Search results for: mixed effects models
17602 Anti-Inflammatory, Anti-Nociceptive and Anti-Arthritic Effects of Mirtazapine, Venalfaxine and Escitalopram in Rats
Authors: Sally A. El Awdan
Abstract:
Objective and Design: The purpose of this study was to evaluate the anti inflammatory, anti-arthritic and analgesic effects of antidepressants. Methods: Carrageenan model was used to assess effect on acute inflammation. Paw volume were measured at 1, 2, 3 and 4th hour post challenge. Anti-nociceptive effect was evaluated by hot plate method. Chronic inflammation was developed using Complete Freund's Adjuvant (CFA). The animals were injected with Freund’s adjuvant in sub-plantar tissue of the right posterior paw. Paw volume, ankle flexion scores, adjuvant-induced hyperalgesia and serum cytokine levels were assessed. Results: Results obtained demonstrate that mirtazapine, venalfaxine and escitalopram significantly and dose-dependently inhibited carrageenan-induced rat paw oedema. Mirtazapine, venalfaxine and escitalopram increased the reaction time of rats in hot plate test. We observed an increase in paw volume, ankle flexion scores, thermal hyperalgesia, serum levels of interleukin-1β, PGE2 and TNF-α, induced by intraplantar CFA injection. Regular treatment up to 28 days of adjuvant-induced arthritic rats with mirtazapine, venalfaxine and escitalopram showed anti anti-inflammatory and analgesic activities by suppressing the paw volume, recovering the paw withdrawal latency, and by inhibiting the ankle flexion scores in CFA-induced rats. In addition significant reduction in serum levels of interleukin-1β, PGE2 and TNF-α level in arthritic rats was reduced by treatment with drugs. Conclusion: These results suggest that antidepressants have significant anti-inflammatory and anti-nociceptive effects in acute and chronic models in rats, which may be associated with the reduction of interleukin-1β, PGE2 and TNF-α levels.Keywords: antidepressants, carrageenan, anti-nociceptive, Complete Freund's Adjuvant
Procedia PDF Downloads 49217601 Deep Learning Approach for Chronic Kidney Disease Complications
Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia
Abstract:
Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis
Procedia PDF Downloads 13417600 The Effect of Santolina Plant Extract on Nitro-Oxidative Stress
Authors: Sabrina Sebbane, Alina Elena Parvu
Abstract:
Introduction: Santolina rosmarinifolia is a plant of the Santolina genus, a family made of medicinal plants widely used. Some of the Santolina species have been proven to have potent anti-inflammatory and anti-oxidant effects. However, no in vivo study has been made to demonstrate this in Santolina rosmarinifolia. The aim of our study is to experimentally evaluate the potential anti-inflammatory and anti-oxidant effects of Santolina rosmarinifolia plant extracts on acute inflammation in rats. These effects are defined by measuring the modifications on nitric oxide, reactive oxygen species and anti-oxidant response in serum. Materials and Methods: Rats were divided into 5 groups (n=6). Three groups were given Santolina rosmarinifolia extract by gavage in different concentrations(100%, 50%, 25%) for a week. Inflammation was induced by i.m injection of turpentine oil on the 8th day. One group was only given turpentine oil and the fifth group acted as control and was given only saline solution. Blood was collected and serum separated. Global tests were used to measure the oxidative stress, total oxidative status (TOS), total antioxidant reactivity (TAR) and the modified method of Griess assay to measure NO synthesis. Malondilaldehyde (MDA) and thiols levels were also assessed. Results: Santolina rosmarinifolia did not significantly change the TOS levels (p > 0.05). Santolina rosmarinifolia 25% and 50% decreased significantly the TAR levels (p < 0.001). Santolina 100% didn't have a significant effect on TAR (p > 0.05). All concentrations of Santolina rosmarinifolia increased the oxidative stress index (OSI) significantly(p < 0.05). Santolina rosmarinifolia 100% significantly decreased NO synthesis (p value < 0.05). In the diluted Santolina groups, no significant effect on NO synthesis was observed. In the groups treated with Santolina 100% and Santolina rosmarinifolia 50%, thiols concentration were significantly higher compared to the inflammation group (p < 0.02). A higher stimulatory effect was found in the Santolina 25% group (p value < 0.05). MDA levels were not significantly modified by the administration of Santolina rosmarinifolia (p > 0.05). Conclusion: All three solutions of Santolina rosmarinifolia had no important effect on oxidant production. However, Santolina rosmarinifolia solutions had a positive effect by increasing the thiols concentration in the serum of the models. The sum of all the effects produced by the administration of Santolina did not show a significant decrease of nitro-oxidative stress. Further experiments including smaller concentrations of Santolina rosmarinifolia will be made. Santolina rosmarinifolia should also be tested as a curative treatment.Keywords: inflammation, MDA, nitric oxide, santolina rosmarinifolia, thiols, TAR, TOS
Procedia PDF Downloads 26017599 The Analysis of the Effect of Brand Image on Creating Brand Loyalty with the Structural Equation Model: A Research Study on the Sports Equipment Brand Users
Authors: Murat Erdoğdu, Murat Koçyiğit
Abstract:
Brand image and brand loyalty are among the most important relational marketing elements for brand owners to be able to set up long – term relationships with their customers and to maintain these relationships. Brand owners improve their brand images with the positive perceptions remaining in the consumers’ minds. In addition, they try to find the customers that are both emotionally and behaviourally faithful to themselves in order to set up long – term relationships. Therefore, the aim of this study is to analyse the effects of the brand image that has a very important role among relational marketing elements on the brand loyalty in terms of the variables such as the perceived value, the trust in brand and the brand satisfaction. In this context, a conceptual model was created to determine the effect of the brand image on the brand loyalty thanks to the Structural Equation Model (SEM). According to this aim and this model, the study was carried out in the scope of the data collected through the questionnaires in Konya with the method of convenience sampling. The results of the research showed that the brand image has positive significant effects on the perceived value and the trust in brand and that the trust in brand has positive significant effects on the brand satisfaction, and that the brand satisfaction has positive significant effects on the brand loyalty. Thus, the hypotheses that the brand image has direct effects on the perceived value and the trust in brand and that the trust in brand has direct effects on the brand satisfaction and that the brand satisfaction has direct effects on the brand loyalty were supported. In addition, the findings about whether the perceived value has a significant effect on the brand satisfaction were also acquired.Keywords: brand image, brand loyalty, perceived value, satisfaction, trust
Procedia PDF Downloads 44017598 Modelling Conceptual Quantities Using Support Vector Machines
Authors: Ka C. Lam, Oluwafunmibi S. Idowu
Abstract:
Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression
Procedia PDF Downloads 20517597 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites
Authors: Armin Najipour, A. M. Fattahi
Abstract:
The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene
Procedia PDF Downloads 32117596 Language and Study Skill Needs: A Case Study of ESP Learners at the Language Centre of Sultan Qaboos University, Oman
Authors: Ahmed Mohamed Al-Abdali
Abstract:
Providing English for Specific Purposes (ESP) courses that are more closely geared to the learners’ needs and requirements in their fields of study undoubtedly enhance learners’ interest and success in a highly academic environment. While needs analysis is crucial to the success of ESP courses, it has not received sufficient attention from researchers in the Arab world. Oman is no exception from the Arab countries as this fact is realised in the ESP practices in the Omani higher educational context. This presentation, however, discusses the perceptions of the Language Centre (LC) students at Sultan Qaboos University (SQU), Oman, in relation to the requirements of their science colleges. The discussion of the presentation will be based on a mixed-method-approach study, which included semi-structured interviews, questionnaires and document analyses. These mixed methods have allowed for closer investigation of the participants' views, backgrounds and experiences. It is hoped that the findings of this study will be used to recommend changes to the ESP curriculum in the LC of SQU so that it better meets the needs of its students and requirements of the science colleges.Keywords: curriculum, ESP, ELT, needs analysis, college requirements
Procedia PDF Downloads 32217595 Self-Overestimation and Underestimation of Others: A Catalyst for Religious Conflict in Nigeria
Authors: Abdulazeez Balogun Shittu
Abstract:
This study investigates the role of self-overestimation and underestimation of others in fueling religious conflicts in Nigeria. Using a mixed-methods approach, this research examines how exaggerated self-perceptions and diminished views of others contribute to intergroup tensions, stereotypes, and violence. The findings reveal that self-overestimation and underestimation of others are significant predictors of religious conflict, mediated by factors such as intergroup bias, social identity, cultural narratives and lack of interfaith dialogue. The study also identifies the consequences of these biases, including Escalated sectarian violence, social cohesion erosion and polarized communities. To mitigate these effects, the research recommends interfaith education and dialogue initiatives, inclusive governance and policy frameworks and pluralistic media representation. This study contributes to the understanding of psychological and social dynamics driving religious conflict in Nigeria, informing evidence-based policies and interventions to promote peaceful coexistence.Keywords: conflict resolution, intergroup relations, Nigeria, Religious conflict, self-overestimation, social psychology, underestimation of others
Procedia PDF Downloads 1417594 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes
Authors: Samvel H. Sargsyan
Abstract:
Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell
Procedia PDF Downloads 15917593 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model
Procedia PDF Downloads 15117592 Modeling and Simulation Methods Using MATLAB/Simulink
Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,
Abstract:
This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)
Procedia PDF Downloads 34317591 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil
Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins
Abstract:
Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.Keywords: biomonitoring, exposure, PBPK modelling, toxic elements
Procedia PDF Downloads 31917590 Effects of a Cluster Grouping of Gifted and Twice Exceptional Students on Academic Motivation, Socio-emotional Adjustment, and Life Satisfaction
Authors: Line Massé, Claire Baudry, Claudia Verret, Marie-France Nadeau, Anne Brault-Labbé
Abstract:
Little research has been conducted on educational services adapted for twice exceptional students. Within an action research, a cluster grouping was set up in an elementary school in Quebec, bringing together gifted or doubly exceptional (2E) students (n = 11) and students not identified as gifted (n = 8) within a multilevel class (3ᵣ𝒹 and 4ₜₕ years). 2E students had either attention deficit hyperactivity disorder (n = 8, including 3 with specific learning disability) or autism spectrum disorder (n = 2). Differentiated instructions strategies were implemented, including the possibility of progressing at their own pace of learning, independent study or research projects, flexible accommodation, tutoring with older students and the development of socio-emotional learning. A specialized educator also supported the teacher in the class for behavioural and socio-affective aspects. Objectives: The study aimed to assess the impacts of the grouping on all students, their academic motivation, and their socio-emotional adaptation. Method: A mixed method was used, combining a qualitative approach with a quantitative approach. Semi-directed interviews were conducted with students (N = 18, 4 girls and 14 boys aged 8 to 9) and one of their parents (N = 18) at the end of the school year. Parents and students completed two questionnaires at the beginning and end of the school year: the Behavior Assessment System for Children-3, children or parents versions (BASC-3, Reynolds and Kampus, 2015) and the Academic Motivation in Education (Vallerand et al., 1993). Parents also completed the Multidimensional Student Life Satisfaction Scale (Huebner, 1994, adapted by Fenouillet et al., 2014) comprising three domains (school, friendships, and motivation). Mixed thematic analyzes were carried out on the data from the interviews using the N'Vivo software. Related-samples Wilcoxon rank-sums tests were conducted for the data from the questionnaires. Results: Different themes emerge from the students' comments, including a positive impact on school motivation or attitude toward school, improved school results, reduction of their behavioural difficulties and improvement of their social relations. These remarks were more frequent among 2E students. Most 2E students also noted an improvement in their academic performance. Most parents reported improvements in attitudes toward school and reductions in disruptive behaviours in the classroom. Some parents also observed changes in behaviours at home or in the socio-emotional well-being of their children, here again, particularly parents of 2E children. Analysis of questionnaires revealed significant differences at the end of the school year, more specifically pertaining to extrinsic motivation identified, problems of conduct, attention, emotional self-control, executive functioning, negative emotions, functional deficiencies, and satisfaction regarding friendships. These results indicate that this approach could benefit not only gifted and doubly exceptional students but also students not identified as gifted.Keywords: Cluster grouping, elementary school, giftedness, mixed methods, twice exceptional students
Procedia PDF Downloads 7417589 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra
Authors: Armin Rahimi
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution
Procedia PDF Downloads 35517588 The Truth about Good and Evil: A Mixed-Methods Approach to Color Theory
Authors: Raniya Alsharif
Abstract:
The color theory of good and evil is the association of colors to the omnipresent concept of good and evil, where human behavior and perception can be highly influenced by seeing black and white, making these connotations almost dangerously distinctive where they can be very hard to distinguish. This theory is a human construct that dates back to ancient Egypt and has been used since then in almost all forms of communication and expression, such as art, fashion, literature, and religious manuscripts, helping the implantation of preconceived ideas that influence behavior and society. This is a mixed-methods research that uses both surveys to collect quantitative data related to the theory and a vignette to collect qualitative data by using a scenario where participants aged between 18-25 will style two characters of good and bad characteristics with color contrasting clothes, both yielding results about the nature of the preconceived perceptions associated with ‘black and white’ and ‘good and evil’, illustrating the important role of media and communications in human behavior and subconscious, and also uncover how far this theory goes in the age of social media enlightenment.Keywords: color perception, interpretivism, thematic analysis, vignettes
Procedia PDF Downloads 12517587 A Demonstration of How to Employ and Interpret Binary IRT Models Using the New IRT Procedure in SAS 9.4
Authors: Ryan A. Black, Stacey A. McCaffrey
Abstract:
Over the past few decades, great strides have been made towards improving the science in the measurement of psychological constructs. Item Response Theory (IRT) has been the foundation upon which statistical models have been derived to increase both precision and accuracy in psychological measurement. These models are now being used widely to develop and refine tests intended to measure an individual's level of academic achievement, aptitude, and intelligence. Recently, the field of clinical psychology has adopted IRT models to measure psychopathological phenomena such as depression, anxiety, and addiction. Because advances in IRT measurement models are being made so rapidly across various fields, it has become quite challenging for psychologists and other behavioral scientists to keep abreast of the most recent developments, much less learn how to employ and decide which models are the most appropriate to use in their line of work. In the same vein, IRT measurement models vary greatly in complexity in several interrelated ways including but not limited to the number of item-specific parameters estimated in a given model, the function which links the expected response and the predictor, response option formats, as well as dimensionality. As a result, inferior methods (a.k.a. Classical Test Theory methods) continue to be employed in efforts to measure psychological constructs, despite evidence showing that IRT methods yield more precise and accurate measurement. To increase the use of IRT methods, this study endeavors to provide a comprehensive overview of binary IRT models; that is, measurement models employed on test data consisting of binary response options (e.g., correct/incorrect, true/false, agree/disagree). Specifically, this study will cover the most basic binary IRT model, known as the 1-parameter logistic (1-PL) model dating back to over 50 years ago, up until the most recent complex, 4-parameter logistic (4-PL) model. Binary IRT models will be defined mathematically and the interpretation of each parameter will be provided. Next, all four binary IRT models will be employed on two sets of data: 1. Simulated data of N=500,000 subjects who responded to four dichotomous items and 2. A pilot analysis of real-world data collected from a sample of approximately 770 subjects who responded to four self-report dichotomous items pertaining to emotional consequences to alcohol use. Real-world data were based on responses collected on items administered to subjects as part of a scale-development study (NIDA Grant No. R44 DA023322). IRT analyses conducted on both the simulated data and analyses of real-world pilot will provide a clear demonstration of how to construct, evaluate, and compare binary IRT measurement models. All analyses will be performed using the new IRT procedure in SAS 9.4. SAS code to generate simulated data and analyses will be available upon request to allow for replication of results.Keywords: instrument development, item response theory, latent trait theory, psychometrics
Procedia PDF Downloads 35617586 The Growth Curve of Gompertz Model in Body Weight of Slovak Mixed-Sex Goose Breeds
Authors: Cyril Hrncar, Jozef Bujko, Widya P. B. Putra
Abstract:
The growth curve of poultry is important to evaluate the farming management system. This study was aimed to estimate the growth curve of body weight in goose. The growth curve in this study was estimated with non-linear Gompertz model through CurveExpert 1.4. software. Three Slovak mixed-sex goose breeds of Landes (L), Pomeranian (P) and Steinbacher (S) were used in this study. Total of 28 geese (10 L, 8 P and 10 S) were used to estimate the growth curve. Research showed that the asymptotic weight (A) in those geese were reached of 5332.51 g (L), 6186.14 g (P) and 5048.27 g (S). Thus, the maturing rate (k) in each breed were similar (0.05 g/day). The weight of inflection was reached of 1960.48 g (L), 2274.32 g (P) and 1855.98 g (S). The time of inflection (ti) was reached of 25.6 days (L), 26.2 days (P) and 27.80 days (S). The maximum growth rate (MGR) was reached of 98.02 g/day (L), 113.72 g/day (P) and 92.80 g/day (S). Hence, the coefficient of determination (R2) in Gompertz model was 0.99 for each breed. It can be concluded that Pomeranian geese had highest of growth trait than the other breeds.Keywords: body weight, growth curve, inflection, Slovak geese, Gompertz model
Procedia PDF Downloads 14717585 Collaborative Technology Implementation Success and Knowledge Capacity: Case of Tunisian Banks with Mixed Capital
Authors: Amira Khelil, Habib Affes
Abstract:
Organization resource planning implementation success is important. Today`s competitors in business, in enterprise resource planning and in managing are becoming one of the main tools of achieving competitiveness in business. Resource technologies are considered as an infrastructure to create and maintain business to improve front and back-office efficiency and effectiveness. This study is significant to bring new ideas in determining the key antecedents which are technological resource planning implementation based on knowledge capacity perspectives and help to understand the key success factor in the Tunisian banks. Based on a survey of 150 front office Tunisian agents working in Tunisian banks with mixed capital, using Groupware system, only 51 respondents had given feedback to this survey. By using Warp PLS 3.0, through several tests the relationship between knowledge capability and Groupware implementation success having beta coefficient 0.37 and P-Value <0.01. This result highlights that knowledge capability of bank agent can influence the success of the Groupware implementation.Keywords: groupware implementation, knowledge capacity, partial least squares method, Tunisian banks
Procedia PDF Downloads 48917584 Comparative Study on Structural Behaviour of Circular Hollow Steel Tubular, Concrete Filled Steel Tubular, and Reinforced Cement Concrete Stub Columns under Pure Axial Compression
Authors: Niladri Roy, M. Longshithung Patton
Abstract:
This paper is aimed at studying the structural response of circular hollow steel tubular (HST), concrete filled steel tubular (CFST), and reinforced cement concrete (RCC) stub columns when subjected to only axial compressive forces and also examining their comparative nature using finite element (FE) models. These results are further compared with the respective experimental results. FE software package ABAQUS 6.14 has been used for further parametric studies where a total of 108 FE models were modelled. The diameters of the HST, CFST, and RCC stub columns are kept as 100, 140, 180, and 220, with length to diameter ratio fixed at 3 to avoid end effects and flexural failure. To keep the same percentage of steel (by volume), the thicknesses of steel tubes in HST and CFST columns were varied in response to the change in diameter of the main reinforcement bar in RCC columns. M25 grade of concrete was used throughout. The objective is to compare the structural behaviour of HST, CFST, and RCC stub columns on the basis of their axial compressive load carrying capacity and failure modes. The studies show that filling the circular HST columns with concrete increases the Pu of the CCFST columns by 2.97 times. It was also observed that the Pu (HST) is about 0.72 times Pu (RCC) on average, and the Pu (CFST) is about 2.08 times Pu (RCC) on average. After the analysis and comparison, it has been proved that CFST has much more load carrying capacity than HST and RCC and also provides the same strength at a very less sectional size.Keywords: HST columns, stub columns, CFST columns, RCC columns, finite element modeling, ABAQUS
Procedia PDF Downloads 10017583 Modelling the Yield Stress of Magnetorheological Fluids
Authors: Hesam Khajehsaeid, Naeimeh Alagheband
Abstract:
Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model
Procedia PDF Downloads 17917582 Investigating Anti-Tumourigenic and Anti-Angiogenic Effects of Resveratrol in Breast Carcinogenesis Using in-Silico Algorithms
Authors: Asma Zaib, Saeed Khan, Ayaz Ahmed Noonari, Sehrish Bint-e-Mohsin
Abstract:
Breast cancer is the most common cancer among females worldwide and is estimated that more than 450,000 deaths are reported each year. It accounts for about 14% of all female cancer deaths. Angiogenesis plays an essential role in Breast cancer development, invasion, and metastasis. Breast cancer predominantly begins in luminal epithelial cells lining the normal breast ducts. Breast carcinoma likely requires coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages.Resveratrol: a natural stilbenoid, has anti-inflammatory and anticancer effects that inhibits proliferation of variety of human cancer cell lines, including breast, prostate, stomach, colon, pancreatic, and thyroid cancers.The objective of this study is:To investigate anti-neoangiogenesis effects of Resveratrol in breast cancer and to analyze inhibitory effects of resveratrol on aromatase, Erα, HER2/neu, and VEGFR.Docking is the computational determination of binding affinity between molecule (protein structure and ligand).We performed molecular docking using Swiss-Dock and to determine docking effects of (1) Resveratrol with Aromatase, (2) Resveratrol with ERα (3) Resveratrol with HER2/neu and (4) Resveratrol with VEGFR2.Docking results of resveratrol determined inhibitory effects on aromatase with binding energy of -7.28 kcal/mol which shows anticancerous effects on estrogen dependent breast tumors. Resveratrol also show inhibitory effects on ERα and HER2/new with binging energy -8.02, and -6.74 respectively; which revealed anti-cytoproliferative effects upon breast cancer. On the other hand resveratrol v/s VEGFR showed potential inhibitory effects on neo-angiogenesis with binding energy -7.68 kcal/mol, angiogenesis is the important phenomenon that promote tumor development and metastasis. Resveratrol is an anti-breast cancer agent conformed by in silico studies, it has been identified that resveratrol can inhibit breast cancer cells proliferation by acting as competitive inhibitor of aromatase, ERα and HER2 neo, while neo-angiogemesis is restricted by binding to VEGFR which authenticates the anti-carcinogenic effects of resveratrol against breast cancer.Keywords: angiogenesis, anti-cytoproliferative, molecular docking, resveratrol
Procedia PDF Downloads 32617581 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials
Authors: Mahdi Fakoor, Hannaneh Manafi Farid
Abstract:
In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor
Procedia PDF Downloads 16717580 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency
Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade
Abstract:
Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency
Procedia PDF Downloads 30417579 Racial Distress in the Digital Age: A Mixed-Methods Exploration of the Effects of Social Media Exposure to Police Brutality on Black Students
Authors: Amanda M. McLeroy, Tiera Tanksley
Abstract:
The 2020 movement for Black Lives, ignited by anti-Black police brutality and exemplified by the public execution of George Floyd, underscored the dual potential of social media for political activism and perilous exposure to traumatic content for Black students. This study employs Critical Race Technology Theory (CRTT) to scrutinize algorithmic anti-blackness and its impact on Black youth's lives and educational experiences. The research investigates the consequences of vicarious exposure to police brutality on social media among Black adolescents through qualitative interviews and quantitative scale data. The findings reveal an unprecedented surge in exposure to viral police killings since 2020, resulting in profound physical, socioemotional, and educational effects on Black youth. CRTT forms the theoretical basis, challenging the notion of digital technologies as post-racial and neutral, aiming to dismantle systemic biases within digital systems. Black youth, averaging over 13 hours of daily social media use, face constant exposure to graphic images of Black individuals dying. The study connects this exposure to a range of physical, socioemotional, and mental health consequences, emphasizing the urgent need for understanding and support. The research proposes questions to explore the extent of police brutality exposure and its effects on Black youth. Qualitative interviews with high school and college students and quantitative scale data from undergraduates contribute to a nuanced understanding of the impact of police brutality exposure on Black youth. Themes of unprecedented exposure to viral police killings, physical and socioemotional effects, and educational consequences emerge from the analysis. The study uncovers how vicarious experiences of negative police encounters via social media lead to mistrust, fear, and psychosomatic symptoms among Black adolescents. Implications for educators and counselors are profound, emphasizing the cultivation of empathy, provision of mental health support, integration of media literacy education, and encouragement of activism. Recognizing family and community influences is crucial for comprehensive support. Professional development opportunities in culturally responsive teaching and trauma-informed approaches are recommended for educators. In conclusion, creating a supportive educational environment that addresses the emotional impact of social media exposure to police brutality is crucial for the well-being and development of Black adolescents. Counselors, through safe spaces and collaboration, play a vital role in supporting Black youth facing the distressing effects of social media exposure to police brutality.Keywords: black youth, mental health, police brutality, social media
Procedia PDF Downloads 5417578 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia
Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca
Abstract:
This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation
Procedia PDF Downloads 23017577 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 40917576 Process Development for the Conversion of Organic Waste into Valuable Products
Authors: Ife O. Bolaji
Abstract:
Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.Keywords: cellulose, hydrolysis, mixed culture, organic waste
Procedia PDF Downloads 36717575 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 30417574 How Do Undergraduates of Ethnic Minorities Perceive Their Sense of Belonging to School? A Mixed Study in China
Authors: Xiao-Fang Wang
Abstract:
Researchers of educational psychology have proved that students' sense of belonging to school is conducive to their academic achievement, social relations and mental health. However, little attention is paid to undergraduates' sense of belonging, especially, the distinctive student group, i.e., undergraduate students of ethnic minorities. This article utilized a mixed study approach to investigate the perceptions of undergraduates of ethnic minority toward their sense of belonging to school. The findings from qualitative and quantitative data indicate: 1) generally, the sense of belonging to school of ethnic minority undergraduate students was at the middle level. 2) Gender had an important impact on the sense of belonging, and the sense of girls was much larger than boys’. 3) The sense of belonging to school of students who come from city and town was much larger than the one of students who come from the countryside. 4) The category of subjects had significantly effected on the sense of belonging to school, and, the students from social and art science was larger than those from engineer science. The article is concluded with some valuable and relevant suggestions for university' student management activities and teachers' teaching practice.Keywords: ethnic minority, undergraduate students, sense of belonging, China
Procedia PDF Downloads 44917573 Adaptation of Requirement Engineering Practices in Pakistan
Authors: Waqas Ali, Nadeem Majeed
Abstract:
Requirement engineering is an essence of software development life cycle. The more time we spend on requirement engineering, higher the probability of success. Effective requirement engineering ensures and predicts successful software product. This paper presents the adaptation of requirement engineering practices in small and medium size companies of Pakistan. The study is conducted by questionnaires to show how much of requirement engineering models and practices are followed in Pakistan.Keywords: requirement engineering, Pakistan, models, practices, organizations
Procedia PDF Downloads 719