Search results for: stability and performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15629

Search results for: stability and performance

4019 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 359
4018 Augmented Reality Using Cuboid Tracking as a Support for Early Stages of Architectural Design

Authors: Larissa Negris de Souza, Ana Regina Mizrahy Cuperschmid, Daniel de Carvalho Moreira

Abstract:

Augmented Reality (AR) alters the elaboration of the architectural project, which relates to project cognition: representation, visualization, and perception of information. Understanding these features from the earliest stages of the design can facilitate the study of relationships, zoning, and overall dimensions of the forms. This paper’s goal was to explore a new approach for information visualization during the early stages of architectural design using Augmented Reality (AR). A three-dimensional marker inspired by the Rubik’s Cube was developed, and its performance, evaluated. This investigation interwovens the acquired knowledge of traditional briefing methods and contemporary technology. We considered the concept of patterns (Alexander et al. 1977) to outline geometric forms and associations using visual programming. The Design Science Research was applied to develop the study. An SDK was used in a game engine to generate the AR app. The tool's functionality was assessed by verifying the readability and precision of the reconfigurable 3D marker. The results indicated an inconsistent response. To use AR in the early stages of architectural design the system must provide consistent information and appropriate feedback. Nevertheless, we conclude that our framework sets the ground for looking deep into AR tools for briefing design.

Keywords: augmented reality, cuboid marker, early design stages, graphic representation, patterns

Procedia PDF Downloads 105
4017 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm

Authors: Dalal N. Hammod, Ekhlas K. Gbashi

Abstract:

Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.

Keywords: modified AES, randomness test, encryption time, avalanche effects

Procedia PDF Downloads 252
4016 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 73
4015 Information Technology Competences for Professional Accountants in Thai Small to Medium Accounting Practice

Authors: Manirath Wongsim, Chatchawarn Srimontree, Pornpichit Phosri

Abstract:

Today, the majority of the data innovation may be currently majorly influencing business, what more accepted part of the accountant may be evolving. Information Technology elements have been appearing to be crucial in triggering changes of accountants’ roles. Thus, this study aims to investigate IT competencies among professional accountants to enhance firm performance. This research was conducted with 47 respondents at five organizations in Thailand and used quantitative research. The results indicate that the factor IT competencies for professional accountants in Thai small to medium accounting within the organizational issues defines18 factors. Specifically, these new factors, based on the research findings and the literature, then unique to IT competencies for professional accountants, include ERP software skills and accounting law and legal skills. The evidence in this study suggests that Analytical skills, teamwork skills, and accounting software were ranked as much-needed skills to be acquired by accountants while communication skills were ranked as the most required skills and delegation skills as the least required. The findings of the research’s empirical evidence suggest that organizations should understand appropriate in developing information technology influence competencies for knowledge employees in general and professional accountants in particular and provide assistance in all processes of decision making.

Keywords: IT competencies, IT competences for professional accountants, IT skills for accounting, IT skills in SMEs

Procedia PDF Downloads 235
4014 The Role of Instruction in Knowledge Construction in Online Learning

Authors: Soo Hyung Kim

Abstract:

Two different learning approaches were suggested: focusing on factual knowledge or focusing on the embedded meaning in the statements. Each way of learning has positive effects on different question categories, where factual knowledge helps more with simple fact questions, and searching for meaning in given information helps learn causal relationship and the embedded meaning. To test this belief, two groups of learners (12 male and 39 female adults aged 18-37) watched a ten-minute long Youtube video about various factual events of American history, their meaning, and the causal relations of the events. The fact group was asked to focus on factual knowledge in the video, and the meaning group was asked to focus on the embedded meaning in the video. After watching the video, both groups took multiple-choice questions, which consisted of 10 questions asking the factual knowledge addressed in the video and 10 questions asking embedded meaning in the video, such as the causal relationship between historical events and the significance of the event. From ANCOVA analysis, it was found that the factual knowledge showed higher performance on the factual questions than the meaning group, although there was no group difference on the questions about the meaning between the two groups. The finding suggests that teacher instruction plays an important role in learners constructing a different type of knowledge in online learning.

Keywords: factual knowledge, instruction, meaning-based knowledge, online learning

Procedia PDF Downloads 137
4013 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects

Authors: Tazeen Fatima

Abstract:

Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.

Keywords: project management, predictive analytics, predictive analytics methodology, project failures

Procedia PDF Downloads 354
4012 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 156
4011 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 416
4010 Facial Design of Combined Photoelectrocehmcial-Fenton Coupling Nanocomposites for Antibiotic Eliminations

Authors: Xinyong Li

Abstract:

A new coupling system was constructed by combining photo-electrochemical cell with eletro-fenton cell (PEC-EF). The electrode material in this system was derived from MnyFe₁₋yCo Prussian-Blue-Analog (PBA). Mn₀.₄Fe₀.₆Co₀.₆₇-N@C spin-coated on carbon paper behaved as the gas diffusion cathode and Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ spin-coated on fluorine-tin oxide glass (FTO) as anode. The two separated cells could degrade Sulfamethoxazole (SMX) simultaneously and some coupling mechanisms by PEC and EF enhancing the degradation efficiency were investigated. The continuous on-site generation of H₂O₂ at cathode through an oxygen reduction reaction (ORR) was realized over rotating ring-disk electrode (RRDE). The electron transfer number (n) of the ORR with Mn₀.₄Fe₀.₆Co₀.₆₇-N@C was 2.5 in the selected potential and pH range. The photo-electrochemical properties of Mn₀.₄Fe₀.₆Co₀.₆₇O₂.₂ were systematically studied, which displayed good response towards visible light. The photo-induced electrons at anode can transfer to cathode for further use. Efficient photo-electro-catalytic performance was observed in degrading SMX. Almost 100% SMX removal was achieved in 120 min. This work not only provided a highly effective technique for antibiotic treatment but also revealed the synergic effect between PEC and EF.

Keywords: Electro-Fenton, photo-electrochemical, synergic effect, sulfamethoxazole

Procedia PDF Downloads 143
4009 Causes and Implications of Obesity in Urban School Going Children

Authors: Mohammad Amjad, Muhammad Iqbal Zafar, Ashfaq Ahmed Maan, Muhammad Tayyab Kashif

Abstract:

Obesity is an abnormal physical condition where an increased and undesirable fat accumulates in the human body. Obesity is an international phenomenon. In the present study, 12 schools were randomly selected from each district considering the areas i.e. Elite Private Schools in the private sector, Government schools in urban areas and Government schools in rural areas. Interviews were conducted with male students studying in grade 5 to grade 9 in each school. The sample size was 600 students; 300 from Faisalabad district and 300 from Rawalpindi district in Pakistan. A well-structured and pre-tested questionnaire was used for data collection. The calibrated scales were used to attain the heights and weights of the respondents. Obesity of school-going children depends on family types, family size, family history, junk food consumption, mother’s education, weekly time spent in walking, and sports facility at school levels. Academic performance, physical health and psychological health of school going children are affected with obesity. Concrete steps and policies could minimize the incidence of obesity in children in Pakistan.

Keywords: body mass index, cardiovascular disease, fast food, morbidity, overweight

Procedia PDF Downloads 188
4008 Second Language Skill through M-Learning

Authors: Subramaniam Chandran, A. Geetha

Abstract:

This paper addresses three issues: how to prepare the instructional design for imparting English language skill from inter-disciplinary self-learning material; how the disadvantaged students are benefited from such kind of language skill imparted through m-learning; and how do m-learners perform better than the other learners. This paper examines these issues through an experimental study conducted among the distance learners enrolled in a preparatory program for bachelor’s degree. This program is designed for the disadvantaged learners especially for the school drop-outs to qualify to pursue graduate program through distant education. It also explains how mobile learning helps them to enhance their capacity in learning despite their rural background and other disadvantages. In India, nearly half of the students enrolled in schools do not complete their study. The pursuance of higher education is very low when compared with developed countries. This study finds a significant increase in their learning capacity and mobile learning seems to be a viable alternative where the conventional system could not reach the disadvantaged learners. Improving the English language skill is one of the reasons for such kind of performance. Exercises framed from the relevant self-learning material for enhancing English language skill not only improves language skill but also widens the subject-knowledge. This paper explains these issues out of the study conducted among the disadvantaged learners.

Keywords: English language skill, disadvantaged learners, distance education, m-learning

Procedia PDF Downloads 429
4007 Factors Affecting Cost Efficiency of Municipal Waste Services in Tuscan Municipalities: An Empirical Investigation by Accounting for Different Management

Authors: María Molinos-Senante, Giulia Romano

Abstract:

This paper aims at investigating the effect of ownership in the efficiency assessment of municipal solid waste management. In doing so, the Data Envelopment Analysis meta-frontier approach integrating unsorted waste as undesirable output was applied. Three different clusters of municipalities have been created on the basis of the ownership type of municipal waste operators. In the second stage of analysis, the paper investigates factors affecting efficiency, in order to provide an outlook of levers to be used by policy and decision makers to improve efficiency, taking into account different management models in force. Results show that public waste management firms have better performance than mixed and private ones since their efficiency scores are significantly larger. Moreover, it has been demonstrated that the efficiency of waste management firms is statistically influenced by the age of population, population served, municipal size, population density and tourism rate. It evidences the importance of economies of scale on the cost efficiency of waste management. This issue is relevant for policymakers to define and implement policies aimed to improve the long-term sustainability of waste management in municipalities.

Keywords: data envelopment analysis, efficiency, municipal solid waste, ownership, undesirable output

Procedia PDF Downloads 166
4006 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 115
4005 Design and Implementation Guidance System of Guided Rocket RKX-200 Using Optimal Guidance Law

Authors: Amalia Sholihati, Bambang Riyanto Trilaksono

Abstract:

As an island nation, is a necessity for the Republic of Indonesia to have a capable military defense on land, sea or air that the development of military weapons such as rockets for air defense becomes very important. RKX rocket-200 is one of the guided missiles which are developed by consortium Indonesia and coordinated by LAPAN that serve to intercept the target. RKX-200 is designed to have the speed of Mach 0.5-0.9. RKX rocket-200 belongs to the category two-stage rocket that control is carried out on the second stage when the rocket has separated from the booster. The requirement for better performance to intercept missiles with higher maneuverability continues to push optimal guidance law development, which is derived from non-linear equations. This research focused on the design and implementation of a guidance system based OGL on the rocket RKX-200 while considering the limitation of rockets such as aerodynamic rocket and actuator. Guided missile control system has three main parts, namely, guidance system, navigation system and autopilot systems. As for other parts such as navigation systems and other supporting simulated on MATLAB based on the results of previous studies. In addition to using the MATLAB simulation also conducted testing with hardware-based ARM TWR-K60D100M conjunction with a navigation system and nonlinear models in MATLAB using Hardware-in-the-Loop Simulation (HILS).

Keywords: RKX-200, guidance system, optimal guidance law, Hils

Procedia PDF Downloads 257
4004 Resource Allocation of Small Agribusinesses and Entrepreneurship Development In Nigeria

Authors: Festus M. Epetimehin

Abstract:

Resources are essential materials required for production of goods and services. Effective allocation of these resources can engender the success of current business activities and its sustainability for future generation. The study examined effect of resource allocation of small agribusinesses on entrepreneurship development in Southwest Nigeria. Sample size of 385 was determined using Cochran’s formula. 350 valid copies of questionnaire were used in the analysis. In order to achieve the objective, research design (descriptive and cross sectional designs) was used to gather data for the study through the administration of questionnaire to respondents. Both descriptive and inferential statistics were used to investigate the objective of the study. The result obtained indicated that resource allocation by small agribusinesses had a substantial positive effect on entrepreneurship development with the p-value of (0.0000) which was less than the 5.0% critical value with a positive regression coefficient of 0.53. The implication of this is that the ability of the entrepreneurs to deploy their resources efficiently through adequate realization of better gross margin could enhance business activities and development. The study recommends that business owners still need some level of serious training and exposure on how to manage modern small agribusiness resources to enhance business performance. The intervention of Agricultural Development Programme (ADP) and other Agricultural institutions are needed in this regard.

Keywords: resource, resource allocation, small businesses, agriculture, entrepreneurship development

Procedia PDF Downloads 57
4003 High Efficient Biohydrogen Production from Cassava Starch Processing Wastewater by Two Stage Thermophilic Fermentation and Electrohydrogenesis

Authors: Peerawat Khongkliang, Prawit Kongjan, Tsuyoshi Imai, Poonsuk Prasertsan, Sompong O-Thong

Abstract:

A two-stage thermophilic fermentation and electrohydrogenesis process was used to convert cassava starch processing wastewater into hydrogen gas. Maximum hydrogen yield from fermentation stage by Thermoanaerobacterium thermosaccharolyticum PSU-2 was 248 mL H2/g-COD at optimal pH of 6.5. Optimum hydrogen production rate of 820 mL/L/d and yield of 200 mL/g COD was obtained at HRT of 2 days in fermentation stage. Cassava starch processing wastewater fermentation effluent consisted of acetic acid, butyric acid and propionic acid. The effluent from fermentation stage was used as feedstock to generate hydrogen production by microbial electrolysis cell (MECs) at an applied voltage of 0.6 V in second stage with additional 657 mL H2/g-COD was produced. Energy efficiencies based on electricity needed for the MEC were 330 % with COD removals of 95 %. The overall hydrogen yield was 800-900 mL H2/g-COD. Microbial community analysis of electrohydrogenesis by DGGE shows that exoelectrogens belong to Acidiphilium sp., Geobacter sulfurreducens and Thermincola sp. were dominated at anode. These results show two-stage thermophilic fermentation, and electrohydrogenesis process improved hydrogen production performance with high hydrogen yields, high gas production rates and high COD removal efficiency.

Keywords: cassava starch processing wastewater, biohydrogen, thermophilic fermentation, microbial electrolysis cell

Procedia PDF Downloads 347
4002 The Role of Marketing Information System on Decision-Making: An Applied Study on Algeria Telecoms Mobile "MOBILIS"

Authors: Benlakhdar Mohamed Larbi, Yagoub Asma

Abstract:

Purpose: This study aims at highlighting the significance and importance of utilizing marketing information system (MKIS) on decision-making, by clarifying the need for quick and efficient decision-making due to time saving and preventing of duplication of work. Design, methodology, approach: The study shows the roles of each part of MKIS for developing marketing strategy, which present a real challenge to individuals and institutions in an era characterized by uncertainty and clarifying the importance of each part separately, depending on decision type and the nature of the situation. The empirical research method was evaluated by specialized experts, conducted by means of questionnaires. Correlation analysis was employed to test the validity of the procedure. Results: The empirical study findings confirmed positive relationships between the level of utilizing and adopting ‘decision support system and marketing intelligence’ and the success of an organizational decision-making, and provide the organization with a competitive advantage as it allows the organization to solve problems. Originality/value: The study offer better understanding of performance- increasing market share as an organizational decision making based on marketing information system.

Keywords: database, marketing research, marketing intelligence, decision support system, decision-making

Procedia PDF Downloads 334
4001 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company

Authors: Atefeh Pourshafie, Homayoun Bakhtiari

Abstract:

The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.

Keywords: power, distribution network, reliability, outage

Procedia PDF Downloads 477
4000 Improving Seat Comfort by Semi-Active Control of Magnetorheological Damper

Authors: Karel Šebesta, Jiří Žáček, Matuš Salva, Mohammad Housam

Abstract:

Drivers of agricultural vehicles are exposed to continuous vibration caused by driving over rough terrain. The long-term effects of these vibrations could start with a decreased level of vigilance at work and could reach the level of several health problems. Therefore, eliminating the vibration to maximize the comfort of the driver is essential for better/longer performance. One of the modern damping systems, which can deal with this problem is the Semi-active (S/A) suspension system featuring a Magnetorheological (MR) damper. With this damper, the damping level can be adjusted using varying currents through the coil. Adjustments of the damping force can be carried out continuously based on the evaluated data (position and acceleration of seat) by the control algorithm. The advantage of this system is the wide dynamic range and the high speed of force response time. Compared to other S/A or active systems, the MR damper does not need as much electrical power, and the system is much simpler. This paper aims to prove the effectiveness of this damping system used in the tractor seat. The vibration testing stand was designed and manufactured specifically for this type of research, which is used to simulate vibrations with constant amplitude at variable frequency.

Keywords: magnetorheological damper, semi-active suspension, seat scissor mechanism, sky-hook

Procedia PDF Downloads 100
3999 The Perspective of Smart Thermoregulation in Personal Protective Equipment

Authors: Alireza Saidi

Abstract:

Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.

Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain

Procedia PDF Downloads 114
3998 Snake Locomotion: From Sinusoidal Curves and Periodic Spiral Formations to the Design of a Polymorphic Surface

Authors: Ennios Eros Giogos, Nefeli Katsarou, Giota Mantziorou, Elena Panou, Nikolaos Kourniatis, Socratis Giannoudis

Abstract:

In the context of the postgraduate course Productive Design, Department of Interior Architecture of the University of West Attica in Athens, under the guidance of Professors Nikolaos Koyrniatis and Socratis Giannoudis, kinetic mechanisms with parametric models were examined for their further application in the design of objects. In the first phase, the students studied a motion mechanism that they chose from daily experience and then analyzed its geometric structure in relation to the geometric transformations that exist. In the second phase, the students tried to design it through a parametric model in Grasshopper3d for Rhino algorithmic processor and plan the design of its application in an everyday object. For the project presented, our team began by studying the movement of living beings, specifically the snake. By studying the snake and the role that the environment has in its movement, four basic typologies were recognized: serpentine, concertina, sidewinding and rectilinear locomotion, as well as its ability to perform spiral formations. Most typologies are characterized by ripples, a series of sinusoidal curves. For the application of the snake movement in a polymorphic space divider, the use of a coil-type joint was studied. In the Grasshopper program, the simulation of the desired motion for the polymorphic surface was tested by applying a coil on a sinusoidal curve and a spiral curve. It was important throughout the process that the points corresponding to the nodes of the real object remain constant in number, as well as the distances between them and the elasticity of the construction had to be achieved through a modular movement of the coil and not some elastic element (material) at the nodes. Using mesh (repeating coil), the whole construction is transformed into a supporting body and combines functionality with aesthetics. The set of elements functions as a vertical spatial network, where each element participates in its coherence and stability. Depending on the positions of the elements in terms of the level of support, different perspectives are created in terms of the visual perception of the adjacent space. For the implementation of the model on the scale (1:3), (0.50m.x2.00m.), the load-bearing structure that was studied has aluminum rods for the basic pillars Φ6mm and Φ 2.50 mm, for the secondary columns. Filling elements and nodes are of similar material and were made of MDF surfaces. During the design process, four trapezoidal patterns were picketed, which function as filling elements, while in order to support their assembly, a different engraving facet was done. The nodes have holes that can be pierced by the rods, while their connection point with the patterns has a half-carved recess. The patterns have a corresponding recess. The nodes are of two different types depending on the column that passes through them. The patterns and knots were designed to be cut and engraved using a Laser Cutter and attached to the knots using glue. The parameters participate in the design as mechanisms that generate complex forms and structures through the repetition of constantly changing versions of the parts that compose the object.

Keywords: polymorphic, locomotion, sinusoidal curves, parametric

Procedia PDF Downloads 109
3997 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 336
3996 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 61
3995 ‘Groupitizing’ – A Key Factor in Math Learning Disabilities

Authors: Michal Wolk, Bat-Sheva Hadad, Orly Rubinsten

Abstract:

Objective: The visuospatial perception system process that allows us to decompose and recompose small quantities into a whole is often called “groupitizing.” Previous studies have been found that adults use groupitizing processes in quantity estimation tasks and link this ability of subgroups recognition to arithmetic proficiency. This pilot study examined if adults with math difficulties benefit from visuospatial grouping cues when asked to estimate the quantity of a given set. It also compared the tipping point in which a significant improvement occurs in adults with typical development compared to adults with math difficulties. Method: In this pilot research, we recruited adults with low arithmetic abilities and matched controls. Participants were asked to estimate the quantity of a given set. Different grouping cues were displayed (space, color, or none) with different visual configurations (different quantities-different shapes, same quantities- different shapes, same quantities- same shapes). Results: Both groups showed significant performance improvement when grouping cues appeared. However, adults with low arithmetic abilities benefited from the grouping cues already in very small quantities as four. Conclusion: impaired perceptual groupitizing abilities may be a characteristic of low arithmetic abilities.

Keywords: groupitizing, math learning disability, quantity estimation, visual perception system

Procedia PDF Downloads 209
3994 Dynamic Mode Decomposition and Wake Flow Modelling of a Wind Turbine

Authors: Nor Mazlin Zahari, Lian Gan, Xuerui Mao

Abstract:

The power production in wind farms and the mechanical loads on the turbines are strongly impacted by the wake of the wind turbine. Thus, there is a need for understanding and modelling the turbine wake dynamic in the wind farm and the layout optimization. Having a good wake model is important in predicting plant performance and understanding fatigue loads. In this paper, the Dynamic Mode Decomposition (DMD) was applied to the simulation data generated by a Direct Numerical Simulation (DNS) of flow around a turbine, perturbed by upstream inflow noise. This technique is useful in analyzing the wake flow, to predict its future states and to reflect flow dynamics associated with the coherent structures behind wind turbine wake flow. DMD was employed to describe the dynamic of the flow around turbine from the DNS data. Since the DNS data comes with the unstructured meshes and non-uniform grid, the interpolation of each occurring within each element in the data to obtain an evenly spaced mesh was performed before the DMD was applied. DMD analyses were able to tell us characteristics of the travelling waves behind the turbine, e.g. the dominant helical flow structures and the corresponding frequencies. As the result, the dominant frequency will be detected, and the associated spatial structure will be identified. The dynamic mode which represented the coherent structure will be presented.

Keywords: coherent structure, Direct Numerical Simulation (DNS), dominant frequency, Dynamic Mode Decomposition (DMD)

Procedia PDF Downloads 351
3993 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 222
3992 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 118
3991 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 175
3990 Decode and Forward Cooperative Protocol Enhancement Using Interference Cancellation

Authors: Siddeeq Y. Ameen, Mohammed K. Yousif

Abstract:

Cooperative communication systems are considered to be a promising technology to improve the system capacity, reliability and performances over fading wireless channels. Cooperative relaying system with a single antenna will be able to reach the advantages of multiple antenna communication systems. It is ideally suitable for the distributed communication systems; the relays can cooperate and form virtual MIMO systems. Thus the paper will aim to investigate the possible enhancement of cooperated system using decode and forward protocol. On decode and forward an attempt to cancel or at least reduce the interference instead of increasing the SNR values is achieved. The latter can be achieved via the use group of relays depending on the channel status from source to relay and relay to destination respectively. In the proposed system, the transmission time has been divided into two phases to be used by decode and forward protocol. The first phase has been allocated for the source to transmit its data whereas the relays and destination nodes are in receiving mode. On the other hand, the second phase is allocated for the first and second groups of relay nodes to relay the data to the destination node. Simulations results have shown an improvement in performance is achieved compared to the conventional decode and forward in terms of BER and transmission rate.

Keywords: cooperative systems, decode and forward, interference cancellation, virtual MIMO

Procedia PDF Downloads 328