Search results for: concrete construction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5272

Search results for: concrete construction

4132 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 118
4131 Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Authors: Mannal Tariq

Abstract:

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Keywords: CFRP, deep beams, openings in deep beams, strut and tie modal, shear behaviour

Procedia PDF Downloads 304
4130 Reinforced Concrete Slab under Static and Dynamic Loading

Authors: Aaron Aboshio, Jianqiao Ye

Abstract:

In this study, static and dynamic responses of a typical reinforced concrete flat slab, designed to British Standard (BS 8110, 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view to optimise the structure and ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.

Keywords: economical design, finite element method, modal dynamics, reinforced concrete, slab

Procedia PDF Downloads 322
4129 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations

Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval

Abstract:

Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).

Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation

Procedia PDF Downloads 374
4128 Analytical Study of Flexural Strength of Concrete-Filled Steel Tube Beams

Authors: Maru R., Singh V. P.

Abstract:

In this research, analytical study of the flexural strength of Concrete Filled Steel Tube (CFST) beams is carried out based on wide-range finite element models to obtain the better perspective for flexural strength achievement with the use of ABAQUS finite element program. This work adopts concrete damaged plasticity model to get the actual simulation of CFST under bending. To get the decent interaction between concrete and steel, normal and tangential surface interaction provided by ABAQUS is used with hard contact for normal surface interaction and for 0.65 friction coefficient for tangential surface interactions. In this study, rectangular and square CFST beam model cross-sections are adopted with its limits pertained to Eurocode specifications. To get the visualization for flexural strength of CFST beams, total of 74 rectangular CFST beams and 86 square CFST beams are used with four-point bending test setup and the length of the beam model as 1000mm. The grades of concrete and grades of steel are used as 30 MPa & 35MPa and 235 MPa and 275MPa respectively for both sections to get the confinement factor 0.583 to 2.833, steel ratio of 0.069 to 0.236 and length to depth ratio of 4.167 to 16.667. It was found based on this study that flexural strength of CFST beams falls around strain of 0.012. Eurocode provides the results harmonically with finite elemental results. It was also noted for square sections that reduction of steel ratio is not useful as compared to rectangular section although it increases moment capacity up to certain limits because for square sectional area similar to that of rectangular, it possesses lesser depth than rectangular sections. Also It can be said that effect of increment of grade of concrete can be achieved when thicker steel tube is present. It is observed that there is less increment in moment capacity initially but after D/b ratio 1.2, moment capacity of CFST beam rapidly.

Keywords: ABAQUS, CFST beams, flexural strength, four-point bending, rectangular and square sections

Procedia PDF Downloads 164
4127 Empirical Research on Preference for Conflict Resolution Styles of Owners and Contractors in China

Authors: Junqi Zhao, Yongqiang Chen

Abstract:

The preference for different conflict resolution styles are influenced by cultural background and power distance of two parties involving in conflict. This research put forward 7 hypotheses and tested the preference differences of the five conflict resolution styles between Chinese owner and contractor as well as the preference differences concerning the same style between two parties. The research sample includes 202 practitioners from construction enterprises in mainland China. Research result found that theories concerning conflict resolution styles could be applied in the Chinese construction industry. Some results of this research were not in line with former research, and this research also gave explanation to the differences from the characteristics of construction projects. Based on the findings, certain suggestions were made to serve as a guidance for managers to choose appropriate conflict resolution styles for a better handling of conflict.

Keywords: Chinese owner and contractor, conflict, construction project, conflict resolution styles

Procedia PDF Downloads 532
4126 Sustainable Engineering: Synergy of BIM and Environmental Assessment Tools in Hong Kong Construction Industry

Authors: Kwok Tak Kit

Abstract:

The construction industry plays an important role in environmental and carbon emissions as it consumes a huge amount of natural resources and energy. Sustainable engineering involves the process of planning, design, procurement, construction and delivery in which the whole building and construction process resulting from building and construction can be effectively and sustainability managed to achieve the use of natural resources. Implementation of sustainable technology development and innovation, adoption of the advanced construction process and facilitate the facilities management to implement the energy and waste control more accurately and effectively. Study and research in the relationship of BIM and environment assessment tools lack a clear discussion. In this paper, we will focus on the synergy of BIM technology and sustainable engineering in the AEC industry and outline the key factors which enhance the use of advanced innovation, technology and method and define the role of stakeholders to achieve zero-carbon emission toward the Paris Agreement to limit global warming to well below 2ᵒC above pre-industrial levels. A case study of the adoption of Building Information Modeling (BIM) and environmental assessment tools in Hong Kong will be discussed in this paper.

Keywords: sustainability, sustainable engineering, BIM, LEED

Procedia PDF Downloads 150
4125 Barriers to the Use of Factoring Accounts Receivables: Ghanaian Contractor’s Perception

Authors: E. Kissi, V. K. Acheamfour, J. J. Gyimah, T. Adjei-Kumi

Abstract:

Factoring accounts receivable is widely accepted as an alternative financing source and utilized in almost every industry that sells business-to-business or business-to-government. However, its patronage in the construction industry is very limited as some barriers hinder its application in the construction industry. This study aims at assessing the barriers to the use of factoring accounts receivables in the Ghanaian construction industry. The study adopted the sequential exploratory research method where structured and unstructured questionnaires were conveniently distributed to D1K1 and D2K2 construction firms in Ghana. Using the one-sample t-test and Kendall’s Coefficient of concordance data was analyzed. The most severe challenge concluded is the high cost of factoring patronage. Other critical challenges identified were low knowledge on factoring processes, inadequate access to information on factoring, and high risks involved in factoring. Hence, it is recommended that contractors should be made aware of the prospects of factoring of accounts receivables in the construction industry. This study serves as basis for further rigorous research into factoring of accounts receivables in the industry.

Keywords: barriers, contractors, factoring accounts receivables, Ghanaian, perception

Procedia PDF Downloads 132
4124 The Impact of Structural Empowerment on Risk Management Practices: A Case Study of Saudi Arabia Construction Small and Medium-Sized Enterprises

Authors: S. Alyami, S. Mohammad

Abstract:

These Risk management practices have a significant impact on construction SMEs. The effective utilisation of these practices depends on culture change in order to optimise decision making for critical activities within construction projects. Thus, successful implementation of empowerment strategies would enhance operational employees to participate in effective decision making. However, there remain many barriers to individuals and organisations within empowerment strategies that require empirical investigation before the industry can benefit from their implementation. Gaps in understanding the relationship between employee empowerment and risk management practices still exist. This research paper aims to examine the impact of the structural empowerment on risk management practices in construction SMEs. The questionnaire has been distributed to participants (162 employees) that involve projects and civil engineers within a case study from Saudi construction SMEs. Partial least squares based structural equation modeling (PLS-SEM) was utilised to perform analysis. The results reveal a positive relationship between empowerment and risk management practices. The study shows how structural empowerment contributes to operational employees in risk management practices through involving activities such as decision making, self-efficiency, and autonomy. The findings of this study will contribute to close the current gaps in the construction SMEs context.

Keywords: construction SMEs, culture, decision making, empowerment, risk management

Procedia PDF Downloads 119
4123 Treatment of Dredged Marine Sediments for Their Reuse in Road Construction

Authors: F. Ben Abdelghani, W. Maherezi

Abstract:

Dredging operations generate, each year, a great quantity of marine sediments. These raw materials can not be used in road construction without a specific treatment process. Sediments suitability tests has shown that most of studied sediments are not suitable to be used in road construction. In order to improve their compacity and their mechanical performance, addition of a granular material is recommended. The use of a dredged sand, to improve the granular mixture containing sediments, allows a better management of the two types of dredge materials (sand and sediment). In this study, a new road material containing dredged marine sediments and dredged sand is formulated and treated by adding various binders. Mechanical performance investigation of different mixtures by measuring Proctor-IPI values and simple compressive strengths is realized.

Keywords: dredged sediments, suitability tests, road construction, hydraulic binder, mechanical performance

Procedia PDF Downloads 362
4122 Shear Strengthening of Reinforced Concrete Deep Beam Using Fiber Reinforced Polymer Strips

Authors: Ruqaya H. Aljabery

Abstract:

Reinforced Concrete (RC) deep beams are one of the main critical structural elements in terms of safety since significant loads are carried in a short span. The shear capacity of these sections cannot be predicted accurately by the current design codes like ACI and EC2; thus, they must be investigated. In this research, non-linear behavior of RC deep beams strengthened in shear with Fiber Reinforced Polymer (FRP) strips, and the efficiency of FRP in terms of enhancing the shear capacity in RC deep beams are examined using Finite Element Analysis (FEA), which is conducted using the software ABAQUS. The effect of several parameters on the shear capacity of the RC deep beam are studied in this paper as well including the effect of the cross-sectional area of the FRP strip and the shear reinforcement area to the spacing ratio (As/S), and it was found that FRP enhances the shear capacity significantly and can be a substitution of steel stirrups resulting in a more economical design.

Keywords: Abaqus, concrete, deep beam, finite element analysis, FRP, shear strengthening, strut-and-tie

Procedia PDF Downloads 150
4121 Effects of the Slope Embankment Variation on Influence Areas That Causes the Differential Settlement around of Embankment

Authors: Safitri W. Nur, Prathisto Panuntun L. Unggul, M. Ivan Adi Perdana, R. Dary Wira Mahadika

Abstract:

On soft soil areas, high embankment as a preloading needed to improve the bearing capacity of the soil. For sustainable development, the construction of embankment must not disturb the area around of them. So, the influence area must be known before the contractor applied their embankment design. For several cases in Indonesia, the area around of embankment construction is housing resident and other building. So that, the influence area must be identified to avoid the differential settlement occurs on the buildings around of them. Differential settlement causes the building crack. Each building has a limited tolerance for the differential settlement. For concrete buildings, the tolerance is 0,002 – 0,003 m and for steel buildings, the tolerance is 0,006 – 0,008 m. If the differential settlement stands on the range of that value, building crack can be avoided. In fact, the settlement around of embankment is assumed as zero. Because of that, so many problems happen when high embankment applied on soft soil area. This research used the superposition method combined with plaxis analysis to know the influences area around of embankment in some location with the differential characteristic of the soft soil. The undisturbed soil samples take on 55 locations with undisturbed soil samples at some soft soils location in Indonesia. Based on this research, it was concluded that the effects of embankment variation are if more gentle the slope, the influence area will be greater and vice versa. The largest of the influence area with h initial embankment equal to 2 - 6 m with slopes 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 is 32 m from the edge of the embankment.

Keywords: differential settlement, embankment, influence area, slope, soft soil

Procedia PDF Downloads 408
4120 Affordable and Sustainable Housing Construction: Case Studies

Authors: Tony Rizk

Abstract:

Recent material advances and cost efficiencies are transforming the housing industry away from traditional lumber and gypsum material to alternate fiberboard material that is workable and resistant to fire, mold, and pest infestation. The use of these materials may add to the initial cost of construction. However, the life cycle (cradle to grave) cost of houses using these construction materials and methods are lower than the life cycle costs using traditional housing construction materials and methods. This paper will present four (4) case studies of sustainable house projects. Each project was designed and constructed using earthen-based, sustainable fiberboard material that is resistant to fire, mold, and infestation and fabricated at a very low material calorific value. These house projects have a living space ranging from 625 sq. ft. for an accessory dwelling unit and up to 3,200 sq. ft. 1-story and 2-story homes. For each case study, we will present the house engineering design and construction method, the initial construction costs, a summary of the life cycle costs, and a comparison to the life cycle cost of traditional housing available in the literature.

Keywords: residential housing, sustainable housing, life cycle cost, fire resistance, mold, infestation resistance

Procedia PDF Downloads 127
4119 Impact of Slenderness Ratios on the Seismic Behavior of Reinforced Concrete Buildings

Authors: Juan Bojórquez, F. de Jesús Merino, Edén Bojórquez, Mario Llanez-Tizoc, Federico Valenzuela-Beltrán, Mario R. Flores, J. Ramón Gaxiola-Camacho, Henry Reyes

Abstract:

As urban populations continue to grow, the demand for higher housing density in large cities has led to increased use of slender buildings to maximize limited land availability. However, structures with high slenderness ratios face significant challenges related to their resistance capacity and lateral stiffness, particularly in seismic conditions. This study evaluates the seismic behavior of four reinforced concrete frame buildings with varying slenderness ratios situated on soft soil in Mexico City. Utilizing step-by-step nonlinear dynamic analysis, the research compares the seismic performance of these buildings, presenting detailed results, conclusions, and recommendations for enhancing the earthquake resistance of slender structures.

Keywords: dynamic analysis, reinforced concrete buildings, seismic behavior, slenderness ratio

Procedia PDF Downloads 24
4118 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube

Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim

Abstract:

In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.

Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld

Procedia PDF Downloads 184
4117 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 368
4116 Application of GIS-Based Construction Engineering: An Electronic Document Management System

Authors: Mansour N. Jadid

Abstract:

This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.

Keywords: construction, coordinate, engineering, GIS, management, map

Procedia PDF Downloads 303
4115 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8, and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4, and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder Rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: crumb rubber, dry process, hot mix asphalt, wet process

Procedia PDF Downloads 367
4114 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality

Authors: Erisasadat Sahebzamani, Núria Forcada, Francisco Lendinez

Abstract:

Global climate change has become increasingly problematic over the past few decades. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary to keep materials in the loop and extend their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to present a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on stakeholders' perspectives.

Keywords: circular economy, building information modeling, virtual reality, stakeholder engagement

Procedia PDF Downloads 111
4113 Development of a Bacterial Resistant Concrete for Use in Low Cost Kitchen Floors

Authors: S. S. Mahlangu, R. K. K. Mbaya, D. D. Delport, H. Van. Zyl

Abstract:

The degrading effect due to bacterial growth on the structural integrity of concrete floor surfaces is predictable; this consequently cause development of surface micro cracks in which organisms penetrate through resulting in surface spalling. Hence, the need to develop mix design meeting the requirement of floor surfaces exposed to aggressive agent to improve certain material properties with good workability, extended lifespan and low cost is essential. In this work, tests were performed to examine the microbial activity on kitchen floor surfaces and the effect of adding admixtures. The biochemical test shows the existence of microorganisms (E.coli, Streptococcus) on newly casted structure. Of up to 6% porosity was reduced and improvement on structural integrity was observed upon adding mineral admixtures from the concrete mortar. The SEM result after 84 days of curing specimens, shows that chemical admixtures have significant role to enable retard bacterial penetration and good quality structure is achieved.

Keywords: admixture, organisms, porosity, strength

Procedia PDF Downloads 236
4112 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Young Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: environmental industry, separator, CFD, fine aggregate

Procedia PDF Downloads 595
4111 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures

Authors: Yang Liu

Abstract:

Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.

Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis

Procedia PDF Downloads 157
4110 Integrating Best Practices for Construction Waste in Quality Management Systems

Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez

Abstract:

The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.

Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems

Procedia PDF Downloads 533
4109 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 242
4108 Classification of Construction Projects

Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside

Abstract:

To address construction project requirements and specifications, scholars and practitioners need to establish a taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.

Keywords: project classification, project definition rating index (PDRI), risk, project goals alignment

Procedia PDF Downloads 679
4107 Identification of Social Responsibility Factors within Mega Construction Projects

Authors: Ali Alotaibi, Francis Edum-Fotwe, Andrew Price /

Abstract:

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

Keywords: social responsibility, construction projects, economic, social, environmental, indicators

Procedia PDF Downloads 168
4106 The Effect of Masonry Infills on the Seismic Response of Reinforced Concrete Structures

Authors: Mohammad Reza Ameri, Ali Massumi, Behnam Mahboubi

Abstract:

The performance of masonry infilled frames during the past earthquakes shows that the infill panels play a major role as earthquake-resistant elements. The present study examines the influence of infill panels on seismic behavior of RC frame structures. For this purpose, several low- and mid-rise RC frames (two-, four-, seven-, and ten story) were numerically investigated. Reinforced masonry infill panels were then placed within the frames and the models were subjected to several nonlinear incremental static and dynamic analyses. The results of analyses showed that the use of reinforced masonry infill panels in RC frame structures can have beneficial effects on structural performance. It was confirmed that the use of masonry infill panels results in an increment in strength and stiffness of the framed buildings, followed by a reduction in displacement demand for the structural systems.

Keywords: reinforced masonry infill panels, nonlinear static analysis, incremental dynamic analysis, low-rise reinforced concrete frames, mid-rise reinforced concrete frames

Procedia PDF Downloads 320
4105 Factors Constraining the Utilization of Risk Management Strategies in the Execution of Public Construction Projects in North East Nigeria

Authors: S. U. Kunya, S. A. Mohammad

Abstract:

Construction projects in Nigeria are characterized with risks emanating from delays and accompanying cost-overruns. The aim of the study was to identify and assess factors constraining the utilization of risk management strategies in the execution of public construction project in North-East Nigeria. Data was collected with the aid of a well-structured questionnaire administered to three identified projects in the North-east. Data collected were analysed using the severity index. Findings revealed political involvement, selection of inexperienced contractors and lack of coordinated public sector strategy as the most severe factors constraining the utilization of risk management strategies. The study recommended that: formulation of laws to prevent negative political meddling in construction projects; selection of experienced, risk-informed contractors; and comprehensive risk assessment and planning on all public construction projects.

Keywords: factors, Nigeria, north-east, public projects, risk management, strategies, utilization

Procedia PDF Downloads 532
4104 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 378
4103 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 89