Search results for: statistical machine learning
10929 The Effect of Classroom Atmospherics on Second Language Learning
Authors: Sresha Yadav, Ishwar Kumar
Abstract:
Second language learning is an important area of research in the language and linguistic domains. Literature suggests that several factors impact second language learning, including age, motivation, objectives, teacher, instructional material, classroom interaction, intelligence and previous background, previous linguistic experience, other student characteristics. Previous researchers have also highlighted that classroom atmospherics has a significant impact on learning as well as on the performance of students. However, the impact of classroom atmospherics on second language learning is still not known in the existing literature. Therefore, the purpose of the present study is to explore whether classroom atmospherics has an impact on second language learning or not? And if it does, it would be worthwhile to explore the nature of such relationship. The present study aims to explore the impact of classroom atmospherics on second language learning by dwelling into the existing literature to explore factors which impact second language learning, classroom atmospherics which impact language learning and the metrics through which such learning impacts could be measured. Based on the findings of literature review, the researchers have adopted a clustering approach for categorization and positioning of various measures of second language learning. Based on the clustering approach, the researchers have approach for measuring the impact of classroom atmospherics on second language learning by drawing a student sample consisting of 80 respondents. The results of the study uncover various basic premises of second language learning, especially with regard to classroom atmospherics. The present study is important not only from the point of view of language learning but implications could be drawn with regard to the design of classroom atmospherics, environmental psychology, anthropometrics, etc as well.Keywords: classroom atmospherics, cluster analysis, linguistics, second language learning
Procedia PDF Downloads 45710928 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet
Authors: Jan Schmidt, Pierre Köhring
Abstract:
Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.Keywords: analytical model, eddy current, losses, lattice network, permanent magnet
Procedia PDF Downloads 42110927 CNC Milling-Drilling Machine Cutting Tool Holder
Authors: Hasan Al Dabbas
Abstract:
In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.Keywords: drilling, milling, chucks, cutting edges, tools, machines
Procedia PDF Downloads 57210926 Evolving Knowledge Extraction from Online Resources
Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao
Abstract:
In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.Keywords: evolving learning, knowledge extraction, knowledge graph, text mining
Procedia PDF Downloads 45810925 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 8010924 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University
Authors: Chaiwat Waree
Abstract:
The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 University students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.Keywords: online, lessons, curriculum, instruction
Procedia PDF Downloads 22410923 Students’ Speech Anxiety in Blended Learning
Authors: Mary Jane B. Suarez
Abstract:
Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety
Procedia PDF Downloads 10210922 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 25610921 Impact of VARK Learning Model at Tertiary Level Education
Authors: Munazza A. Mirza, Khawar Khurshid
Abstract:
Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.Keywords: learning style, VARK, sensory preferences, identification model, didactic practices
Procedia PDF Downloads 27810920 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 9010919 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 13410918 The Impact of Artificial Intelligence on Qualty Conrol and Quality
Authors: Mary Moner Botros Fanawel
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives proportion, type I error, economic plan, distribution function bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 6210917 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 11010916 Individual Differences and Language Learning Strategies
Authors: Nilgun Karatas, Bihter Sakin
Abstract:
In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.Keywords: individual differences, language learning strategies, Fatih University, English language
Procedia PDF Downloads 49110915 Integrating Student Engagement Activities into the Learning Process
Authors: Yingjin Cui, Xue Bai, Serena Reese
Abstract:
Student engagement and student interest during class instruction are important conditions for active learning. Engagement, which has an important relationship with learning motivation, influences students' levels of persistence in overcoming challenges. Lack of student engagement and absence from face-to-face lectures and tutorials, in turn, can lead to poor academic performance. However, keeping students motivated and engaged in the learning process in different instructional modes poses a significant challenge; students can easily become discouraged from attending lectures and tutorials across both online and face-to-face settings. Many factors impact students’ engagement in the learning process. If you want to keep students focused on learning, you have to invite them into the process of helping themselves by providing an active learning environment. Active learning is an excellent technique for enhancing student engagement and participation in the learning process because it provides means to motivate the student to engage themselves in the learning process through reflection, analyzing, applying, and synthesizing the material they learn during class. In this study, we discussed how to create an active learning class (both face-to-face and synchronous online) through engagement activities, including reflection, collaboration, screen messages, open poll, tournament, and transferring editing roles. These activities will provide an uncommon interactive learning environment that can result in improved learning outcomes. To evaluate the effectiveness of those engagement activities in the learning process, an experimental group and a control group will be explored in the study.Keywords: active learning, academic performance, engagement activities, learning motivation
Procedia PDF Downloads 14910914 Heightening Pre-Service Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology: Pre-Service Science Teachers’ Perspective
Authors: Abiodun Ezekiel Adesina, Ijeoma Ginikanwa Akubugwo
Abstract:
Information and Communication Technology, ICT can heighten pre-service teachers’ attitudes toward learning and metacognitive learning; however, there is a dearth of literature on the perception of the pre-service teachers on heightening their attitude toward learning and metacognitive learning. Thus, this study investigates the perception of pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT. Two research questions and four hypotheses guided the research. A mixed methods research was adopted for the study in concurrent triangulation type of integrating qualitative and quantitative approaches to the study. The cluster random sampling technique was adopted to select 250 pre-service science teachers in Oyo township. Two self-constructed instruments: Heightening Pre-service Science Teachers’ Attitude towards Learning and Metacognitive Learning through Information and Communication Technology Scale (HPALMIS, r=.73), and an unstructured interview were used for data collection. Thematic analysis, frequency counts and percentages, t-tests, and analysis of variance were used for data analysis. The perception level of the pre-service science teachers on heightening their attitude towards learning and metacognitive learning through ICT is above average, with the majority perceiving that ICT can enhance their thinking about their learning. The perception was significant (mean=92.68, SD=10.86, df=249, t=134.91, p<.05). The perception was significantly differentiated by gender (t=2.10, df= 248, p<.05) in favour of the female pre-service teachers and based on the first time of ICTs use (F(5,244)= 9.586, p<.05). Lecturers of science and science related courses should therefore imbibe the use of ICTs in heightening pre-service teachers’ attitude towards learning and metacognitive learning. Government should organize workshops, seminars, lectures, and symposia along with professional bodies for the science education lecturers to keep abreast of the trending ICT.Keywords: pre-service teachers’ attitude towards learning, metacognitive learning, ICT, pre-service teachers’ perspectives
Procedia PDF Downloads 10010913 Fostering Enriched Teaching and Learning Experience Using Effective Cyber-Physical Learning Environment
Authors: Shubhakar K., Nachamma S., Judy T., Jacob S. C., Melvin Lee, Kenneth Lo
Abstract:
In recent years, technological advancements have ushered in a new era of education characterized by the integration of technology-enabled devices and online tools. The cyber-physical learning environment (CPLE) is a prime example of this evolution, merging remote cyber participants with in-class learners through immersive technology, interactive digital whiteboards, and online communication platforms like Zoom and MS Teams. This approach transforms the teaching and learning experience into a more seamless, immersive, and inclusive one. This paper outlines the design principles and key features of CPLE that support both teaching and group-based activities. We also explore the key characteristics and potential impact of such environments on educational practices. By analyzing user feedback, we evaluate how technology enhances teaching and learning in a cyber-physical setting, its impact on learning outcomes, user-friendliness, and areas for further enhancement to optimize the teaching and learning environment.Keywords: cyber-physical class, hybrid teaching, online learning, remote learning, technology enabled learning
Procedia PDF Downloads 3710912 Avatar Creation for E-Learning
Authors: M. Najib Osman, Hanafizan Hussain, Sri Kusuma Wati Mohd Daud
Abstract:
Avatar was used as user’s symbol of identity in online communications such as Facebook, Twitter, online game, and portal community between unknown people. The development of this symbol is the use of animated character or avatar, which can engage learners in a way that draws them into the e-Learning experience. Immersive learning is one of the most effective learning techniques, and animated characters can help create an immersive environment. E-learning is an ideal learning environment using modern means of information technology, through the effective integration of information technology and the curriculum to achieve, a new learning style which can fully reflect the main role of the students to reform the traditional teaching structure thoroughly. Essential in any e-learning is the degree of interactivity for the learner, and whether the learner is able to study at any time, or whether there is a need for the learner to be online or in a classroom with other learners at the same time (synchronous learning). Ideally, e-learning should engage the learners, allowing them to interact with the course materials, obtaining feedback on their progress and assistance whenever it is required. However, the degree of interactivity in e-learning depends on how the course has been developed and is dependent on the software used for its development, and the way the material is delivered to the learner. Therefore, users’ accessibility that allows access to information at any time and places and their positive attitude towards e-learning such as having interacting with a good teacher and the creation of a more natural and friendly environment for e-learning should be enhanced. This is to motivate their learning enthusiasm and it has been the responsibility of educators to incorporate new technology into their ways of teaching.Keywords: avatar, e-learning, higher education, students' perception
Procedia PDF Downloads 41110911 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 27310910 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 2210909 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.Keywords: adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list
Procedia PDF Downloads 29210908 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing
Procedia PDF Downloads 12810907 The Effectiveness of Lesson Study via Learning Communities in Increasing Instructional Self-Efficacy of Beginning Special Educators
Authors: David D. Hampton
Abstract:
Lesson study is used as an instructional technique to promote both student and faculty learning. However, little is known about the usefulness of learning communities in supporting results of lesson study on the self-efficacy and development for tenure-track faculty. This study investigated the impact of participation in a lesson study learning community on 34 new faculty members at a mid-size Midwestern University, specifically regarding implementing lesson study evaluations by new faculty on their reported self-efficacy. Results indicate that participation in a lesson study learning community significantly increased faculty members’ lesson study self-efficacy as well as grant and manuscript production over one academic year. Suggestions for future lesson study around faculty learning communities are discussed.Keywords: lesson study, learning community, lesson study self-efficacy, new faculty
Procedia PDF Downloads 15010906 The AI Arena: A Framework for Distributed Multi-Agent Reinforcement Learning
Authors: Edward W. Staley, Corban G. Rivera, Ashley J. Llorens
Abstract:
Advances in reinforcement learning (RL) have resulted in recent breakthroughs in the application of artificial intelligence (AI) across many different domains. An emerging landscape of development environments is making powerful RL techniques more accessible for a growing community of researchers. However, most existing frameworks do not directly address the problem of learning in complex operating environments, such as dense urban settings or defense-related scenarios, that incorporate distributed, heterogeneous teams of agents. To help enable AI research for this important class of applications, we introduce the AI Arena: a scalable framework with flexible abstractions for distributed multi-agent reinforcement learning. The AI Arena extends the OpenAI Gym interface to allow greater flexibility in learning control policies across multiple agents with heterogeneous learning strategies and localized views of the environment. To illustrate the utility of our framework, we present experimental results that demonstrate performance gains due to a distributed multi-agent learning approach over commonly-used RL techniques in several different learning environments.Keywords: reinforcement learning, multi-agent, deep learning, artificial intelligence
Procedia PDF Downloads 15910905 The Effects of Anapana Meditation Training Program Monitored by Skin Conductance and Temperature (SC/ST) Biofeedback on Stress in Bachelor’s Degree Students
Authors: Ormanee Patarathipakorn
Abstract:
Background: Stress was the major psychological problem that affecting to physical and mental health among undergraduate students. Aim of study was to determine the effective of meditation training program (MTP) for stress reduction measured by biofeedback (BB) machine. Material and Methods: This was quasi-experimental study conducted in Faculty of Dentistry, Thammasat University, Thailand. Study period was between August and December 2023. Participants were the first-year Dentistry students. MTP was concentration meditation (Anapana meditation). Stress measurement was evaluated by using Thai version perceived stress scale (T-PSS-10) was performed at one week before study, 14 and 18 weeks. Stress evaluation by biofeedback machine (skin conductance: SC and skin temperature: ST) were performed at one week before study, 4, 8, 14 and 18 weeks. Data from T-PSS-10 and SC/ST biofeedback were collected and analyzed. Results: A total of 28 subjects were recruited. The mean age of participant was 18.4 years old. Two-thirds (19/28) was female. Stress reduction from MTP was detected since 4 and 8 weeks by STBB and SCBB, respectively. T-PSS 10 scores before MTP, 14 and 18 weeks were 17.7± 5.4, 9.8 ± 3.1 and 8.4 ± 3.1 with statistical significance. Conclusion: Meditation training program could reduce stress and measured by skin conductance and temperature biofeedback.Keywords: stress, meditation, biofeedback, student
Procedia PDF Downloads 3710904 Corpus-Based Neural Machine Translation: Empirical Study Multilingual Corpus for Machine Translation of Opaque Idioms - Cloud AutoML Platform
Authors: Khadija Refouh
Abstract:
Culture bound-expressions have been a bottleneck for Natural Language Processing (NLP) and comprehension, especially in the case of machine translation (MT). In the last decade, the field of machine translation has greatly advanced. Neural machine translation NMT has recently achieved considerable development in the quality of translation that outperformed previous traditional translation systems in many language pairs. Neural machine translation NMT is an Artificial Intelligence AI and deep neural networks applied to language processing. Despite this development, there remain some serious challenges that face neural machine translation NMT when translating culture bounded-expressions, especially for low resources language pairs such as Arabic-English and Arabic-French, which is not the case with well-established language pairs such as English-French. Machine translation of opaque idioms from English into French are likely to be more accurate than translating them from English into Arabic. For example, Google Translate Application translated the sentence “What a bad weather! It runs cats and dogs.” to “يا له من طقس سيء! تمطر القطط والكلاب” into the target language Arabic which is an inaccurate literal translation. The translation of the same sentence into the target language French was “Quel mauvais temps! Il pleut des cordes.” where Google Translate Application used the accurate French corresponding idioms. This paper aims to perform NMT experiments towards better translation of opaque idioms using high quality clean multilingual corpus. This Corpus will be collected analytically from human generated idiom translation. AutoML translation, a Google Neural Machine Translation Platform, is used as a custom translation model to improve the translation of opaque idioms. The automatic evaluation of the custom model will be compared to the Google NMT using Bilingual Evaluation Understudy Score BLEU. BLEU is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Human evaluation is integrated to test the reliability of the Blue Score. The researcher will examine syntactical, lexical, and semantic features using Halliday's functional theory.Keywords: multilingual corpora, natural language processing (NLP), neural machine translation (NMT), opaque idioms
Procedia PDF Downloads 14910903 An Integrated Architecture of E-Learning System to Digitize the Learning Method
Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem
Abstract:
The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.Keywords: database, e-learning, LMS, Moodle
Procedia PDF Downloads 18810902 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage
Authors: Ashraf Ibrahim Awad
Abstract:
It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.Keywords: knowledge management, e-learning, learning integration, universities, UAE
Procedia PDF Downloads 50710901 Learning Preference in Nursing Students at Boromarajonani College of Nursing Chon Buri
Authors: B. Wattanakul, G. Ngamwongwan, S. Ngamkham
Abstract:
Exposure to different learning experiences contributes to changing in learning style. Addressing students’ learning preference could help teachers provide different learning activities that encourage the student to learn effectively. Purpose: The purpose of this descriptive study was to describe learning styles of nursing students at Boromarajonani College of Nursing Chon Buri. Sample: The purposive sample was 463 nursing students who were enrolled in a nursing program at different academic levels. The 16-item VARK questionnaire with 4 multiple choices was administered at one time data collection. Choices have consisted with modalities of Visual, Aural, Read/write, and Kinesthetic measured by VARK. Results: Majority of learning preference of students at different levels was visual and read/write learning preference. Almost 67% of students have a multimodal preference, which is visual learning preference associated with read/write or kinesthetic preference. At different academic levels, multimodalities are greater than single preference. Over 30% of students have one dominant learning preference, including visual preference, read/write preference and kinesthetic preference. Analysis of Variance (ANOVA) with Bonferroni adjustment revealed a significant difference between students based on their academic level (p < 0.001). Learning style of the first-grade nursing students differed from the second-grade nursing students (p < 0.001). While learning style of nursing students in the second-grade has significantly varied from the 1st, 3rd, and 4th grade (p < 0.001), learning preference of the 3rd grade has significantly differed from the 4th grade of nursing students (p > 0.05). Conclusions: Nursing students have varied learning styles based on their different academic levels. Learning preference is not fixed attributes. This should help nursing teachers assess the types of changes in students’ learning preferences while developing teaching plans to optimize students’ learning environment and achieve the needs of the courses and help students develop learning preference to meet the need of the course.Keywords: learning preference, VARK, learning style, nursing
Procedia PDF Downloads 35910900 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 31