Search results for: demand selection
4349 Methodology for the Integration of Object Identification Processes in Handling and Logistic Systems
Authors: L. Kiefer, C. Richter, G. Reinhart
Abstract:
The uprising complexity in production systems due to an increasing amount of variants up to customer innovated products leads to requirements that hierarchical control systems are not able to fulfil. Therefore, factory planners can install autonomous manufacturing systems. The fundamental requirement for an autonomous control is the identification of objects within production systems. In this approach an attribute-based identification is focused for avoiding dose-dependent identification costs. Instead of using an identification mark (ID) like a radio frequency identification (RFID)-Tag, an object type is directly identified by its attributes. To facilitate that it’s recommended to include the identification and the corresponding sensors within handling processes, which connect all manufacturing processes and therefore ensure a high identification rate and reduce blind spots. The presented methodology reduces the individual effort to integrate identification processes in handling systems. First, suitable object attributes and sensor systems for object identification in a production environment are defined. By categorising these sensor systems as well as handling systems, it is possible to match them universal within a compatibility matrix. Based on that compatibility further requirements like identification time are analysed, which decide whether the combination of handling and sensor system is well suited for parallel handling and identification within an autonomous control. By analysing a list of more than thousand possible attributes, first investigations have shown, that five main characteristics (weight, form, colour, amount, and position of subattributes as drillings) are sufficient for an integrable identification. This knowledge limits the variety of identification systems and leads to a manageable complexity within the selection process. Besides the procedure, several tools, as an example a sensor pool are presented. These tools include the generated specific expert knowledge and simplify the selection. The primary tool is a pool of preconfigured identification processes depending on the chosen combination of sensor and handling device. By following the defined procedure and using the created tools, even laypeople out of other scientific fields can choose an appropriate combination of handling devices and sensors which enable parallel handling and identification.Keywords: agent systems, autonomous control, handling systems, identification
Procedia PDF Downloads 1774348 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 754347 Management of Cultural Heritage: Bologna Gates
Authors: Alfonso Ippolito, Cristiana Bartolomei
Abstract:
A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.Keywords: cultural heritage, databases, non-contact survey, 2D-3D models
Procedia PDF Downloads 4234346 ADP Approach to Evaluate the Blood Supply Network of Ontario
Authors: Usama Abdulwahab, Mohammed Wahab
Abstract:
This paper presents the application of uncapacitated facility location problems (UFLP) and 1-median problems to support decision making in blood supply chain networks. A plethora of factors make blood supply-chain networks a complex, yet vital problem for the regional blood bank. These factors are rapidly increasing demand; criticality of the product; strict storage and handling requirements; and the vastness of the theater of operations. As in the UFLP, facilities can be opened at any of $m$ predefined locations with given fixed costs. Clients have to be allocated to the open facilities. In classical location models, the allocation cost is the distance between a client and an open facility. In this model, the costs are the allocation cost, transportation costs, and inventory costs. In order to address this problem the median algorithm is used to analyze inventory, evaluate supply chain status, monitor performance metrics at different levels of granularity, and detect potential problems and opportunities for improvement. The Euclidean distance data for some Ontario cities (demand nodes) are used to test the developed algorithm. Sitation software, lagrangian relaxation algorithm, and branch and bound heuristics are used to solve this model. Computational experiments confirm the efficiency of the proposed approach. Compared to the existing modeling and solution methods, the median algorithm approach not only provides a more general modeling framework but also leads to efficient solution times in general.Keywords: approximate dynamic programming, facility location, perishable product, inventory model, blood platelet, P-median problem
Procedia PDF Downloads 5064345 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3374344 Selective Extraction of Lithium from Native Geothermal Brines Using Lithium-ion Sieves
Authors: Misagh Ghobadi, Rich Crane, Karen Hudson-Edwards, Clemens Vinzenz Ullmann
Abstract:
Lithium is recognized as the critical energy metal of the 21st century, comparable in importance to coal in the 19th century and oil in the 20th century, often termed 'white gold'. Current global demand for lithium, estimated at 0.95-0.98 million metric tons (Mt) of lithium carbonate equivalent (LCE) annually in 2024, is projected to rise to 1.87 Mt by 2027 and 3.06 Mt by 2030. Despite anticipated short-term stability in supply and demand, meeting the forecasted 2030 demand will require the lithium industry to develop an additional capacity of 1.42 Mt of LCE annually, exceeding current planned and ongoing efforts. Brine resources constitute nearly 65% of global lithium reserves, underscoring the importance of exploring lithium recovery from underutilized sources, especially geothermal brines. However, conventional lithium extraction from brine deposits faces challenges due to its time-intensive process, low efficiency (30-50% lithium recovery), unsuitability for low lithium concentrations (<300 mg/l), and notable environmental impacts. Addressing these challenges, direct lithium extraction (DLE) methods have emerged as promising technologies capable of economically extracting lithium even from low-concentration brines (>50 mg/l) with high recovery rates (75-98%). However, most studies (70%) have predominantly focused on synthetic brines instead of native (natural/real), with limited application of these approaches in real-world case studies or industrial settings. This study aims to bridge this gap by investigating a geothermal brine sample collected from a real case study site in the UK. A Mn-based lithium-ion sieve (LIS) adsorbent was synthesized and employed to selectively extract lithium from the sample brine. Adsorbents with a Li:Mn molar ratio of 1:1 demonstrated superior lithium selectivity and adsorption capacity. Furthermore, the pristine Mn-based adsorbent was modified through transition metals doping, resulting in enhanced lithium selectivity and adsorption capacity. The modified adsorbent exhibited a higher separation factor for lithium over major co-existing cations such as Ca, Mg, Na, and K, with separation factors exceeding 200. The adsorption behaviour was well-described by the Langmuir model, indicating monolayer adsorption, and the kinetics followed a pseudo-second-order mechanism, suggesting chemisorption at the solid surface. Thermodynamically, negative ΔG° values and positive ΔH° and ΔS° values were observed, indicating the spontaneity and endothermic nature of the adsorption process.Keywords: adsorption, critical minerals, DLE, geothermal brines, geochemistry, lithium, lithium-ion sieves
Procedia PDF Downloads 464343 Examination of the Main Behavioral Patterns of Male and Female Students in Islamic Azad University
Authors: Sobhan Sobhani
Abstract:
This study examined the behavioral patterns of student and their determinants according to the "symbolic interaction" sociological perspective in the form of 7 hypotheses. Behavioral patterns of students were classified in 8 categories: religious, scientific, political, artistic, sporting, national, parents and teachers. They were evaluated by student opinions by a five-point Likert rating scale. The statistical population included all male and female students of Islamic Azad University, Behabahan branch, among which 600 patients (268 females and 332 males) were selected randomly. The following statistical methods were used: frequency and percentage, mean, t-test, Pearson correlation coefficient and multi-way analysis of variance. The results obtained from statistical analysis showed that: 1-There is a significant difference between male and female students in terms of disposition to religious figures, artists, teachers and parents. 2-There is a significant difference between students of urban and rural areas in terms of assuming behavioral patterns of religious, political, scientific, artistic, national figures and teachers. 3-The most important criterion for selecting behavioral patterns of students is intellectual understanding with the pattern. 4-The most important factor influencing the behavioral patterns of male and female students is parents followed by friends. 5-Boys are affected by teachers, the Internet and satellite programs more than girls. Girls assume behavioral patterns from books more than boys. 6-There is a significant difference between students in human sciences, technical, medical and engineering disciplines in terms of selecting religious and political figures as behavioral patterns. 7-There is a significant difference between students belonging to different subcultures in terms of assuming behavioral patterns of religious, scientific and cultural figures. 8-Between the first and fourth year students in terms of selecting behavioral patterns, there is a significant difference only in selecting religious figures. 9-There is a significant negative correlation between the education level of parents and the selection of religious and political figures and teachers. 10-There is a significant negative correlation between family income and the selection of political and religious figures.Keywords: behavioral patterns, behavioral patterns, male and female students, Islamic Azad University
Procedia PDF Downloads 3654342 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention
Authors: Kohkan Shamsi
Abstract:
Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention
Procedia PDF Downloads 1154341 Approach to Freight Trip Attraction Areas Classification, in Developing Countries
Authors: Adrián Esteban Ortiz-Valera, Angélica Lozano
Abstract:
In developing countries, informal trade is relevant, but it has been little studied in urban freight transport (UFT) context, although it is a challenge due to the non- contemplated demand it produces and the operational limitations it imposes. Hence, UFT operational improvements (initiatives) and freight attraction models must consider informal trade for developing countries. Afour phasesapproach for characterizing the commercial areas in developing countries (considering both formal and informal establishments) is proposed and applied to ten areas in Mexico City. This characterization is required to calculate real freight trip attraction and then select and/or adapt suitable initiatives. Phase 1 aims the delimitation of the study area. The following information is obtained for each establishment of a potential area: location or geographic coordinates, industrial sector, industrial subsector, and number of employees. Phase 2 characterizes the study area and proposes a set of indicators. This allows a broad view of the operations and constraints of UFT in the study area. Phase 3 classifies the study area according to seven indicators. Each indicator represents a level of conflict in the area due to the presence of formal (registered) and informal establishments on the sidewalks and streets, affecting urban freight transport (and other activities). Phase 4 determines preliminary initiatives which could be implemented in the study area to improve the operation of UFT. The indicators and initiatives relation allows a preliminary initiatives selection. This relation requires to know the following: a) the problems in the area (congested streets, lack of parking space for freight vehicles, etc.); b) the factors which limit initiatives due to informal establishments (reduced streets for freight vehicles; mobility and parking inability during a period, among others), c) the problems in the area due to its physical characteristics; and d) the factors which limit initiatives due to regulations of the area. Several differences in the study areas were observed. As the indicators increases, the areas tend to be less ordered, and the limitations for the initiatives become higher, causing a smaller number of susceptible initiatives. In ordered areas (similar to the commercial areas of developed countries), the current techniquesfor estimating freight trip attraction (FTA) can bedirectly applied, however, in the areas where the level of order is lower due to the presence of informal trade, this is not recommended because the real FTA would not be estimated. Therefore, a technique, which consider the characteristics of the areas in developing countries to obtain data and to estimate FTA, is required. This estimation can be the base for proposing feasible initiatives to such zones. The proposed approach provides a wide view of the needs of the commercial areas of developing countries. The knowledge of these needs would allow UFT´s operation to be improved and its negative impacts to be minimized.Keywords: freight initiatives, freight trip attraction, informal trade, urban freight transport
Procedia PDF Downloads 1414340 Globalisation and the Resulting Labour Exploitation in Business Operations and Supply Chains
Authors: Akilah A. Jardine
Abstract:
The integration and expansion of the global economy have indeed brought about a number of positive changes such as access to new goods and services and the opportunity for individuals and businesses to migrate, communicate, and work globally. Nevertheless, the interconnectedness of world economies is not without its negative and shameful side effects. The subsequent overabundance of goods and services has resulted in heightened competition among firms and their supply chains, fuelling the exploitation of impoverished and vulnerable individuals who are unable to equally salvage from the benefits of the integrated economy. To maintain their position in a highly competitive arena, the operations of many businesses have adopted unethical and unscrupulous practices to maximise profit, often targeting the most marginalised members of society. Simultaneously, in a consumerist obsessed society preoccupied with the consumption and accumulation of material wealth, the demand for goods and services greatly contributes to the pressure on firms, thus bolstering the exploitation of labour. This paper aims to examine the impact of business operations on the practice of labour exploitation. It explores corrupt business practices that firms adopt and key labour exploitative conditions outlined by the International Labour Organization, particularly, paying workers low wages, forcing individuals to work in abusive and unsafe conditions, and considers the issue regarding individuals’ consent to exploitative environments. Further, it considers the role of consumers in creating the high demand for goods and services, which in turn fosters the exploitation of labour. This paper illustrates that the practice of labour exploitation in the economy is a by-product of both global competitive business operations and heightened consumer consumption.Keywords: globalisation, labour exploitation, modern slavery, sweatshops, unethical business practices
Procedia PDF Downloads 1434339 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model
Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.
Abstract:
Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model
Procedia PDF Downloads 624338 Personality Based Tailored Learning Paths Using Cluster Analysis Methods: Increasing Students' Satisfaction in Online Courses
Authors: Orit Baruth, Anat Cohen
Abstract:
Online courses have become common in many learning programs and various learning environments, particularly in higher education. Social distancing forced in response to the COVID-19 pandemic has increased the demand for these courses. Yet, despite the frequency of use, online learning is not free of limitations and may not suit all learners. Hence, the growth of online learning alongside with learners' diversity raises the question: is online learning, as it currently offered, meets the needs of each learner? Fortunately, today's technology allows to produce tailored learning platforms, namely, personalization. Personality influences learner's satisfaction and therefore has a significant impact on learning effectiveness. A better understanding of personality can lead to a greater appreciation of learning needs, as well to assists educators ensure that an optimal learning environment is provided. In the context of online learning and personality, the research on learning design according to personality traits is lacking. This study explores the relations between personality traits (using the 'Big-five' model) and students' satisfaction with five techno-pedagogical learning solutions (TPLS): discussion groups, digital books, online assignments, surveys/polls, and media, in order to provide an online learning process to students' satisfaction. Satisfaction level and personality identification of 108 students who participated in a fully online learning course at a large, accredited university were measured. Cluster analysis methods (k-mean) were applied to identify learners’ clusters according to their personality traits. Correlation analysis was performed to examine the relations between the obtained clusters and satisfaction with the offered TPLS. Findings suggest that learners associated with the 'Neurotic' cluster showed low satisfaction with all TPLS compared to learners associated with the 'Non-neurotics' cluster. learners associated with the 'Consciences' cluster were satisfied with all TPLS except discussion groups, and those in the 'Open-Extroverts' cluster were satisfied with assignments and media. All clusters except 'Neurotic' were highly satisfied with the online course in general. According to the findings, dividing learners into four clusters based on personality traits may help define tailor learning paths for them, combining various TPLS to increase their satisfaction. As personality has a set of traits, several TPLS may be offered in each learning path. For the neurotics, however, an extended selection may suit more, or alternatively offering them the TPLS they less dislike. Study findings clearly indicate that personality plays a significant role in a learner's satisfaction level. Consequently, personality traits should be considered when designing personalized learning activities. The current research seeks to bridge the theoretical gap in this specific research area. Establishing the assumption that different personalities need different learning solutions may contribute towards a better design of online courses, leaving no learner behind, whether he\ she likes online learning or not, since different personalities need different learning solutions.Keywords: online learning, personality traits, personalization, techno-pedagogical learning solutions
Procedia PDF Downloads 1034337 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent
Authors: Samira Rostom, Robert Symonds, Robin W. Hughes
Abstract:
Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.Keywords: MOF, H2 purification, high T, PSA
Procedia PDF Downloads 1014336 The Role of Institutional Quality and Institutional Quality Distance on Trade: The Case of Agricultural Trade within the Southern African Development Community Region
Authors: Kgolagano Mpejane
Abstract:
The study applies a New Institutional Economics (NIE) analytical framework to trade in developing economies by assessing the impacts of institutional quality and institutional quality distance on agricultural trade using a panel data of 15 Southern African Development Community (SADC) countries from the years 1991-2010. The issue of institutions on agricultural trade has not been accorded the necessary attention in the literature, particularly in developing economies. Therefore, the paper empirically tests the gravity model of international trade by measuring the impact of political, economic and legal institutions on intra SADC agricultural trade. The gravity model is noted for its exploratory power and strong theoretical foundation. However, the model has statistical shortcomings in dealing with zero trade values and heteroscedasticity residuals leading to biased results. Therefore, this study employs a two stage Heckman selection model with a Probit equation to estimate the influence of institutions on agricultural trade. The selection stages include the inverse Mills ratio to account for the variable bias of the gravity model. The Heckman model accounts for zero trade values and is robust in the presence of heteroscedasticity. The empirical results of the study support the NIE theory premise that institutions matter in trade. The results demonstrate that institutions determine bilateral agricultural trade on different margins with political institutions having positive and significant influence on bilateral agricultural trade flows within the SADC region. Legal and economic institutions have significant and negative effects on SADC trade. Furthermore, the results of this study confirm that institutional quality distance influences agricultural trade. Legal and political institutional distance have a positive and significant influence on bilateral agricultural trade while the influence of economic, institutional quality is negative and insignificant. The results imply that nontrade barriers, in the form of institutional quality and institutional quality distance, are significant factors limiting intra SADC agricultural trade. Therefore, gains from intra SADC agricultural trade can be attained through the improvement of institutions within the region.Keywords: agricultural trade, institutions, gravity model, SADC
Procedia PDF Downloads 1484335 Demand Forecasting to Reduce Dead Stock and Loss Sales: A Case Study of the Wholesale Electric Equipment and Part Company
Authors: Korpapa Srisamai, Pawee Siriruk
Abstract:
The purpose of this study is to forecast product demands and develop appropriate and adequate procurement plans to meet customer needs and reduce costs. When the product exceeds customer demands or does not move, it requires the company to support insufficient storage spaces. Moreover, some items, when stored for a long period of time, cause deterioration to dead stock. A case study of the wholesale company of electronic equipment and components, which has uncertain customer demands, is considered. The actual purchasing orders of customers are not equal to the forecast provided by the customers. In some cases, customers have higher product demands, resulting in the product being insufficient to meet the customer's needs. However, some customers have lower demands for products than estimates, causing insufficient storage spaces and dead stock. This study aims to reduce the loss of sales opportunities and the number of remaining goods in the warehouse, citing 30 product samples of the company's most popular products. The data were collected during the duration of the study from January to October 2022. The methods used to forecast are simple moving averages, weighted moving average, and exponential smoothing methods. The economic ordering quantity and reorder point are used to calculate to meet customer needs and track results. The research results are very beneficial to the company. The company can reduce the loss of sales opportunities by 20% so that the company has enough products to meet customer needs and can reduce unused products by up to 10% dead stock. This enables the company to order products more accurately, increasing profits and storage space.Keywords: demand forecast, reorder point, lost sale, dead stock
Procedia PDF Downloads 1214334 Impact of Biological Treatment Effluent on the Physico-Chemical Quality of a Receiving Stream in Ile-Ife, Southwest Nigeria
Authors: Asibor Godwin, Adeniyi Funsho
Abstract:
This study was carried out to investigate the impact of biological treated effluent on the physico-chemical properties of receiving waterbodies and also to establish its suitability for other purposes. It focused on the changes of some physic-chemical variables as one move away from the point of discharge downstream of the waterbodies. Water samples were collected from 14 sampling stations made up of the untreated effluent, treated effluent and receiving streams (before and after treated effluent discharge) over a period of 6 months spanning the dry and rainy seasons. Analyses were carried out on the following: temperature, turbidity, pH, conductivity, major anions and cation, dissolved oxygen, percentage oxygen Saturation, biological oxygen demand (BOD), solids (total solids, suspended solids and dissolved solids), nitrates, phosphates, organic matter and flow discharge using standard analytical methods. The relationships between investigated sites with regards to their physico-chemical properties were analyzed using student-t statistics. Also changes in the treated effluent receiving streams after treated effluent outfall was discussed fully. The physico-chemical water quality of the receiving water bodies meets most of the general water requirements for both domestic and industrial uses. The untreated effluent quality was shown to be of biological origin based on the biological oxygen demand, chloride, dissolved oxygen, total solids, pH and organic matter. The treated effluent showed significant improvement over the raw untreated effluent based on most parameters assessed. There was a significant difference (p<0.05) between the physico-chemical quality of untreated effluent and the treated effluent for the most of the investigated physico-chemical quality. The difference between the discharged treated effluent and the unimpacted section of the receiving waterbodies was also significant (p<0.05) for the most of the physico-chemical parameters.Keywords: eflluent, Opa River, physico-chemical, waterbody
Procedia PDF Downloads 2614333 Multi-Objective Multi-Period Allocation of Temporary Earthquake Disaster Response Facilities with Multi-Commodities
Authors: Abolghasem Yousefi-Babadi, Ali Bozorgi-Amiri, Aida Kazempour, Reza Tavakkoli-Moghaddam, Maryam Irani
Abstract:
All over the world, natural disasters (e.g., earthquakes, floods, volcanoes and hurricanes) causes a lot of deaths. Earthquakes are introduced as catastrophic events, which is accident by unusual phenomena leading to much loss around the world. Such could be replaced by disasters or any other synonyms strongly demand great long-term help and relief, which can be hard to be managed. Supplies and facilities are very important challenges after any earthquake which should be prepared for the disaster regions to satisfy the people's demands who are suffering from earthquake. This paper proposed disaster response facility allocation problem for disaster relief operations as a mathematical programming model. Not only damaged people in the earthquake victims, need the consumable commodities (e.g., food and water), but also they need non-consumable commodities (e.g., clothes) to protect themselves. Therefore, it is concluded that paying attention to disaster points and people's demands are very necessary. To deal with this objective, both commodities including consumable and need non-consumable commodities are considered in the presented model. This paper presented the multi-objective multi-period mathematical programming model regarding the minimizing the average of the weighted response times and minimizing the total operational cost and penalty costs of unmet demand and unused commodities simultaneously. Furthermore, a Chebycheff multi-objective solution procedure as a powerful solution algorithm is applied to solve the proposed model. Finally, to illustrate the model applicability, a case study of the Tehran earthquake is studied, also to show model validation a sensitivity analysis is carried out.Keywords: facility location, multi-objective model, disaster response, commodity
Procedia PDF Downloads 2574332 An Integrated Ecosystem Service-based Approach for the Sustainable Management of Forested Islands in South Korea
Authors: Jang-Hwan Jo
Abstract:
Implementing sustainable island forest management policies requires categorizing islands into groups based on key indicators and establishing a consistent management system. Building on the results of previous studies, a typology of forested islands was established: Type 1 – connected islands with high natural vegetation cover; Type 2 – connected islands with moderate natural vegetation cover; Type 3 – connected islands with low natural vegetation cover; Type 4 – unconnected islands with high natural vegetation cover; Type 5 – unconnected islands with moderate natural vegetation cover; and Type 6 – unconnected islands with low natural vegetation cover. An AHP analysis was conducted with island forest experts to identify priority ecosystem services (ESs) for the sustainable management of each island type. In connected islands, provisioning services (natural resources, natural medicines, etc.) assumed greater importance than regulating (erosion control) and supporting services (genetic diversity). In unconnected islands, particularly those with a small proportion of natural vegetation, regulating services (erosion control) requires greater emphasis in management. Considering that Type 3 islands require urgent management as connectivity to the mainland makes natural vegetation-sparse island forest ecosystems vulnerable to anthropogenic activities, the land-use scoring method was carried out on Jin-do, a Type 3 forested island. Comparisons between AHP-derived expert demand for key island ESs and the spatial distribution of ES supply potential revealed mismatches between the supply and demand of erosion control, freshwater supply, and habitat provision. The framework developed in this study can help guide decisions and indicate where interventions should be focused to achieve sustainable island management.Keywords: ecosystem service, sustainable management, forested islands, Analytic hierarchy process
Procedia PDF Downloads 754331 An Estimation of Rice Output Supply Response in Sierra Leone: A Nerlovian Model Approach
Authors: Alhaji M. H. Conteh, Xiangbin Yan, Issa Fofana, Brima Gegbe, Tamba I. Isaac
Abstract:
Rice grain is Sierra Leone’s staple food and the nation imports over 120,000 metric tons annually due to a shortfall in its cultivation. Thus, the insufficient level of the crop's cultivation in Sierra Leone is caused by many problems and this led to the endlessly widening supply and demand for the crop within the country. Consequently, this has instigated the government to spend huge money on the importation of this grain that would have been otherwise cultivated domestically at a cheaper cost. Hence, this research attempts to explore the response of rice supply with respect to its demand in Sierra Leone within the period 1980-2010. The Nerlovian adjustment model to the Sierra Leone rice data set within the period 1980-2010 was used. The estimated trend equations revealed that time had significant effect on output, productivity (yield) and area (acreage) of rice grain within the period 1980-2010 and this occurred generally at the 1% level of significance. The results showed that, almost the entire growth in output had the tendency to increase in the area cultivated to the crop. The time trend variable that was included for government policy intervention showed an insignificant effect on all the variables considered in this research. Therefore, both the short-run and long-run price response was inelastic since all their values were less than one. From the findings above, immediate actions that will lead to productivity growth in rice cultivation are required. To achieve the above, the responsible agencies should provide extension service schemes to farmers as well as motivating them on the adoption of modern rice varieties and technology in their rice cultivation ventures.Keywords: Nerlovian adjustment model, price elasticities, Sierra Leone, trend equations
Procedia PDF Downloads 2334330 Governance Challenges of Consolidated Destinations. The Case of Barcelona
Authors: Montserrat Crespi-Vallbona; Oscar Mascarilla-Miró
Abstract:
Mature destinations have different challenges trying to attract tourism and please its citizens. Hence, they have to maintain their touristic interest to standard demand and also not to undeceive those tourists with more advanced experiences. Second, they have to be concerned for the daily life of citizens and avoid the negative effects of touristification. This balance is quite delicate and often has to do with the sensitivity and commitment of the party in the local government. However, what is a general consensus is the need for destinations to differentiate from the homogeneous rest of regions and create new content, consumable resources or marketing events to guarantee their positioning. In this sense, the main responsibility of destinations is to satisfy users, tourists and citizens. Hence, its aim has to do with holistic experiences, which collect these wide approaches. Specifically, this research aims to analyze the volume and growth of tourist houses in the central touristic neighborhoods of Barcelona (this is Ciutat Vella) as the starting point to identify the behavior of tourists regarding their interests in searching for local heritage attractiveness and community atmosphere. Then, different cases are analyzed in order to show how Barcelona struggles to keep its attractive brand for the visitors, as well as for its inhabitants. Methodologically, secondary data used in this research comes from official registered tourist houses (Catalunya Government), Open Data (Barcelona municipality), the Airbnb tourist platform, from the Incasol Data and Municipal Register of Inhabitants. Primary data are collected through in-depth interviews with neighbors, social movement managers and political representatives from Turisme de Barcelona (local DMO, Destination Management Organization). Results show what the opportunities and priorities are for key actors to design policies to find a balance between all different interests.Keywords: touristification, tourist houses, governance, tourism demand, airbnbfication
Procedia PDF Downloads 654329 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 2964328 A Policy Strategy for Building Energy Data Management in India
Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan
Abstract:
The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.Keywords: energy data, energy policy, energy efficiency, buildings
Procedia PDF Downloads 1854327 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters
Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović
Abstract:
The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD
Procedia PDF Downloads 654326 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1444325 Reimagining the Management of Telco Supply Chain with Blockchain
Authors: Jeaha Yang, Ahmed Khan, Donna L. Rodela, Mohammed A. Qaudeer
Abstract:
Traditional supply chain silos still exist today due to the difficulty of establishing trust between various partners and technological barriers across industries. Companies lose opportunities and revenue and inadvertently make poor business decisions resulting in further challenges. Blockchain technology can bring a new level of transparency through sharing information with a distributed ledger in a decentralized manner that creates a basis of trust for business. Blockchain is a loosely coupled, hub-style communication network in which trading partners can work indirectly with each other for simpler integration, but they work together through the orchestration of their supply chain operations under a coherent process that is developed jointly. A Blockchain increases efficiencies, lowers costs, and improves interoperability to strengthen and automate the supply chain management process while all partners share the risk. Blockchain ledger is built to track inventory lifecycle for supply chain transparency and keeps a journal of inventory movement for real-time reconciliation. State design patterns are used to capture the life cycle (behavior) of inventory management as a state machine for a common, transparent and coherent process which creates an opportunity for trading partners to become more responsive in terms of changes or improvements in process, reconcile discrepancies, and comply with internal governance and external regulations. It enables end-to-end, inter-company visibility at the unit level for more accurate demand planning with better insight into order fulfillment and replenishment.Keywords: supply chain management, inventory trace-ability, perpetual inventory system, inventory lifecycle, blockchain, inventory consignment, supply chain transparency, digital thread, demand planning, hyper ledger fabric
Procedia PDF Downloads 904324 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment
Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng
Abstract:
Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 ℃, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source.
Keywords: aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip
Procedia PDF Downloads 2964323 Vulnerability Assessment of Vertically Irregular Structures during Earthquake
Authors: Pranab Kumar Das
Abstract:
Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.Keywords: ductility, stress concentration, vertically irregular structure, vulnerability
Procedia PDF Downloads 2294322 The Relationship among Attachment Styles, Humor Styles and Communication Patterns in Female Married Students
Authors: Elham Fathi, Seyed Mohammad Kalantarkousheh, Abolfazl Hatami Varzane
Abstract:
The present study aimed to determine predict capacity of the relationship among attachment styles, humor styles and communication patterns in female married students. Statistical population consisted of female married students from Allameh Tabataba’i University. The research sample consisted of 104 married students selected through convenience sampling. They responded to study instruments that consisted of attachment styles, humor styles and Communication patterns questionnaires. Data was analyzed by means of correlation method. The results indicated significant positive relationship between secure attachment styles with adaptive humor styles, and anxious attachment styles with maladaptive humor styles. Also a negative relationship between avoidant attachment with affiliative humor, and anxious attachment with self-enhancing humor was found. Furthermore, a negative relationship between self- enhancing humor styles with demand – withdraw communication pattern, and between affiliative humor with mutual avoidant communication pattern and a positive relationship between affiliative humor with mutual constructive communication pattern was observed. The relationship between secure attachment with mutual constructive communication pattern was positive, while relationship between avoidant attachment to mutual constructive communication pattern was negative and significant and its relation with mutual avoidant communication pattern was significantly positive. The result of regression analysis indicated that affliative humor style and secure attachment style, positively predicted mutual constructive communication pattern. Avoidant attachment style positively and affliative humor style negatively predicted the mutual avoidant communication pattern. And self-enhancing humor style negatively predicted the demand – withdraw communication pattern style.Keywords: attachment styles, communication patterns, humor styles, female married students
Procedia PDF Downloads 3734321 Demographic Impact on Wastewater: A Systemic Analysis of Human Impact on Wastewater Quality in Dhaka, Bangladesh
Authors: Dewan Hasin Mahtab, Farzana Sadia
Abstract:
At present, wastewater treatment has become essential to maintain a constant supply of safe water as well as to protect the environment. Due to overpopulation and overconsumption, the water quality from various surface water sources is degrading every day. Being one of the megacities in the world, Dhaka City, is going through rapid industrialization and urbanization. The effluents from these industries and factories are mostly discharged directly into the rivers without any treatment. As such, the quality of water of Buriganga is being afflicted with a noisome problem of pollution. The water of the Buriganga River has become detrimental to humans, animals, and the environment. It has become crucial to conserve the environment so that we can save both ourselves and the environment. The first step towards it should be analyzing the wastewater to decide the further steps of the treatment process. Increased population and increased consumption both contribute to water pollution. Mohammadpur is a developing area of Dhaka City, and Kamrangirchar is one of the largest slum areas in Dhaka City. The total study area is 6.13 sq. Km of Dhaka city with a population of 4,73,310 people. Of them, 86.47% had their own latrine, 47% were directly connected to the drain, 55% had septic tanks, and 70.09% of them cleaned their septic tank once a year. The pH, Dissolved Oxygen, Chemical Oxygen Demand, Biochemical Oxygen Demand, Total Dissolved Solid, Total Suspended and total coliforms of wastewater from two samples of both Mohammadpur and Kamrangirchar was analyzed. The DO level from the water bodies of Kamrangirchar was found very low, making the water bodies inhabitable for aquatic plants and animals. The BOD and COD level was extremely high from samples collected from Mohammadpur. The total coliforms count was found too high during the wet season, making it a potential health concern in the wet season in these two areas.Keywords: Dhaka, environmental conservation rule, sanitation, wastewater
Procedia PDF Downloads 1304320 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 378