Search results for: network dynamic transmission modes
9689 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1309688 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 959687 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine
Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova
Abstract:
The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave
Procedia PDF Downloads 3769686 Effect of the Aluminium Concentration on the Laser Wavelength of Random Trimer Barrier AlxGa1-xAs Superlattices
Authors: Samir Bentata, Fatima Bendahma
Abstract:
We have numerically investigated the effect of Aluminium concentration on the the laser wavelength of random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) with intentional correlated disorder. The method is based on Airy function formalism and the transfer-matrix technique. We discuss the impact of the Aluminium concentration associate to the structure profile on the laser wavelengths.Keywords: superlattices, correlated disorder, transmission coefficient, laser wavelength
Procedia PDF Downloads 3379685 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study
Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu
Abstract:
With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray
Procedia PDF Downloads 7309684 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1139683 Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation
Authors: Dilin Chen, Kang Luo, Jian Wu, Chun Yang, Hongliang Yi
Abstract:
Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics.Keywords: non-Newtonian fluid, electroosmotic flow, electrohydrodynamic, viscoelastic liquids, heat transfer
Procedia PDF Downloads 689682 Efficiently Silicon Metasurfaces at Visible Light
Authors: Juntao Li
Abstract:
The metasurfaces for beam deflecting with gradient silicon posts in the square lattices were fabricated on the thin film crystal silicon with quartz substrate. By using the crystals silicon with high refractive index and high transmission to control the phase over 2π coverage, we demonstrated the polarization independent beam deflecting at wavelength of 532nm with 45% transmission in experiment and 70% in simulation into the desired angle. This simulation efficiency is almost close to the TiO2 metasurfaces but has higher refractive index and lower aspect ratio to reduce fabrication complexity. The result can extend the application of silicon metalsurfaces from 700 nm to 500 nm hence open a new way to use metasurfaces efficiently in visible light regime.Keywords: metasurfaces, crystal silicon, light deflection, visible light
Procedia PDF Downloads 2829681 Finite Element Modelling of Mechanical Connector in Steel Helical Piles
Authors: Ramon Omar Rosales-Espinoza
Abstract:
Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.Keywords: piles, FEA, steel, mechanical connector
Procedia PDF Downloads 2649680 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength
Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng
Abstract:
A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.Keywords: sport injury, ultrasound, eccentric exercise, performance
Procedia PDF Downloads 2859679 Microwave Absorption Properties of Low Density Polyethelene-Cobalt Ferrite Nanocomposite
Authors: Reza Fazaeli, Reza Eslami-Farsani, Hamid Targhagh
Abstract:
Low density polyethylene (LDPE) nanocomposites with 3, 5 and 7 wt. % cobalt ferrite (CoFe2O4) nanopowder fabricated with extrusion mixing and followed up by hot press to reach compact samples. The transmission/reflection measurements were carried out with a network analyzer in the frequency range of 8-12 GHz. By increasing the percent of CoFe2O4 nanopowder, reflection loss (S11) increases, while transferring loss (S21) decreases. Reflectivity (R) calculations made using S11 and S21. Increase in percent of CoFe2O4 nanopowder up to 7 wt. % in composite leaded to higher reflectivity amount, and revealed that increasing the percent of CoFe2O4 nanopowder up to 7 wt. % leads to further microwave absorption in 8-12 GHz range.Keywords: nanocomposite, cobalt ferrite, low density polyethylene, microwave absorption
Procedia PDF Downloads 2829678 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1549677 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2839676 How to Modernise the ECN
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.Keywords: ECN, networks, regulation, competition
Procedia PDF Downloads 4289675 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.Keywords: ISA, neural network, Brain Float-16, DUT
Procedia PDF Downloads 949674 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia
Authors: Edward P. Guillen, A. Karina Martinez Barliza
Abstract:
Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution
Procedia PDF Downloads 2669673 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study
Authors: Mohamed H. Khalil
Abstract:
Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.Keywords: GIS Web-Based, base-map, water network, decision support system
Procedia PDF Downloads 969672 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 1119671 Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads
Authors: R. Ziaie Moayed, A. Mahigir
Abstract:
Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased.Keywords: finite element analysis, harmonic loading, settlement, stone column
Procedia PDF Downloads 3719670 A Literature Review on Sustainability Appraisal Methods for Highway Infrastructure Projects
Authors: S. Kaira, S. Mohamed, A. Rahman
Abstract:
Traditionally, highway infrastructure projects are initiated based on their economic benefits, thereafter environmental, social and governance impacts are addressed discretely for the selected project from a set of pre-determined alternatives. When opting for cost-benefit analysis (CBA), multi-criteria decision-making (MCDM) has been used as the default assessment tool. But this tool has been critiqued as it does not mimic the real-world dynamic environment. Indeed, it is because of the fact that public sector projects like highways have to experience intense exposure to dynamic environments. Therefore, it is essential to appreciate the impacts of various dynamic factors (factors that change or progress with the system) on project performance. Thus, this paper presents various sustainability assessment tools that have been globally developed to determine sustainability performance of infrastructure projects during the design, procurement and commissioning phase. Indeed, identification of the current gaps in the available assessment methods provides a potential to add prominent part of knowledge in the field of ‘road project development systems and procedures’ that are generally used by road agencies.Keywords: dynamic impact factors, micro and macro factors, sustainability assessment framework, sustainability performance
Procedia PDF Downloads 1399669 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 1559668 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining
Authors: Teklu Urgessa, Joong Seek Lee
Abstract:
Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.Keywords: human rights, Olympics, social media, network analysis, social network ming
Procedia PDF Downloads 2579667 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures
Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar
Abstract:
Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.Keywords: wavelet transform, computational error, computational duration, strong ground motion data
Procedia PDF Downloads 3789666 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors
Authors: S. Mohammadzamani, B. Kordi
Abstract:
Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator
Procedia PDF Downloads 1819665 A User-Side Analysis of the Public-Private Partnership: The Case of the New Bundang Subway Line in South Korea
Authors: Saiful Islam, Deuk Jong Bae
Abstract:
The purpose of this study is to examine citizen satisfaction and competitiveness of a Public Private Partnership project. The study focuses on PPP in the transport sector and investigates the New Bundang Subway Line (NBL) in South Korea as the object of a case study. Most PPP studies are dominated by the study of public and private sector interests, which are classified in to three major areas comprising of policy, finance, and management. This study will explore the user perspective by assessing customer satisfaction upon NBL cost and service quality, also the competitiveness of NBL compared to other alternative transport modes which serve the Jeongja – Gangnam trip or vice versa. The regular Bundang Subway Line, New Bundang Subway Line, bus and private vehicle are selected as the alternative transport modes. The study analysed customer satisfaction of NBL and citizen’s preference of alternative transport modes based on a survey in Bundang district, South Korea. Respondents were residents and employees who live or work in Bundang city, and were divided into the following areas Pangyo, Jeongjae – Sunae, Migeun – Ori – Jukjeon, and Imae – Yatap – Songnam. The survey was conducted in January 2015 for two weeks, and 753 responses were gathered. By applying the Hedonic Utility approach, the factors which affect the frequency of using NBL were found to be overall customer satisfaction, convenience of access, and the socio economic demographic of the individual. In addition, by applying the Analytic Hierarchy Process (AHP) method, criteria factors influencing the decision to select alternative transport modes were identified. Those factors, along with the author judgement of alternative transport modes, and their associated criteria and sub-criteria produced a priority list of user preferences regarding their alternative transport mode options. The study found that overall the regular Bundang Subway Line (BL), which was built and operated under a conventional procurement method was selected as the most preferable transport mode due to its cost competitiveness. However, on the sub-criteria level analysis, the NBL has competitiveness on service quality, particularly on journey time. By conducting a sensitivity analysis, the NBL can become the first choice of transport by increasing the NBL’s degree of weight associated with cost by 0,05. This means the NBL would need to reduce either it’s fare cost or transfer fee, or combine those two cost components to reduce the total of the current cost by 25%. In addition, the competitiveness of NBL also could be obtained by increasing NBL convenience through escalating access convenience such as constructing an additional station or providing more access modes. Although these convenience improvements would require a few extra minutes of journey time, the user found this to be acceptable. The findings and policy suggestions can contribute to the next phase of NBL development, showing that consideration should be given to the citizen’s voice. The case study results also contribute to the literature of PPP projects specifically from a user side perspective.Keywords: public private partnership, customer satisfaction, public transport, new Bundang subway line
Procedia PDF Downloads 3519664 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)
Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,
Abstract:
Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism
Procedia PDF Downloads 1839663 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks
Authors: Zeyad Abdelmageid, Xianbin Wang
Abstract:
Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead
Procedia PDF Downloads 1199662 Success Factors for Innovations in SME Networks
Authors: J. Gochermann
Abstract:
Due to complex markets and products, and increasing need to innovate, cooperation between small and medium size enterprises arose during the last decades, which are not prior driven by process optimization or sales enhancement. Especially small and medium sized enterprises (SME) collaborate increasingly in innovation and knowledge networks to enhance their knowledge and innovation potential, and to find strategic partners for product and market development. These networks are characterized by dual objectives, the superordinate goal of the total network, and the specific objectives of the network members, which can cause target conflicts. Moreover, most SMEs do not have structured innovation processes and they are not accustomed to collaborate in complex innovation projects in an open network structure. On the other hand, SMEs have suitable characteristics for promising networking. They are flexible and spontaneous, they have flat hierarchies, and the acting people are not anonymous. These characteristics indeed distinguish them from bigger concerns. Investigation of German SME networks have been done to identify success factors for SME innovation networks. The fundamental network principles, donation-return and confidence, could be confirmed and identified as basic success factors. Further factors are voluntariness, adequate number of network members, quality of communication, neutrality and competence of the network management, as well as reliability and obligingness of the network services. Innovation and knowledge networks with an appreciable number of members from science and technology institutions need also active sense-making to bring different disciplines into successful collaboration. It has also been investigated, whether and how the involvement in an innovation network impacts the innovation structure and culture inside the member companies. The degree of reaction grows with time and intensity of commitment.Keywords: innovation and knowledge networks, SME, success factors, innovation structure and culture
Procedia PDF Downloads 2839661 Species Composition and Plasmodium Infection Rates of Anopheles Mosquitoes in Kilosa, Tanzania
Authors: Amina R. Issae, Godfrey C. Katusi, Beda J. Mwang’Onde, Ladslaus L. Mnyone, Allen L. Malisa
Abstract:
Background: The fluctuating composition of mosquito species over time, driven by ecological changes in specific regions, plays a pivotal role in the transmission of malaria. Grasping these dynamics is fundamental for establishing a baseline understanding and is crucial for identifying transmission patterns. This knowledge is essential in devising effective strategies for managing and controlling vector populations. Our study focused on examining the species composition and Plasmodium infection rates of malaria vectors, aiming to enhance the health and well-being of communities affected by malaria. Methods: Species composition was determined through a cross-sectional collection of mosquitoes, conducted once in the village, in four selected villages of Kilosa district, Tanzania. Mosquitoes were collected indoors and outdoors using CDC light traps. A sub-sample of all collected mosquitoes was subjected to PCR identification and assayed for Plasmodium porozoites. Results: A total of 6493 female Anophelines mosquitoes were collected, of which eight species were identified as Anopheles gambiaes.l., An. funestus group, An. coustani, An. pharoensis, An. squamosus, and An. rufipes. The abundance of the Anopheles gambiaes.s.and An. funestuss.s. varied with location and village. A total of 5 sporozoite-positive mosquitoes were found, of which 4 were An. funestuss.s. and 1 was An. gambiaes.s. Conclusions: Anopheles gambiaes.s.and An. funestuss.s. were identified as the most abundant malaria vectors, respectively. Sporozoite analysis indicated this for An. funestuss.s. contribute to most of the malaria transmission in the area. Further studies are required to assess the role of seasonal shifts in vector abundance, insecticide resistance and malaria transmission of the vectors.Keywords: mosquito, composition, malaria, sporozoites
Procedia PDF Downloads 469660 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy
Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar
Abstract:
We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide
Procedia PDF Downloads 115