Search results for: binary number system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25555

Search results for: binary number system

13945 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm

Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian

Abstract:

Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.

Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system

Procedia PDF Downloads 106
13944 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 277
13943 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 231
13942 Factors Impacting Shopping Behavior for Luxury Fashion Brands: A Case of National Capital Region in India

Authors: Manoj Kumar, Preeti Goel

Abstract:

National Capital Region of India is one of the most populous urban agglomerations in the world. This region has residents from all the parts of India, and their shopping behaviors are quite different. The region also has the substantial population of people from other countries. Due to high purchasing power of a large number of people, NCR is one the major markets for luxury fashion brands. Marketers of luxury fashion brands keep on adding innovative features to their products to attract the buyers. This research is an attempt to understand the major factors which impact the brand selection for these brands and other buying decisions like purchasing time and location. The research is based on primary data collected from potential buyers of luxury fashion brands and the people involved in the marketing of these brands in various roles. The research has tried to identify the relative strength of various factors on the shopping behavior for these brands.

Keywords: luxury brands, fashion, shopping, National Capital Region (NCR)

Procedia PDF Downloads 404
13941 Assessment of Arterial Stiffness through Measurement of Magnetic Flux Disturbance and Electrocardiogram Signal

Authors: Jing Niu, Jun X. Wang

Abstract:

Arterial stiffness predicts mortality and morbidity, independently of other cardiovascular risk factors. And it is a major risk factor for age-related morbidity and mortality. The non-invasive industry gold standard measurement system of arterial stiffness utilizes pulse wave velocity method. However, the desktop device is expensive and requires trained professional to operate. The main objective of this research is the proof of concept of the proposed non-invasive method which uses measurement of magnetic flux disturbance and electrocardiogram (ECG) signal for measuring arterial stiffness. The method could enable accurate and easy self-assessment of arterial stiffness at home, and to help doctors in research, diagnostic and prescription in hospitals and clinics. A platform for assessing arterial stiffness through acquisition and analysis of radial artery pulse waveform and ECG signal has been developed based on the proposed method. Radial artery pulse waveform is acquired using the magnetic based sensing technology, while ECG signal is acquired using two dry contact single arm ECG electrodes. The measurement only requires the participant to wear a wrist strap and an arm band. Participants were recruited for data collection using both the developed platform and the industry gold standard system. The results from both systems underwent correlation assessment analysis. A strong positive correlation between the results of the two systems is observed. This study presents the possibility of developing an accurate, easy to use and affordable measurement device for arterial stiffness assessment.

Keywords: arterial stiffness, electrocardiogram, pulse wave velocity, Magnetic Flux Disturbance

Procedia PDF Downloads 185
13940 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 586
13939 A Study on Characteristics of Runoff Analysis Methods at the Time of Rainfall in Rural Area, Okinawa Prefecture Part 2: A Case of Kohatu River in South Central Part of Okinawa Pref

Authors: Kazuki Kohama, Hiroko Ono

Abstract:

The rainfall in Japan is gradually increasing every year according to Japan Meteorological Agency and Intergovernmental Panel on Climate Change Fifth Assessment Report. It means that the rainfall difference between rainy season and non-rainfall is increasing. In addition, the increasing trend of strong rain for a short time clearly appears. In recent years, natural disasters have caused enormous human injuries in various parts of Japan. Regarding water disaster, local heavy rain and floods of large rivers occur frequently, and it was decided on a policy to promote hard and soft sides as emergency disaster prevention measures with water disaster prevention awareness social reconstruction vision. Okinawa prefecture in subtropical region has torrential rain and water disaster several times a year such as river flood, in which is caused in specific rivers from all 97 rivers. Also, the shortage of capacity and narrow width are characteristic of river in Okinawa and easily cause river flood in heavy rain. This study focuses on Kohatu River that is one of the specific rivers. In fact, the water level greatly rises over the river levee almost once a year but non-damage of buildings around. On the other hand in some case, the water level reaches to ground floor height of house and has happed nine times until today. The purpose of this research is to figure out relationship between precipitation, surface outflow and total treatment water quantity of Kohatu River. For the purpose, we perform hydrological analysis although is complicated and needs specific details or data so that, the method is mainly using Geographic Information System software and outflow analysis system. At first, we extract watershed and then divided to 23 catchment areas to understand how much surface outflow flows to runoff point in each 10 minutes. On second, we create Unit Hydrograph indicating the area of surface outflow with flow area and time. This index shows the maximum amount of surface outflow at 2400 to 3000 seconds. Lastly, we compare an estimated value from Unit Hydrograph to a measured value. However, we found that measure value is usually lower than measured value because of evaporation and transpiration. In this study, hydrograph analysis was performed using GIS software and outflow analysis system. Based on these, we could clarify the flood time and amount of surface outflow.

Keywords: disaster prevention, water disaster, river flood, GIS software

Procedia PDF Downloads 131
13938 Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata

Authors: Manvender Singh

Abstract:

Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent.

Keywords: growth temperature, fecundity, hatchability, viability, duration of development, Drosophila

Procedia PDF Downloads 235
13937 Causes and Effects of Delays in Construction Projects in Akure, Ondo State, South-West Nigeria

Authors: K.T Alade, A.F Lawal, A.A Omonori

Abstract:

Construction is an everlasting activity across the globe. Likewise, the problem of delay in the construction industry is a global phenomenon. Although there are several reasons that may be responsible for delay during construction, this may vary from place to place and can be reduced to the minimum when identified. This study considered the major causes and effects of delay in the execution of construction projects in Akure, Ondo State, Nigeria. Using literatures, a total number of 30 causes of construction delays were identified. The convenient sampling technique was used to select sixty respondents for a survey. The respondents comprise twenty-two (22) clients, eighteen consultants (18) and twenty (20) contractors. The analyses of the primary data revealed that the three most important causes of delay in construction projects in Akure, Ondo State Nigeria are poor site management and supervision, inadequate contractors experience and client’s financial difficulties. Based on the findings of this study, recommendations were given on how the causes and effects of delay in construction can be mitigated.

Keywords: Akure, causes, construction projects, delay, effects

Procedia PDF Downloads 501
13936 Redefining “Minor”: An Empirical Research on Two Biennials in Contemporary China

Authors: Mengwei Li

Abstract:

Since the 1990s, biennials, and large-scale transnational art exhibitions, have proliferated exponentially across the globe, particularly in Asia, Africa, and Latin America. It has spurred debates regarding the inclusion of "new art cultures" and the deconstruction of the mechanism of exclusion embedded in the Western monopoly on art. Hans Belting introduced the concept of "global art" in 2013 to denounce the West's privileged canons in art by emphasising the inclusion of art practices from alleged non-Western regions. Arguably, the rise of new biennial networks developed by these locations has contributed to the asserted "inclusion of new art worlds." However, phrases such as "non-Western" and "beyond Euro-American" attached to these discussions raise the question of non- or beyond- in relation to whom. In this narrative, to become "integrated" and "equal" implies entry into the "core," a universal system in which preexisting authoritative voices define "newcomers" by what they are not. Possibly, if there is a global biennial system that symbolises a "universal language" of the contemporary art world, it is centered on the inherently dynamic yet asymmetrical interaction and negotiation between the "core" and the rest of the world's "periphery." Engaging with theories of "minor literature" developed by Deleuze and Guattari, this research proposes an epistemological framework to comprehend the global biennial discourse since the 1990s. Using this framework, this research looks at two biennial models in China: the 13th Shanghai Biennale, which was organised in the country's metropolitan art centre, and the 2nd Yinchuan Biennale, which was inaugurated in a geographically and economically marginalised city compared to domestic centres. By analysing how these two biennials from different locations in China positioned themselves and conveyed their local profiles through the universal language of the biennial, this research identifies a potential "minor" positionality within the global biennial discourse from China's perspective.

Keywords: biennials, China, contemporary, global art, minor literature

Procedia PDF Downloads 79
13935 Synthesis of Electrospun Polydimethylsiloxane (PDMS)/Polyvinylidene Fluoriure (PVDF) Nanofibrous Membranes for CO₂ Capture

Authors: Wen-Wen Wang, Qian Ye, Yi-Feng Lin

Abstract:

Carbon dioxide emissions are expected to increase continuously, resulting in climate change and global warming. As a result, CO₂ capture has attracted a large amount of research attention. Among the various CO₂ capture methods, membrane technology has proven to be highly efficient in capturing CO₂, because it can be scaled up, low energy consumptions and small area requirements for use by the gas separation. Various nanofibrous membranes were successfully prepared by a simple electrospinning process. The membrane contactor combined with chemical absorption and membrane process in the post-combustion CO₂ capture is used in this study. In a membrane contactor system, the highly porous and water-repellent nanofibrous membranes were used as a gas-liquid interface in a membrane contactor system for CO₂ absorption. In this work, we successfully prepared the polyvinylidene fluoride (PVDF) porous membranes with an electrospinning process. Afterwards, the as-prepared water-repellent PVDF porous membranes were used for the CO₂ capture application. However, the pristine PVDF nanofibrous membranes were wetted by the amine absorbents, resulting in the decrease in the CO₂ absorption flux, the hydrophobic polydimethylsiloxane (PDMS) materials were added into the PVDF nanofibrous membranes to improve the solvent resistance of the membranes. To increase the hydrophobic properties and CO₂ absorption flux, more hydrophobic surfaces of the PDMS/PVDF nanofibrous membranes are obtained by the grafting of fluoroalkylsilane (FAS) on the membranes surface. Furthermore, the highest CO₂ absorption flux of the PDMS/PVDF nanofibrous membranes is reached after the FAS modification with four times. The PDMS/PVDF nanofibrous membranes with 60 wt% PDMS addition can be a long and continuous operation of the CO₂ absorption and regeneration experiments. It demonstrates the as-prepared PDMS/PVDF nanofibrous membranes could potentially be used for large-scale CO₂ absorption during the post-combustion process in power plants.

Keywords: CO₂ capture, electrospinning process, membrane contactor, nanofibrous membranes, PDMS/PVDF

Procedia PDF Downloads 269
13934 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques

Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul

Abstract:

In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.

Keywords: natural gas, pipeline network, UFG, transmission pack, AGA

Procedia PDF Downloads 89
13933 Dynamic Model of Automatic Loom on SimulationX

Authors: A. Jomartov, A. Tuleshov, B. Tultaev

Abstract:

One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.

Keywords: automatic loom, dynamics, model, multibody, SimulationX

Procedia PDF Downloads 338
13932 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 96
13931 The Reception of the Notion of Soul as Vis Representativa in Kant’s Pre-critical Philosophy

Authors: Simone D'Armi

Abstract:

The notion of the representational soul is widely discussed within the German metaphysical landscape of the 18th century. The enunciation of the notion implies, within the 18th-century German rationalism, a number of generally accepted metaphysical notions. However, in the pre-critical writings of Immanuel Kant, it is possible to identify a critical stance towards this notion. The paper thematizes two central aspects: on the one hand, it discusses the notion of the vis of the representative soul, and on the other, it addresses the question of the fundamental forces ( Grundkraefte) of the soul. The aim of the present paper is to show how Kant, in the Nova Dilucidatio and in his Lectures on Metaphysics, probably delivered in the mid-1770s, despite the Wolffian terminology he employed in the field of psychology, criticizes the central aspects connected with the notion of the soul as a representative force. Beginning with a critical analysis of the relationship between Kantian ideas and those of some key exponents of German metaphysical rationalism, it emerges how the Kantian position stands as an alternative to its own historical context.

Keywords: German metaphysics, soul, power, pre-critical philosophy

Procedia PDF Downloads 56
13930 Practice Based Approach to the Development of Family Medicine Residents’ Educational Environment

Authors: Lazzat M. Zhamaliyeva, Nurgul A. Abenova, Gauhar S. Dilmagambetova, Ziyash Zh. Tanbetova, Moldir B. Ahmetzhanova, Tatyana P. Ostretcova, Aliya A. Yegemberdiyeva

Abstract:

Introduction: There are many reasons for the weak training of family doctors in Kazakhstan: the unified national educational program is not focused on competencies, the role of a general practitioner (GP) is not clear, poor funding for the health care and education system, outdated teaching and assessment methods, inefficient management. We highlight two issues in particular. Firstly, academic teachers of family medicine (FM) in Kazakhstan do not practice as family doctors; most of them are narrow specialists (pediatricians, therapists, surgeons, etc.); they usually hold one-time consultations; clinical mentors from practical healthcare (non-academic teachers) do not have the teaching competences, and the vast majority of them are also narrow specialists. Secondly, clinical sites (polyclinics) are unprepared for general practice and do not follow the principles of family medicine; residents do not like to be in primary health care (PHC) settings due to the chaos that is happening there, as well as due to the lack of the necessary equipment for mastering and consolidating practical skills. Aim: We present the concept of the family physicians’ training office (FPTO), which is being created as a friendly learning environment for young general practitioners and for the involvement of academic teachers of family medicine in the practical work and innovative development of PHC. Methodology: In developing the conceptual framework and identifying practical activities, we drew on literature and expert input, and interviews. Results: The goal of the FPTO is to create a favorable educational and clinical environment for the development of the FM residents’ competencies, in which the residents with academic teachers and clinical mentors could understand and accept the principles of family medicine, improve clinical knowledge and skills, and gain experience in improving the quality of their practice in scientific basis. Three main areas of office activity are providing primary care to the patients, improving educational services for FM residents and other medical workers, and promoting research in PHC and innovations. The office arranges for residents to see outpatients at least 50% of the time, and teachers of FM departments at least 1/4 of their working time conduct general medical appointments next to residents. Taking into account the educational and scientific workload, the number of attached population for one GP does not exceed 500 persons. The equipment of the office allows FPTO workers to perform invasive and other manipulations without being sent to other clinics. In the office, training for residents is focused on their needs and aimed at achieving the required level of competence. International methodologies and assessment tools are adapted to local conditions and evaluated for their effectiveness and acceptability. Residents and their faculty actively conduct research in the field of family medicine. Conclusions: We propose to change the learning environment in order to create teams of like-minded people, to unite residents and teachers even more for the development of family medicine. The offices will also invest resources in developing and maintaining young doctors' interest in family medicine.

Keywords: educational environment, family medicine residents, family physicians’ training office, primary care research

Procedia PDF Downloads 130
13929 Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt

Authors: Ali Masria , Abdelazim Negm, Moheb Iskander, Oliver C. Saavedra

Abstract:

Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary.

Keywords: Rosetta promontory, erosion, sedimentation, inlet stability

Procedia PDF Downloads 582
13928 Exploring the Interplay Between Emotions, Employee’s Social Cognition and Decision Making Among Employees

Authors: Khushi, Simrat

Abstract:

The study aims to investigate the relationship between emotions and employee's social cognition and decision-making among employees. The sample of the study was the total number of participants, which included employees from various industries and job positions. Research papers in the same area were reviewed, providing a comprehensive review of existing literature and theoretical frameworks and shedding light on the interpersonal effects of emotions in the workplace. It emphasizes how one worker's emotions can significantly impact the overall work environment and productivity as well as the work of a common phenomenon known as Emotional contagion at the workplace, affecting social interactions and group dynamics. Therefore, this study concludes that Emotional contagion can lead to a ripple effect within the workplace, influencing the overall atmosphere and productivity. Emotions can shape how employees process information and make choices, ultimately impacting organizational outcomes.

Keywords: employee decision making, social cognition, emotions, industry, emotional contagion, workplace dynamics

Procedia PDF Downloads 52
13927 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: camera calibration, corner detector, edge detector, saddle points

Procedia PDF Downloads 402
13926 Rumination Time and Reticuloruminal Temperature around Calving in Eutocic and Dystocic Dairy Cows

Authors: Levente Kovács, Fruzsina Luca Kézér, Ottó Szenci

Abstract:

Prediction of the onset of calving and recognizing difficulties at calving has great importance in decreasing neonatal losses and reducing the risk of health problems in the early postpartum period. In this study, changes of rumination time, reticuloruminal pH and temperature were investigated in eutocic (EUT, n = 10) and dystocic (DYS, n = 8) dairy cows around parturition. Rumination time was continuously recorded using an acoustic biotelemetry system, whereas reticuloruminal pH and temperature were recorded using an indwelling and wireless data transmitting system. The recording period lasted from 3 d before calving until 7 days in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC, both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows (P = 0.023 and P = 0.017, respectively). After 20 h before calving, it decreased onwards to reach 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving (P = 0.003 and P = 0.008, respectively). Until 12 h after delivery rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively, however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period (P = 0.012 and P = 0.002, respectively). Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows (P = 0.012 and P = 0.016, respectively), but did not differ between groups before delivery. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02 °C (P = 0.012), whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05 °C, P < 0.01). AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows (P = 0.042). During the first 4 h after calving, it decreased from 39.7 ± 0.1 to 39.00 ± 0.1 °C and from 39.8 ± 0.1 to 38.8 ± 0.1 °C in EUT and DYS cows, respectively (P < 0.01 for both groups) and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed postpartum rumination time of DYS cows highlights the importance of the monitoring of cows experiencing difficulties at calving.

Keywords: reticuloruminal pH, reticuloruminal temperature, rumination time, dairy cows, dystocia

Procedia PDF Downloads 311
13925 An Autonomous Passive Acoustic System for Detection, Tracking and Classification of Motorboats in Portofino Sea

Authors: A. Casale, J. Alessi, C. N. Bianchi, G. Bozzini, M. Brunoldi, V. Cappanera, P. Corvisiero, G. Fanciulli, D. Grosso, N. Magnoli, A. Mandich, C. Melchiorre, C. Morri, P. Povero, N. Stasi, M. Taiuti, G. Viano, M. Wurtz

Abstract:

This work describes a real-time algorithm for detecting, tracking and classifying single motorboats, developed using the acoustic data recorded by a hydrophone array within the framework of EU LIFE + project ARION (LIFE09NAT/IT/000190). The project aims to improve the conservation status of bottlenose dolphins through a real-time simultaneous monitoring of their population and surface ship traffic. A Passive Acoustic Monitoring (PAM) system is installed on two autonomous permanent marine buoys, located close to the boundaries of the Marine Protected Area (MPA) of Portofino (Ligurian Sea- Italy). Detecting surface ships is also a necessity in many other sensible areas, such as wind farms, oil platforms, and harbours. A PAM system could be an effective alternative to the usual monitoring systems, as radar or active sonar, for localizing unauthorized ship presence or illegal activities, with the advantage of not revealing its presence. Each ARION buoy consists of a particular type of structure, named meda elastica (elastic beacon) composed of a main pole, about 30-meter length, emerging for 7 meters, anchored to a mooring of 30 tons at 90 m depth by an anti-twist steel wire. Each buoy is equipped with a floating element and a hydrophone tetrahedron array, whose raw data are send via a Wi-Fi bridge to a ground station where real-time analysis is performed. Bottlenose dolphin detection algorithm and ship monitoring algorithm are operating in parallel and in real time. Three modules were developed and commissioned for ship monitoring. The first is the detection algorithm, based on Time Difference Of Arrival (TDOA) measurements, i.e., the evaluation of angular direction of the target respect to each buoy and the triangulation for obtaining the target position. The second is the tracking algorithm, based on a Kalman filter, i.e., the estimate of the real course and speed of the target through a predictor filter. At last, the classification algorithm is based on the DEMON method, i.e., the extraction of the acoustic signature of single vessels. The following results were obtained; the detection algorithm succeeded in evaluating the bearing angle with respect to each buoy and the position of the target, with an uncertainty of 2 degrees and a maximum range of 2.5 km. The tracking algorithm succeeded in reconstructing the real vessel courses and estimating the speed with an accuracy of 20% respect to the Automatic Identification System (AIS) signals. The classification algorithm succeeded in isolating the acoustic signature of single vessels, demonstrating its temporal stability and the consistency of both buoys results. As reference, the results were compared with the Hilbert transform of single channel signals. The algorithm for tracking multiple targets is ready to be developed, thanks to the modularity of the single ship algorithm: the classification module will enumerate and identify all targets present in the study area; for each of them, the detection module and the tracking module will be applied to monitor their course.

Keywords: acoustic-noise, bottlenose-dolphin, hydrophone, motorboat

Procedia PDF Downloads 164
13924 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 100
13923 A Framework for Internet Education: Personalised Approach

Authors: Zoe Wong

Abstract:

The purpose of this paper is to develop a framework for internet education. This framework uses the personalized learning approach for everyone who can freely develop their qualifications & careers. The key components of the framework includes students, teachers, assessments and infrastructure. It allows remove the challenges and limitations of the current educational system and allows learners' to cope with progressing learning materials.

Keywords: internet education, personalized approach, information technology, framework

Procedia PDF Downloads 352
13922 Complex Dynamics in a Morphologically Heterogeneous Biological Medium

Authors: Turky Al-Qahtani, Roustem Miftahof

Abstract:

Introduction: Under common assumptions of excitabi-lity, morphological (cellular) homogeneity, and spatial structural anomalies added as required, it has been shown that biological systems are able to display travelling wave dynamics. Being not self-sustainable, existence depends on the electrophysiological state of transmembrane ion channels and it requires an extrinsic/intrinsic periodic source. However, organs in the body are highly multicellular, heterogeneous, and their functionality is the outcome of electro-mechanical conjugation, rather than excitability only. Thus, peristalsis in the gut relies on spatiotemporal myoelectrical pattern formations between the mechanical, represented by smooth muscle cells (SM), and the control, comprised of a chain of primary sensory and motor neurones, components. Synaptically linked through the afferent and efferent pathways, they form a functional unit (FU) of the gut. Aims: These are: i) to study numerically the complex dynamics, and ii) to investigate the possibility of self-sustained myoelectrical activity in the FU. Methods: The FU recreates the following sequence of physiological events: deformation of mechanoreceptors of located in SM; generation and propagation of electrical waves of depolarisation - spikes - along the axon to the soma of the primary neurone; discharge of the primary neurone and spike propagation towards the motor neurone; burst of the motor neurone and transduction of spikes to SM, subsequently producing forces of contraction. These are governed by a system of nonlinear partial and ordinary differential equations being a modified version of the Hodgkin-Huxley model and SM fibre mechanics. In numerical experiments; the source of excitation is mechanical stretches of SM at a fixed amplitude and variable frequencies. Results: Low frequency (0.5 < v < 2 Hz) stimuli cause the propagation of spikes in the neuronal chain and, finally, the generation of active forces by SM. However, induced contractions are not sufficient to initiate travelling wave dynamics in the control system. At frequencies, 2 < v < 4 Hz, multiple low amplitude and short-lasting contractions are observed in SM after the termination of stretching. For frequencies (0.5 < v < 4 Hz), primary and sensory neurones demonstrate strong connectivity and coherent electrical activity. Significant qualitative and quantitative changes in dynamics of myoelectical patterns with a transition to a self-organised mode are recorded with the high degree of stretches at v = 4.5 Hz. Increased rates of deformation lead to the production of high amplitude signals at the mechanoreceptors with subsequent self-sustained excitation within the neuronal chain. Remarkably, the connection between neurones weakens resulting in incoherent firing. Further increase in a frequency of stimulation (v > 4.5 Hz) has a detrimental effect on the system. The mechanical and control systems become disconnected and exhibit uncoordinated electromechanical activity. Conclusion: To our knowledge, the existence of periodic activity in a multicellular, functionally heterogeneous biological system with mechano-electrical dynamics, such as the FU, has been demonstrated for the first time. These findings support the notion of possible peristalsis in the gut even in the absence of intrinsic sources - pacemaker cells. Results could be implicated in the pathogenesis of intestinal dysrythmia, a medical condition associated with motor dysfunction.

Keywords: complex dynamics, functional unit, the gut, dysrythmia

Procedia PDF Downloads 199
13921 Analysis of the Fair Distribution of Urban Facilities in Kabul City by Population Modeling

Authors: Ansari Mohammad Reza, Hiroko Ono

Abstract:

In this study, we investigated how much of the urban facilities are fairly distributing in the city of Kabul based on the factor of population. To find the answer to this question we simulated a fair model for the distribution of investigated facilities in the city which is proposed based on the consideration of two factors; the number of users for each facility and the average distance of reach of each facility. Then the model was evaluated to make sure about its efficiency. And finally, the two—the existing pattern and the simulation model—were compared to find the degree of bias in the existing pattern of distribution of facilities in the city. The result of the study clearly clarified that the facilities are not fairly distributed in Kabul city based on the factor of population. Our analysis also revealed that the education services and the parks are the most and the worst fair distributed facilities in this regard.

Keywords: Afghanistan, ArcGIS Software, Kabul City, fair distribution, urban facilities

Procedia PDF Downloads 170
13920 Spatial Distribution of Land Use in the North Canal of Beijing Subsidiary Center and Its Impact on the Water Quality

Authors: Alisa Salimova, Jiane Zuo, Christopher Homer

Abstract:

The objective of this study is to analyse the North Canal riparian zone land use with the help of remote sensing analysis in ArcGis using 30 cloudless Landsat8 open-source satellite images from May to August of 2013 and 2017. Land cover, urban construction, heat island effect, vegetation cover, and water system change were chosen as the main parameters and further analysed to evaluate its impact on the North Canal water quality. The methodology involved the following steps: firstly, 30 cloudless satellite images were collected from the Landsat TM image open-source database. The visual interpretation method was used to determine different land types in a catchment area. After primary and secondary classification, 28 land cover types in total were classified. Visual interpretation method was used with the help ArcGIS for the grassland monitoring, US Landsat TM remote sensing image processing with a resolution of 30 meters was used to analyse the vegetation cover. The water system was analysed using the visual interpretation method on the GIS software platform to decode the target area, water use and coverage. Monthly measurements of water temperature, pH, BOD, COD, ammonia nitrogen, total nitrogen and total phosphorus in 2013 and 2017 were taken from three locations of the North Canal in Tongzhou district. These parameters were used for water quality index calculation and compared to land-use changes. The results of this research were promising. The vegetation coverage of North Canal riparian zone in 2017 was higher than the vegetation coverage in 2013. The surface brightness temperature value was positively correlated with the vegetation coverage density and the distance from the surface of the water bodies. This indicates that the vegetation coverage and water system have a great effect on temperature regulation and urban heat island effect. Surface temperature in 2017 was higher than in 2013, indicating a global warming effect. The water volume in the river area has been partially reduced, indicating the potential water scarcity risk in North Canal watershed. Between 2013 and 2017, urban residential, industrial and mining storage land areas significantly increased compared to other land use types; however, water quality has significantly improved in 2017 compared to 2013. This observation indicates that the Tongzhou Water Restoration Plan showed positive results and water management of Tongzhou district had been improved.

Keywords: North Canal, land use, riparian vegetation, river ecology, remote sensing

Procedia PDF Downloads 102
13919 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 326
13918 Apply Activity-Based Costing Management System by Key Success Paths to Promote the Competitive Advantages and Operation Performance

Authors: Mei-Fang Wu, Shu-Li Wang, Feng-Tsung Cheng

Abstract:

Highly developed technology and highly competitive global market highlight the important role of competitive advantages and operation performances in sustainable company operation. Activity-Based Costing (ABC) provides accurate operation cost and operation performance information. Rich literature provide relevant research with cases study on Activity-Based Costing application, and yet, there is no research studying on cause relationship between key success factors of applying Activity-Based Costing and its specific outcomes, such as profitability or share market. These relationships provide the ways to handle the key success factors to achieve the specific outcomes for ensuring to promote the competitive advantages and operation performances. The main purposes of this research are exploring the key success paths by Key Success Paths approach which will lead the ways to apply Activity-Base Costing. The Key Success Paths is the innovative method which is exploring the cause relationships and explaining what are the effects of key success factors to specific outcomes of Activity-Based Costing implementation. The cause relationships between key success factors and successful specific outcomes are Key Success Paths (KSPs). KSPs are the guidelines to lead the cost management strategies to achieve the goals of competitive advantages and operation performances. The research findings indicate that good management system design may impact the good outcomes of Activity-Based Costing application and achieve to outstanding competitive advantage, operating performance and profitability as well by KSPs exploration.

Keywords: activity-based costing, key success factors, key success paths approach, key success paths, key failure paths

Procedia PDF Downloads 382
13917 A TiO₂-Based Memristor Reliable for Neuromorphic Computing

Authors: X. S. Wu, H. Jia, P. H. Qian, Z. Zhang, H. L. Cai, F. M. Zhang

Abstract:

A bipolar resistance switching behaviour is detected for a Ti/TiO2-x/Au memristor device, which is fabricated by a masked designed magnetic sputtering. The current dependence of voltage indicates the curve changes slowly and continuously. When voltage pulses are applied to the device, the set and reset processes maintains linearity, which is used to simulate the synapses. We argue that the conduction mechanism of the device is from the oxygen vacancy channel model, and the resistance of the device change slowly due to the reaction between the titanium electrode and the intermediate layer and the existence of a large number of oxygen vacancies in the intermediate layer. Then, Hopfield neural network is constructed to simulate the behaviour of neural network in image processing, and the accuracy rate is more than 98%. This shows that titanium dioxide memristor has a broad application prospect in high performance neural network simulation.

Keywords: memristor fabrication, neuromorphic computing, bionic synaptic application, TiO₂-based

Procedia PDF Downloads 74
13916 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 142