount spent on food daily (p=0.007). The study concluded that the physical activity level of the respondents, most especially the females were low; One third of the students were malnourished therefore, there should be an urgent need for improving the overall health status of students by providing the students with well-equipped gyms and other sporting equipment’s that would make them participate actively and keep fit.Keywords: physical activity, nutritional status, undergraduates, dietary pattern
Procedia PDF Downloads 68109 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite
Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona
Abstract:
The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity
Procedia PDF Downloads 128