Search results for: retinal prosthetic devices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2598

Search results for: retinal prosthetic devices

1488 Evaluating the Tracking Abilities of Microsoft HoloLens-1 for Small-Scale Industrial Processes

Authors: Kuhelee Chandel, Julia Åhlén, Stefan Seipel

Abstract:

This study evaluates the accuracy of Microsoft HoloLens (Version 1) for small-scale industrial activities, comparing its measurements to ground truth data from a Kuka Robotics arm. Two experiments were conducted to assess its position-tracking capabilities, revealing that the HoloLens device is effective for measuring the position of dynamic objects with small dimensions. However, its precision is affected by the velocity of the trajectory and its position within the device's field of view. While the HoloLens device may be suitable for small-scale tasks, its limitations for more complex and demanding applications requiring high precision and accuracy must be considered. The findings can guide the use of HoloLens devices in industrial applications and contribute to the development of more effective and reliable position-tracking systems.

Keywords: augmented reality (AR), Microsoft HoloLens, object tracking, industrial processes, manufacturing processes

Procedia PDF Downloads 136
1487 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System

Authors: Asowata Osamede

Abstract:

Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.

Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile

Procedia PDF Downloads 162
1486 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 263
1485 Web-Based Paperless Campus: An Approach to Reduce the Cost and Complexity of Education Administration

Authors: Yekini N. Asafe, Haastrup A. Victor, Lawal N. Olawale, Okikiola F. Mercy

Abstract:

Recent increase in access to personal computer and networking systems have made it feasible to perform much of cumbersome and costly paper-based administration in all organization. Desktop computers, networking systems, high capacity storage devices and telecommunications system is currently allowing the transfer of various format of data to be processed, stored and dissemination for the purpose of decision making. Going paperless is more of benefits compare to full paper-based office. This paper proposed a model for design and implementation of e-administration system (paperless campus) for an institution of learning. If this model is design and implemented it will reduced cost and complexity of educational administration also eliminate menaces and environmental hazards attributed to paper-based administration within schools and colleges.

Keywords: e-administration, educational administration, paperless campus, paper-based administration

Procedia PDF Downloads 380
1484 Analysis of the Significance of Multimedia Channels Using Sparse PCA and Regularized SVD

Authors: Kourosh Modarresi

Abstract:

The abundance of media channels and devices has given users a variety of options to extract, discover, and explore information in the digital world. Since, often, there is a long and complicated path that a typical user may venture before taking any (significant) action (such as purchasing goods and services), it is critical to know how each node (media channel) in the path of user has contributed to the final action. In this work, the significance of each media channel is computed using statistical analysis and machine learning techniques. More specifically, “Regularized Singular Value Decomposition”, and “Sparse Principal Component” has been used to compute the significance of each channel toward the final action. The results of this work are a considerable improvement compared to the present approaches.

Keywords: multimedia attribution, sparse principal component, regularization, singular value decomposition, feature significance, machine learning, linear systems, variable shrinkage

Procedia PDF Downloads 309
1483 Technology Computer Aided Design Simulation of Space Charge Limited Conduction in Polycrystalline Thin Films

Authors: Kunj Parikh, S. Bhattacharya, V. Natarajan

Abstract:

TCAD numerical simulation is one of the most tried and tested powerful tools for designing devices in semiconductor foundries worldwide. It has also been used to explain conduction in organic thin films where the processing temperature is often enough to make homogeneous samples (often imperfect, but homogeneously imperfect). In this report, we have presented the results of TCAD simulation in multi-grain thin films. The work has addressed the inhomogeneity in one dimension, but can easily be extended to two and three dimensions. The effect of grain boundaries has mainly been approximated as barriers located at the junction between two adjacent grains. The effect of the value of grain boundary barrier, the bulk traps, and the measurement temperature have been investigated.

Keywords: polycrystalline thin films, space charge limited conduction, Technology Computer-Aided Design (TCAD) simulation, traps

Procedia PDF Downloads 214
1482 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax

Procedia PDF Downloads 146
1481 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 378
1480 Effect of Sintering Temperature on Transport Properties of Garnet-Type Solid-State Electrolytes for Energy Storage Systems

Authors: U. Farooq, A. Samson, V. Thangadurai, R. Edwards

Abstract:

In recent years, an impressive research has been conducted to introduce the solid-state electrolytes for the future energy storage devices like Li-ion batteries more specifically. In this work we tried to prepare a ceramic electrolyte (Li6.5 La2.5 Ba0.5 Nb Zr O12(LLBNZO)) and sintered the pallets of as-prepared material at elevated temperature like 1050, 1100, 1150 and 1200 °C. The objective to carry out this research was to observe the effect of temperature on porosity, density and transport properties of materials. Preliminary results suggest that the material sintered at higher temperature could show enhanced performance in terms of fast ionic transport. This enhancement in performance can be attributed to low porosity of materials which is result of high temperature sintering.

Keywords: solid state battery, electrolyte, garnet structures, Li-ion battery

Procedia PDF Downloads 274
1479 Internet of Things: Route Search Optimization Applying Ant Colony Algorithm and Theory of Computer Science

Authors: Tushar Bhardwaj

Abstract:

Internet of Things (IoT) possesses a dynamic network where the network nodes (mobile devices) are added and removed constantly and randomly, hence the traffic distribution in the network is quite variable and irregular. The basic but very important part in any network is route searching. We have many conventional route searching algorithms like link-state, and distance vector algorithms but they are restricted to the static point to point network topology. In this paper we propose a model that uses the Ant Colony Algorithm for route searching. It is dynamic in nature and has positive feedback mechanism that conforms to the route searching. We have also embedded the concept of Non-Deterministic Finite Automata [NDFA] minimization to reduce the network to increase the performance. Results show that Ant Colony Algorithm gives the shortest path from the source to destination node and NDFA minimization reduces the broadcasting storm effectively.

Keywords: routing, ant colony algorithm, NDFA, IoT

Procedia PDF Downloads 444
1478 Status of Radiation Protection at Radiation Oncology, BPKM Cancer Hospital, Nepal

Authors: Surendra B. Chand, P. P. Chaurasia, M. P. Adhikari, R. N. Yadav

Abstract:

Objective: The objective of this work was to evaluate all the safety procedures toward the radiation protection for workers in the radiation oncology department. Materials and Methods: The annual thermoluminescent dosimeters (TLDs) reports for five years of the staffs were evaluated, radiation surveys were done in the control consoles, radiotherapy machines room and waiting areas of all machines using Aloka survey meter. Results: The five years TLD reports shows that the whole body dose of the individual staffs is found within the annual dose limit except the accidental exposures. Radiation exposures in the working areas are also safe limits. Conclusion: The radiation safety practices for radiation protection are satisfactory and the radiation workers of the departments are found working within the safe limit.

Keywords: radiation protection, safety, ICRP, dose limits, TLD, radiation devices

Procedia PDF Downloads 570
1477 Application of Wireless Sensor Networks: A Survey in Thailand

Authors: Sathapath Kilaso

Abstract:

Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.

Keywords: wireless sensor network, smart city, survey, Adhoc Network

Procedia PDF Downloads 207
1476 Compensation of Power Quality Disturbances Using DVR

Authors: R. Rezaeipour

Abstract:

One of the key aspects of power quality improvement in power system is the mitigation of voltage sags/swells and flicker. Custom power devices have been known as the best tools for voltage disturbances mitigation as well as reactive power compensation. Dynamic voltage restorer (DVR) which is the most efficient and effective modern custom power device can provide the most commercial solution to solve several problems of power quality in distribution networks. This paper deals with analysis and simulation technique of DVR based on instantaneous power theory which is a quick control to detect signals. The main purpose of this work is to remove three important disturbances including voltage sags/swells and flicker. Simulation of the proposed method was carried out on two sample systems by using MATLAB software environment and the results of simulation show that the proposed method is able to provide desirable power quality in the presence of wide range of disturbances.

Keywords: DVR, power quality, voltage sags, voltage swells, flicker

Procedia PDF Downloads 345
1475 HIS Integration Systems Using Modality Worklist and DICOM

Authors: Kulvinder Singh Mann

Abstract:

The usability and simulation of information systems, known as Hospital Information System (HIS), Radiology Information System (RIS), and Picture Archiving, Communication System, for electronic medical records has shown a good impact for actors in the hospital. The objective is to help and make their work easier; such as for a nurse or administration staff to record the medical records of the patient, and for a patient to check their bill transparently. However, several limitations still exists on such area regarding the type of data being stored in the system, ability for data transfer, storage and protocols to support communication between medical devices and digital images. This paper reports the simulation result of integrating several systems to cope with those limitations by using the Modality Worklist and DICOM standard. It succeeds in documenting the reason of that failure so future research will gain better understanding and be able to integrate those systems.

Keywords: HIS, RIS, PACS, modality worklist, DICOM, digital images

Procedia PDF Downloads 317
1474 Fabrication of Graphene Oxide Based Planar Hetero-Junction Perovskite Solar Cells

Authors: Khursheed Ahmad, Shaikh M. Mobin

Abstract:

In this work, we have developed a highly stable planar heterojunction perovskite solar cells (PSCs) with a architecture (ITO/GO/PEDOT:PSS/MAPbI3/PCBM/Carbon tape). The PSCs was fabricated under air using GO/PEDOT:PSS as hole transport layer while the carbon tape used as a back contact to complete the device. The fabricated PSCs device exhibited good stability and performance in terms of power conversion efficiency of 5.2%. The PSCs devices were exposed to ambient condition for 4 days which shows excellent stability confirmed by XRD analysis. We believed that the stability of the planar heterojunction perovskite solar cell may be due the presence of GO which inhibits the direct contact between PEDOT:PSS and MAPbI3.

Keywords: graphene oxide, perovskite solar cells, hole transport layer, PEDOT:PSS

Procedia PDF Downloads 181
1473 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 589
1472 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells

Authors: David Ompong, Jai Singh

Abstract:

A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.

Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels

Procedia PDF Downloads 449
1471 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 401
1470 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data

Authors: Shinji Kawakura, Ryosuke Shibasaki

Abstract:

We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.

Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis

Procedia PDF Downloads 394
1469 Crystalline Silicon Optical Whispering Gallery Mode (WGM) Resonators for Precision Measurements

Authors: Igor Bilenko, Artem Shitikov, Michael Gorodetsky

Abstract:

Optical whispering gallery mode (WGM) resonators combine very high optical quality factor (Q) with small size. Resonators made from low loss crystalline fluorites (CaF2, MgF2) may have Q as high as 1010 that make them unique devices for modern applications including ultrasensitive sensors, frequency control, and precision spectroscopy. While silicon is a promising material transparent from near infrared to terahertz frequencies, fundamental limit for Si WGM quality factor was not reached yet. In our paper, we presented experimental results on the preparation and testing of resonators at 1550 nm wavelength made from crystalline silicon grown and treated by different techniques. Q as high as 3x107 was demonstrated. Future steps need to reach a higher value and possible applications are discussed.

Keywords: optical quality factor, silicon optical losses, silicon optical resonator, whispering gallery modes

Procedia PDF Downloads 493
1468 Tinder, Image Merchandise and Desire: The Configuration of Social Ties in Today's Neoliberalism

Authors: Daniel Alvarado Valencia

Abstract:

Nowadays, the market offers us solutions for everything, creating the idea of an immediate availability of anything we could desire, and the Internet is the mean through which to obtain all this. The proposal of this conference is that this logic puts the subjects in a situation of self-exploitation, and considers the psyche as a productive force by configuring affection and desire from a neoliberal value perspective. It uses Tinder, starting from ethnographical data from Mexico City users, as an example for this. Tinder is an application created to get dates, have sexual encounters and find a partner. It works from the creation and management of a digital profile. It is an example of how futuristic and lonely the current era can be since we got used to interact with other people through screens and images. However, at the same time, it provides solutions to loneliness, since technology transgresses, invades and alters social practices in different ways. Tinder fits into this contemporary context, it is a concrete example of the processes of technification in which social bonds develop through certain devices offered by neoliberalism, through consumption, and where the search of love and courtship are possible through images and their consumption.

Keywords: desire, image, merchandise, neoliberalism

Procedia PDF Downloads 121
1467 Design of Transformerless Electric Energy Router in Smart Home

Authors: Weidong Fu, Qingsong Wang, Wei Hua, Ming Cheng, Giuseppe Buja

Abstract:

A single-phase transformerless electric energy router (TL-EER) is proposed for renewable energy management and power quality improvement in smart homes. The proposed TL-EER only contains four semiconductor switching devices, which reduces costs greatly compared to traditional electric energy routers. TL-EER functions as intelligent systems that optimize the flow and distribution of energy within a grid, enabling seamless interaction between generation, storage, and consumption. In addition, TL-EER operates in multiple modes and could be converted to diverse topologies by changing the states of relays. As for power quality, voltage and current compensating methods are adapted. Thus, high-quality electrical energy could be transferred to the load, and the grid-side power factor could be improved. Finally, laboratory prototypes are established to validate the effectiveness of the system.

Keywords: transformerless, electric energy router, power flow, power quality, power factor

Procedia PDF Downloads 10
1466 A Route Guidance System for Car Finding in Indoor Parking Garages

Authors: Pei-Chun Lee, Sheng-Shih Wang

Abstract:

This paper presents a route guidance system for car owners to find their cars in parking garages. The presents system comprises a positioning-assisting subsystem and a car-finding mobile app. The positioning-assisting subsystem mainly uses the iBeacon technology for indoor positioning. The car-finding mobile app guides car owners to their cars based on a non-map navigation strategy. This study also designs a virtual coordinate system to support identifying the locations of parking spaces and iBeacon devices. We use Arduino and Android as the platforms to implement the proposed positioning-assisting subsystem and car-finding mobile app, respectively. We have also deployed the system in a parking garage in our campus for testing. Experimental results verify that our system can efficiently and correctly guide car owners to the parking spaces of their cars.

Keywords: guidance, iBeacon, mobile app, navigation

Procedia PDF Downloads 646
1465 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
1464 Using Multi-Level Analysis to Identify Future Trends in Small Device Digital Communication Examinations

Authors: Mark A. Spooner

Abstract:

The growth of technological advances in the digital communications industry has dictated the way forensic examination laboratories receive, analyze, and report on digital evidence. This study looks at the trends in a medium sized digital forensics lab that examines small communications devices (i.e., cellular telephones, tablets, thumb drives, etc.) over the past five years. As law enforcement and homeland security organizations budgets shrink, many agencies are being asked to perform more examinations with less resources available. Using multi-level statistical analysis using five years of examination data, this research shows the increasing technological demand trend. The research then extrapolates the current data into the model created and finds a continued exponential growth curve of said demands is well within the parameters defined earlier on in the research.

Keywords: digital forensics, forensic examination, small device, trends

Procedia PDF Downloads 199
1463 Hand Detection and Recognition for Malay Sign Language

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara

Abstract:

Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.

Keywords: hand detection, hand gesture, hand recognition, sign language

Procedia PDF Downloads 307
1462 Risks beyond Cyber in IoT Infrastructure and Services

Authors: Mattias Bergstrom

Abstract:

Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.

Keywords: IoT, security, infrastructure, SCADA, blockchain, AI

Procedia PDF Downloads 107
1461 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 344
1460 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, parking guidance, wireless sensor network, ZigBee

Procedia PDF Downloads 576
1459 Novel Ferroelectric Properties as Studied by Boson Mean Field Laser Radiation Induced from a Beer Bottle

Authors: Tadeus Atraskevic, Asch Dalbajobas, Mazahistas Pukuotukas

Abstract:

The novel ferroelectric properties appeared in the recent ten years. Many scientists consider them as non-statement science. Nevertheless, many papers are published. The Mean field theory takes an important place in the theory of ferroelectric materials which can be applied for Boson induced laser systems for ‘Star Track’ soldiers. The novel Laser, which was produced in The Vilnius Bambalio University is a ‘now-how’ among other laser systems. The laser can produce power of 30 kW during 15 seconds. Its size and compatibility distinguishes it among other devices and safety gadgets. Scientists of Bambalio University have already patented the device. The most interesting in this innovations is the process of operation. Merely it may be operated through a bottle a beer what makes the measurement so convenient, that an ordinary scientist can process all stuff without significant effort just by taking pleasure by drinking a bottle of beer. Here we would like to report on the laser system and present our unique developments.

Keywords: laser, boson, ferroelectrics, mean field theory

Procedia PDF Downloads 175