Search results for: Tungsten oxide
370 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers
Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner
Abstract:
In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test
Procedia PDF Downloads 123369 Growth Model and Properties of a 3D Carbon Aerogel
Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler
Abstract:
Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness
Procedia PDF Downloads 155368 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation
Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova
Abstract:
This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)
Procedia PDF Downloads 369367 Effect of Constant and Variable Temperature on the Morphology of TiO₂ Nanotubes Prepared by Two-Step Anodization Method
Authors: Tayyaba Ghani, Mazhar Mehmood, Mohammad Mujahid
Abstract:
TiO₂ nanotubes are receiving immense attraction in the field of dye-sensitized solar cells due to their well-defined nanostructures, efficient electron transport and large surface area as compared to other one dimensional structures. In the present work, we have investigated the influence of temperature on the morphology of anodically produced self-organized Titanium oxide nanotubes (TiNTs). TiNTs are synthesized by two-step anodization method in an ethylene glycol based electrolytes containing ammonium fluoride. Experiments are performed at constant anodization voltage for two hours. An investigation by the SEM images reveals that if the temperature is kept constant during the anodizing experiment, variation in the average tube diameter is significantly reduced. However, if the temperature is not controlled then due to the exothermic nature of reactions for the formation of TiNTs, the temperature of electrolyte keep on increasing. This variation in electrolyte bath temperature introduced strong variations in tube diameter (20 nm to 160 nm) along the length of tubes. Current profiles, recorded during the anodization experiment, predict the effect of constant and varying experimental temperatures as well. In both cases, XRD results show the complete anatase crystal structure of nanotube upon annealing at 450 °C. Present work highlights the importance of constant temperature during the anodization experiments in order to develop an ordered array of nanotubes with a uniform tube diameter.Keywords: anodization, ordering, temperature, TiO₂ nanotubes
Procedia PDF Downloads 171366 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time
Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn
Abstract:
The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical
Procedia PDF Downloads 42365 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 193364 Melatonin Suppresses the Brain Injury after Cerebral Ischemia/Reperfusion in Hyperglycemic Rats
Authors: Dalia O. Saleha, Gehad A. Abdel Jaleela, Sally W. Al-Awdana
Abstract:
Diabetes mellitus (DM) is known to exacerbate cerebral ischemic injury. The present study aimed to investigate the anti-oxidant and anti-inflammatory effects of oral supplementation of melatonin (MLN) on cerebral injury caused by middle cerebral artery occlusion and reperfusion (MCAO/Re) in streptozotocin (STZ)-induced hyperglycemic rats. Hyperglycemia was induced by a single injection of STZ (55mg/kg; i.p.), six weeks later the cerebral injury was induced by MCAO/Re. Twenty-four hours after the MCAO/Re the MLN (10 mg/kg) was injected for 14 consecutive days. Results of the present study revealed that MCAO/Re in STZ-induced hyperglycemia in rats causes an increase in the oxidative stress biomarkers; it increased brain lipid peroxidation (measured as malondialdehyde; MDA) and brain level of nitric oxide (NO). Moreover, MCAO/Reproduces a prominent increase in the brain inflammatory markers viz. interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis nuclear factor-alpha (TNF-α). Oral treatment of MCAO/Re in STZ-induced hyperglycemic rats with MLN (10 mg/kg) for two weeks restored the brain levels of MDA, GSH, NO, IL-6, IL-1β and the TNF-α. MLN succeeded to suppress the exacerbation of damage in the brain of hyperglycemic rats. These results suggest that daily intake of MLN attenuates the exacerbation of cerebral ischemic injury in a diabetic state, which may be attributed to anti-oxidant and anti-inflammatory effects in the brain.Keywords: melatonin, brain injury, cerebral ischemia/reperfusion, hyperglycemia, rats
Procedia PDF Downloads 158363 Degradation of Acetaminophen with Fe3O4 and Fe2+ as Activator of Peroxymonosulfate
Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin
Abstract:
Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95), while the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.Keywords: acetaminophen, peroxymonosulfate, radicals, Fe3O4
Procedia PDF Downloads 257362 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application
Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen
Abstract:
Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.Keywords: MAO, plasma, graft polymerization, biomedical application
Procedia PDF Downloads 259361 Experimental Investigation, Analysis and Optimization of Performance and Emission Characteristics of Composite Oil Methyl Esters at 160 bar, 180 bar and 200 bar Injection Pressures by Multifunctional Criteria Technique
Authors: Yogish Huchaiah, Chandrashekara Krishnappa
Abstract:
This study considers the optimization and validation of experimental results using Multi-Functional Criteria Technique (MFCT). MFCT is concerned with structuring and solving decision and planning problems involving multiple variables. Production of biodiesel from Composite Oil Methyl Esters (COME) of Jatropha and Pongamia oils, mixed in various proportions and Biodiesel thus obtained from two step transesterification process were tested for various Physico-Chemical properties and it has been ascertained that they were within limits proposed by ASTME. They were blended with Petrodiesel in various proportions. These Methyl Esters were blended with Petrodiesel in various proportions and coded. These blends were used as fuels in a computerized CI DI engine to investigate Performance and Emission characteristics. From the analysis of results, it was found that 180MEM4B20 blend had the maximum Performance and minimum Emissions. To validate the experimental results, MFCT was used. Characteristics such as Fuel Consumption (FC), Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), Carbon dioxide (CO2), Carbon Monoxide (CO), Hydro Carbon (HC) and Nitrogen oxide (NOx) were considered as dependent variables. It was found from the application of this method that the optimized combination of Injection Pressure (IP), Mix and Blend is 178MEM4.2B24. Overall corresponding variation between optimization and experimental results was found to be 7.45%.Keywords: COME, IP, MFCT, optimization, PI, PN, PV
Procedia PDF Downloads 211360 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting
Authors: Vishwas Goel, Kapil Surve, Somnath Basu
Abstract:
In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.Keywords: alloying element, chromite, electro-slag remelting, ferrochrome
Procedia PDF Downloads 223359 Mineral Chemistry of Barium and Titanium-Bearing Biotite in Alkaline Trachyte from Upper Benue Valley (Northern Cameroon)
Authors: Fadimatou Ngounouno Yamgouota, Isaac Bertrand Gbambié Mbowoub, Ismaila Ngounounob
Abstract:
Barium and titanium bearing biotite from alkaline trachyte of Upper Benue valley, Northern Cameroon is studied. The iron enrichment index of mica (average I.E.=0.40) is intermediate between annite and phlogopite. The biotite phenocrysts contain up to 6.2 wt. % BaO and 9.8 wt. % TiO2. The BaO content of electron-microprobe mica is positively correlated with the Al2O3, TiO2, and FeO contents, and negatively correlated with the SiO2, K2O, and MgO contents. Ba and Ti rich micas are generally found in in SiO2 deficient rocks, whereas Ba and Ti bearing mica in this study occur in silica-saturated rocks. Most of the phenocrysts analysed have deficiencies in their octahedral and interlayer sites. Deficiencies in the octahedral sites may arise from the Ti vacancy and partly the Ti tschermakite substitution. On the other hand, deficiencies in the interlayer-site are due to the replacement of K by Ba. The substitution mechanism in the Upper Benue valley mica is characterized by Ba + 2Ti + 3Al =(K + Na + Ca) + 3(Mg + Fe + Mn) + 3Si, with an excellent correlation coefficient. Biotite compositions from the Upper Benue valley area fall between the quartz-fayalite-magnetite (QFM) and nickel-nickel-oxide (NNO) oxygen fugacity buffers. All these show that Upper Benue valley mica with high Ba and Ti contents may be formed from magmas rich in these elements.Keywords: Benue valley, trachyte, biotite, mineral chemistry, enrichment
Procedia PDF Downloads 297358 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance
Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu
Abstract:
The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity
Procedia PDF Downloads 67357 Zingiberofficinale Potential Effect on Nephrin mRNA Expression in Cisplatin Induced Nephrotoxicity
Authors: Nadia A. Mohamed, Mehrevan M. Abdel-Moniem
Abstract:
Zingiber officinale (ginger) has been cultivated for medicinal purposes due to their various proprieties both in vitro and in vivo, so we designed to evaluate the ginger’s potential effect on nephrin m RNA expression in cisplatin-induced nephrotoxic rats. Method: Forty male albino rats were divided into group I was injected (IP) with one ml saline, group II(cisplatin) injected (IP) with a single dose of 12 mg/kg cisplatin, group III (ginger) received (PO) 310 mg/kg for 30 successive days, and group IV(cisplatin and ginger) rats received ginger extract (310 mg/kg) daily for 20 successive days (PO), and then on day 20 of ginger extract administration each rat was injected(IP) with a single dose of 12 mg/kg cisplatin. The blood was sampled to assess urea, creatinine (SC), while the levels of malondialdehyde (MDA), nitric oxide (NO) and paraoxonase (PON1) were measured in kidney tissue homogenate. Expression of urinary nephrin gene (nephrin mRNA) was detected using qRT-PCR. Results: Treatment with ginger significantly decreased the levels of kidney function parameters as well as MDA and NO elevated by cisplatin injection, while PON1 was significantly reduced in the cisplatin group. However, the protection of male rats with ginger significantly increased the levels of nephrin gene expression and PON1 compared with the cisplatin-treated group. Our results generated a proposal on the ameliorating effect of ginger on nephrin mRNA gene expression reduction in cisplatin-induced nephrotoxicity.Keywords: nephrin mRNA, ginger, cisplatin, nephrotoxicity
Procedia PDF Downloads 145356 Markers for Predicting Overweight or Obesity of Riding Egyptian Broodmares Mares
Authors: Amal Abo El-Maaty, Amira Mohamed, Nashwa Abu-Aita, Hisham Morgan
Abstract:
For estimating markers of overweight or obesity of brood mares used for riding and training, 17 mares of different body conditions were subjected to blood sampling and ultrasound examination to measure rump fat thickness and monitor ovulation for six consecutive weeks. Also length (L), heart girth (G) and withers height (H) were measured to estimate body weight (BW), body fat %, body fat mass (BFM) and body mass index (BMI). Mares were classified into three groups according to both body condition score (BCS) and rump back fat (BF). Overweight mares (O) were having BCS > 7 and BF thickness >7mm, moderate body condition (M) mares were having BCS >3and ≤7and BF <3and <7mm, and emaciated mares (E) were having BCS ≤3 and BF ≤3mm. glucose, triglycerides, nitric oxide, ovarian, thyroid, insulin, insulin like growth factor-I (IGF-1), and leptin hormones were measured. Results revealed that BCS, G, L, L*G*H, BW, BF, fat %, BFM were significantly (P<0.0001) decreasing linearly from O to E. T4 concentrations of E were significantly high (P=0.04) compared to M and O but T3 concentrations tended to decrease in E (P>0.05). Insulin and IGF-1 concentrations tended to be high in O (P>0.05) and decrease with the decrease of body condition. M had (P=0.007) the highest leptin, but E mares had the lowest P4 concentrations (P=0.01). Concentrations of glucose and NO decreased with the decrease of BCS and BF but triglycerides of O were insignificantly high. In conclusion, exercise could prevent the development of metabolic syndrome in horses and back fat and morphometric measurements were the easiest and simple assessment of overweight and deviation to obesity.Keywords: body condition score, insulin, leptin, mares, rump fat
Procedia PDF Downloads 325355 Effect of Nanoscale Bismuth Oxide on Radiation Shielding and Interaction Characteristics of Polyvinyl Alcohol-Based Polymer for Medical Apron Design
Authors: E. O. Echeweozo
Abstract:
This study evaluated radiation shielding and interaction characteristics of polyvinyl alcohol (PVA) polymer separately doped with 10% and 20% nanoscale Bi₂O₃, respectively, for medical apron design and shielding special electronic installations. Prepared samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The EDS results showed that Carbon (C), Oxygen (O), and bismuth (Bi) elements were the predominant elements present in the prepared samples. The SEM result displaced surface irregularities due to a special bonding matrix between PVA and Bi₂O₃. Mass attenuation coefficient (MAC), effective atomic number (Zeff), Half value layer (HVL), Mean free path (MFP), Fast neutron removal cross-section (R), Total Mass Stopping Power (TSP), and photon Range (R) of the prepared polymer composites (PV-1Bi and PV-2Bi) were evaluated with XCOM and PHITS computer programs. Results showed that the MAC of the prepared polymer samples was significantly higher than some recently developed composites at 0.662MeV and 1.25MeV gamma energy. Therefore, polyvinyl alcohol (PVA) polymer doped with Bi₂O₃ should be deployed in medical apron design and shielding special electronic installations where flexibility and high adhesion ability are crucial.Keywords: polyvinyl alcohol (PVA);, polymer composite, gamma-rays, charged particles
Procedia PDF Downloads 20354 The Effect of 8 Weeks Aerobic Training and Nitro-L-Arginine-Methyl Ester (L-NAME) on Plasma apelin in Male’s Rats
Authors: Abbassi Daloii Asieh, Yazdani Hoda
Abstract:
Background and Objective: evidence supports systemic inflammation in obesity and insulin resistance. Apelin that is secreted by adipose tissue plays an important role in the inflammation process and appear act as an anti-inflammatory cytokines. The aim of this study was the effect of eight weeks aerobic training and nitro-L-arginine-methyl ester (L-NAME) on plasma apelin in male’s rats. Materials and Methods: For this purpose, 24 male Wistar rats aged 20 months were randomly assigned into four groups: Control, training, training and L-NAME and L-NAME. Training intervention was eight weeks aerobic exercise (5 time/weekly) at 75-80 (%) of maximal oxygen consumption. All rats were killed 72 hours after lasted exercise session; blood samples collected and plasma were stored. Data was analyzed by one way ANOVA and Tucky Test. A p value less than 0.05 was considered statistically signigcant. Results: The results showed that after eight weeks of endurance training exercise Apelin plasma compared to the control group did not change significantly. Also, the results showed that there was significant difference in plasma Apelin between groups(P > 0/05). Also, the results showed no significant difference between the insulin levels and glucose of four groups (P > 0/05). Conclusion: It seems that aerobic exercise plasma Apelin levels in male rats is not affected. On the other hand, nitric oxide inhibitors can reduce levels of plasma Apelin.Keywords: aerobic training, L-NAME, plasma Apelin, male’s rats
Procedia PDF Downloads 443353 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis
Authors: Thanida Sritangthong, Suksun Amornraksa
Abstract:
By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis
Procedia PDF Downloads 319352 Effect of Barium Doping on Structural, Morphological, Optical and Photocatalytic Properties of Sprayed ZnO Thin Films
Authors: H. Djaaboube, I. Loucif, Y. Bouachiba, R. Aouati, A. Maameri, A. Taabouche, A. Bouabellou
Abstract:
Thin films of pure and barium-doped zinc oxide (ZnO) were prepared using a spray pyrolysis process. The films were deposited on glass substrates at 450°C. The different samples are characterized by X-ray diffraction (XRD) and UV-Vis spectroscopy. X-ray diffraction patterns reveal the formation of a single ZnO Wurtzite structure and the good crystallinity of the films. The substitution of Ba ions influences the texture of the layers and makes the (002) plane a preferential growth plane. At concentrations below 6% Ba, the hexagonal structure of ZnO undergoes compressive stresses due to barium ions which have a radius twice of the Zn ions. This result leads to the decrees of a and c parameters and, therefore, the volume of the unit cell. This result is confirmed by the decrease in the number of crystallites and the increase in the size of the crystallites. At concentrations above 6%, barium substitutes the zinc atom and modifies the structural parameters of the thin layers. The bandgap of ZnO films decreased with increasing doping; this decrease is probably due to the 4d orbitals of the Ba atom due to the sp-d spin-exchange interactions between the band electrons and the localized d-electrons of the substituted Ba ion. Although, the Urbache energy undergoes an increase which implies the creation of energy levels below the conduction band and decreases the band gap width. The photocatalytic activity of ZnO doped 9% Ba was evaluated by the photodegradation of methylene blue under UV irradiation.Keywords: barium, doping, photodegradation, spray pyrolysis, ZnO
Procedia PDF Downloads 83351 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature
Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci
Abstract:
This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys
Procedia PDF Downloads 87350 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method
Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas
Abstract:
The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature
Procedia PDF Downloads 372349 Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles
Authors: Gehan El-Sayed Sharaf El-Deen
Abstract:
In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution.Keywords: heavy metals, magnetic nanoparticles, removal efficiency, Batch technique
Procedia PDF Downloads 248348 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method
Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama
Abstract:
SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies
Procedia PDF Downloads 85347 Oxidative Status and Some Serum Macro Minerals during Estrus, Anestrous and Repeat Breeding in Cholistani Cattle
Authors: Farah Ali, Laeeq Akbar Lodhi, Riaz Hussain, Muhammad Sufyan
Abstract:
The present study was conducted to determine the macro mineral profile and biomarkers of oxidative stress in Cholistani cattle kept at a public farm and various villages in district Bahawalpur. For this purpose 90 blood samples were collected each from estrual, anestrous and repeat breeding cattle having different age and lactation number. Reproductive tract examination of all the cattle was carried out to determine the reproductive status. Blood samples without EDTA were collected for serum separation at day of estrus (normal cyclic), repeat breeder and anestrous cows. The serum calcium levels were significantly decreased (P<0.05) in anestrous (7.31±0.02 mg/dl) cattle as compared to estrus. However, these values were non-significantly different between repeat breeder and cattle having estrus phase. The concentrations of serum phosphorus were significantly higher (P<0.01) in normal estrual (4.99±0.08 mg/dl) as compared torepeat breeder (3.90±0.06 mg/dl) and anestrous (3.82±0.04 mg/dl) Cholistani cattle. Mean serum MDA (nmol/ml) levels of repeat breeder (2.68±0.18) and anestrous (2.54±0.22) were significantly(P<0.01) higher than the estrous (1.71±0.03) cattle. Moreover, the serum nitric oxide levels(µmol/L) were also increased significantly (P<0.01) in repeat breeder(58.28±4.01)and anestrous (61.40±9.40) than the normalestrous (31.67±6.71) cattle. The ratio of Ca: P in normal cyclic animals was lower (1.73:1) as compared to the anestrous animals (1.92:1). It can be concluded from the present study that the level of Ca: P should also be near to 1.5:1 for better reproductive performance.Keywords: anestrus, cholistani cattle, minerals, oxidative stress, repeat breeder
Procedia PDF Downloads 605346 Protective Role of CoQ10 or L-Carnitine on the Integrity of the Myocardium in Doxorubicin Induced Toxicity
Authors: Gehan A. Hegazy, Hesham N. Mustafa, Sally A. El Awdan, Marawan AbdelBaset
Abstract:
Doxorubicin (DOX) is a chemotherapeutic agent used for the treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on the heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy-two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10 mg/kg); CoQ10 group (200 mg/kg); L-carnitine group (100 mg/kg); DOX + CoQ10 group; DOX + L-carnitine group. CoQ10 and L-carnitine treatment orally started five days before a single dose of 10 mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for ten days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1), tumor necrosis factor alpha (TNF-), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With visible improvements in -SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium.Keywords: CoQ10, doxorubicin, L-Carnitine, cardiotoxicity
Procedia PDF Downloads 170345 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)
Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud
Abstract:
The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing
Procedia PDF Downloads 78344 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures
Authors: P. G. Siddheshwar, B. N. Veena
Abstract:
Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.Keywords: enclosures, free-free, rigid-rigid, rigid-free boundaries, Ginzburg-Landau model, Lorenz model
Procedia PDF Downloads 255343 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films
Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul
Abstract:
Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films
Procedia PDF Downloads 353342 Effects of Cymbopogon citratus, Stapf (CS) or Lemon Grass Ethanol Extract on Antioxidant and Vascular Disorders Parameters in Rat
Authors: Suphaket Saenthaweesuk, Nutiya Somparn, Atcharaporn Thewmore
Abstract:
The present study aims to investigate the effects of Cymbopogon citratus, Stapf (CS) or lemon grass ethanol extract on antioxidant and vascular disorders parameters in rat. The CS ethanol extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with CS at 1,000 mg/kg/day for 30 days. Phytochemical screening of CS extract indicated the presence of tannins, flavonoids and phenolic compounds. The extract contained phenolic compounds 1,400.10 ± 0.47 mg of gallic acid equivalents per gram CS extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 168.77 ± 3.32µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14 µg/mL. In the animals, the protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased. This was consistent with elevation of serum catalase (CAT) and superoxide dismutase (SOD) activities. However, Protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial nitric oxide synthase (eNOS) in heart and aorta were not differenced from normal control. Taken together, the present study provides evidence that CCS water extract exhibits direct antioxidant properties and can induce cytoprotective enzymes in vivo.Keywords: antioxidant, Cymbopogon citratus Stapf, VCAM-1, γ-glutamylcysteine ligase
Procedia PDF Downloads 309341 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications
Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara
Abstract:
Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.Keywords: electrical properties, optical gap, phthalocyanine, thin film.
Procedia PDF Downloads 249