Search results for: mixed effect logistic regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32024

Search results for: mixed effect logistic regression model

30914 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services

Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar

Abstract:

This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.

Keywords: civil-id disclosure, awareness, linear regression, multiple regression

Procedia PDF Downloads 60
30913 Planning Quality and Maintenance Activities in a Closed-Loop Serial Multi-Stage Manufacturing System under Constant Degradation

Authors: Amauri Josafat Gomez Aguilar, Jean Pierre Kenné

Abstract:

This research presents the development of a self-sustainable manufacturing system from a circular economy perspective, structured by a multi-stage serial production system consisting of a series of machines under deterioration in charge of producing a single product and a reverse remanufacturing system constituted by the same productive systems of the first scheme and different tooling, fed by-products collected at the end of their life cycle, and non-conforming elements of the first productive scheme. Since the advanced production manufacturing system is unable to satisfy the customer's quality expectations completely, we propose the development of a mixed integer linear mathematical model focused on the optimal search and assignment of quality stations and preventive maintenance operation to the machines over a time horizon, intending to segregate the correct number of non-conforming parts for reuse in the remanufacturing system and thereby minimizing production, quality, maintenance, and customer non-conformance penalties. Numerical experiments are performed to analyze the solutions found by the model under different scenarios. The results showed that the correct implementation of a closed manufacturing system and allocation of quality inspection and preventive maintenance operations generate better levels of customer satisfaction and an efficient manufacturing system.

Keywords: closed loop, mixed integer linear programming, preventive maintenance, quality inspection

Procedia PDF Downloads 87
30912 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 465
30911 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 324
30910 A Case Study of Bee Algorithm for Ready Mixed Concrete Problem

Authors: Wuthichai Wongthatsanekorn, Nuntana Matheekrieangkrai

Abstract:

This research proposes Bee Algorithm (BA) to optimize Ready Mixed Concrete (RMC) truck scheduling problem from single batch plant to multiple construction sites. This problem is considered as an NP-hard constrained combinatorial optimization problem. This paper provides the details of the RMC dispatching process and its related constraints. BA was then developed to minimize total waiting time of RMC trucks while satisfying all constraints. The performance of BA is then evaluated on two benchmark problems (3 and 5construction sites) according to previous researchers. The simulation results of BA are compared in term of efficiency and accuracy with Genetic Algorithm (GA) and all problems show that BA approach outperforms GA in term of efficiency and accuracy to obtain optimal solution. Hence, BA approach could be practically implemented to obtain the best schedule.

Keywords: bee colony optimization, ready mixed concrete problem, ruck scheduling, multiple construction sites

Procedia PDF Downloads 385
30909 Epidemiological Investigation of Abortion in Ewes in Algeria

Authors: Laatra Zemmouri, Said Boukhechem, Samia Haffaf, Mohamed Lafri

Abstract:

A study was conducted in order to determine the prevalence and risk factors associated with abortion in ewes in the region of M’sila, located in central-eastern Algeria. A questionnaire was carried out to obtain information about the occurrence of abortion, sheep housing conditions, vaccination, feeding and management practices, and whether the farmers kept other livestock. This cross-sectional study was conducted for 36 months (between 2016 and 2019). A total of 71 sheep flocks were visited. Among 8168 ewes, we recorded 734 (8.99%) abortions and 3861 lambings. The risk factor analysis using multivariable logistic regression showed an association between abortion and vaccination against brucellosis (CI 95%= 2,76-1,35; p<0,001). Abortion decreased when dogs are owned (CI 95%= 0,36-0,84; p= 0.006), however, abortion increased with the presence of cats in farms (CI 95%= 1,24-2,8; p=0.003). There was a significant association between abortion and keeping goats (CI 95%= 1,18-2,40; p= 0.004), bovins (CI 95%= 0,3-0,68; p<0,001) and poultry CI 95%= 0,39-0,77; p= 0.001) in farms. Through this study, it is noticed that a strong association between the occurrence of abortion and estrus synchronization, stillbirth occurrence, and feed supplementation (p<0.05). Identification of the causes of abortion is an important task to reduce foetal losses and to improve livestock productivity.

Keywords: abortion, ewes, questionnaire, risk factors

Procedia PDF Downloads 227
30908 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 141
30907 New Approach for Load Modeling

Authors: Slim Chokri

Abstract:

Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: neural network, load forecasting, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression

Procedia PDF Downloads 436
30906 Prey-Stage Preference, Functional Response, and Mutual Interference of Amblyseius swirskii Anthias-Henriot on Frankliniella occidentalis Priesner

Authors: Marjan Heidarian Dehkordi, Hossein Allahyari, Bruce Parker, Reza Talaee-Hassanlouei

Abstract:

The Western flower thrips, Frankliniella occidentalis Priesner (Thysanoptera: Thripidae), is a significant pest of many economically important crops. This study evaluated the functional responses, prey-stage preferences and mutual interference of Amblyseius swirskii Anthias-Henriot (Acari: Phytoseiidae) with F. occidentalis as the host under laboratory conditions. The predator species showed no prey stage preference for either prey 1st or 2nd instar. Logistic regression analysis suggested Type II (convex) functional response for the predator species. Consequently, the per capita searching efficiency decreased significantly from 1.2425 to -7.4987 as predator densities increased from 2 to 8. The findings from this study could help select better biological control agents for effective control of F. occidentalis and other pests in vegetable production.

Keywords: biological control, functional responses, mutual interference, prey-stage preferences

Procedia PDF Downloads 326
30905 Interaction between Breathiness and Nasality: An Acoustic Analysis

Authors: Pamir Gogoi, Ratree Wayland

Abstract:

This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.

Keywords: breathiness, marathi, nasality, voice quality

Procedia PDF Downloads 96
30904 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives

Authors: M. Ouassaf, S. Belaidi

Abstract:

Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.

Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole

Procedia PDF Downloads 115
30903 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 335
30902 Supply Chain Network Design for Perishable Products in Developing Countries

Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda

Abstract:

Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.

Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment

Procedia PDF Downloads 321
30901 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China

Authors: Jiashu Shen

Abstract:

This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.

Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings

Procedia PDF Downloads 183
30900 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.

Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene

Procedia PDF Downloads 321
30899 Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility

Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu

Abstract:

The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.

Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education

Procedia PDF Downloads 313
30898 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

Authors: M. Benachour, N. Benachour, M. Benguediab

Abstract:

In this investigation, variation of cyclic loading effect on fatigue crack growth is studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), the effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e with a single overload, overload band etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

Keywords: fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, al-alloys

Procedia PDF Downloads 364
30897 Xeroderma Pigmentosum Group G: Gene Polymorphism and Risk of Breast Cancer

Authors: Malik SS, Masood N, Mubarik S, Khadim TM

Abstract:

Introduction: Xeroderma pigmentosum group G (XPG) gene plays a crucial role in the correction of UV-induced DNA damage through nucleotide excision repair pathway. Single nucleotide polymorphisms in XPG gene have been reported to be associated with different cancers. Current case-control study was designed to evaluate the relationship between one of the most frequently found XPG (rs1047768 T>C) polymorphism and breast cancer risk. Methodology: A total of 200 individuals were screened for this polymorphism including 100 pathologically confirmed breast cancer cases and age-matched 100 controls. Genotyping was carried out using Tetra amplification-refractory mutation system (ARMS) PCR and results were confirmed by gel electrophoresis. Results: Conditional logistic regression analysis showed significant association between TC genotype (OR: 8.9, CI: 2.0 – 38.7) and increased breast cancer risk. Although homozygous CC genotype was more frequent in patients as compared to controls, but it was statistically non-significant (OR: 3.9, CI: 0.4 – 35.7). Conclusion: In conclusion, XPG (rs1047768 T>C) polymorphism may contribute towards increased risk of breast cancer but other polymorphisms may also be evaluated to elucidate their role in breast cancer.

Keywords: XPG, breast cancer, NER, ARMS-PCR

Procedia PDF Downloads 189
30896 Border Security: Implementing the “Memory Effect” Theory in Irregular Migration

Authors: Iliuta Cumpanasu, Veronica Oana Cumpanasu

Abstract:

This paper focuses on studying the conjunction between the new emerged theory of “Memory Effect” in Irregular Migration and Related Criminality and the notion of securitization, and its impact on border management, bringing about a scientific advancement in the field by identifying the patterns corresponding to the linkage of the two concepts, for the first time, and developing a theoretical explanation, with respect to the effects of the non-military threats on border security. Over recent years, irregular migration has experienced a significant increase worldwide. The U.N.'s refugee agency reports that the number of displaced people is at its highest ever - surpassing even post-World War II numbers when the world was struggling to come to terms with the most devastating event in history. This is also the fresh reality within the core studied coordinate, the Balkan Route of Irregular Migration, which starts from Asia and Africa and continues to Turkey, Greece, North Macedonia or Bulgaria, Serbia, and ends in Romania, where thousands of migrants find themselves in an irregular situation concerning their entry to the European Union, with its important consequences concerning the related criminality. The data from the past six years was collected by making use of semi-structured interviews with experts in the field of migration and desk research within some organisations involved in border security, pursuing the gathering of genuine insights from the aforementioned field, which was constantly addressed the existing literature and subsequently subjected to the mixed methods of analysis, including the use of the Vector Auto-Regression estimates model. Thereafter, the analysis of the data followed the processes and outcomes in Grounded Theory, and a new Substantive Theory emerged, explaining how the phenomena of irregular migration and cross-border criminality are the decisive impetus for implementing the concept of securitization in border management by using the proposed pattern. The findings of the study are therefore able to capture an area that has not yet benefitted from a comprehensive approach in the scientific community, such as the seasonality, stationarity, dynamics, predictions, or the pull and push factors in Irregular Migration, also highlighting how the recent ‘Pandemic’ interfered with border security. Therefore, the research uses an inductive revelatory theoretical approach which aims at offering a new theory in order to explain a phenomenon, triggering a practically handy contribution for the scientific community, research institutes or Academia and also usefulness to organizational practitioners in the field, among which UN, IOM, UNHCR, Frontex, Interpol, Europol, or national agencies specialized in border security. The scientific outcomes of this study were validated on June 30, 2021, when the author defended his dissertation for the European Joint Master’s in Strategic Border Management, a two years prestigious program supported by the European Commission and Frontex Agency and a Consortium of six European Universities and is currently one of the research objectives of his pending PhD research at the West University Timisoara.

Keywords: migration, border, security, memory effect

Procedia PDF Downloads 92
30895 Effect of Co-Infection With Intestinal Parasites on COVID-19 Severity: A Prospective Observational Cohort Study

Authors: Teklay Gebrecherkos, Dawit Wolday, Muhamud Abdulkader

Abstract:

Background: COVID-19 symptomatology in Africa appears significantly less serious than in the industrialized world. Our hypothesis for this phenomenon, being a different, more activated immune system due to parasite infections contributes to reduced COVID-19 outcome. We investigated this hypothesis in an endemic area in sub sub-saharan Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. SARS-CoV-2 infection was confirmed by RT-PCR on samples obtained from nasopharyngeal swabs, while direct microscopic examination, modified Ritchie concentration, and Kato-Katz methods were used to identify parasites and ova from a fresh stool sample. Ordinal logistic regression models were used to estimate the association between parasite infection and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Data were analyzed using STATA version 14. P-value <0.05 was considered statistically significant. Results: A total of 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37•8%) had an intestinal parasitic infection. Only 27/255 (10•6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51•8%) non-severe COVID-19 patients appeared parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (AOR) of 0•14 (95% CI 0•09–0•24; p<0•0001) for all parasites, AOR 0•20 ([95% CI 0•11–0•38]; p<0•0001) for protozoa, and AOR 0•13 ([95% CI 0•07–0•26]; p<0•0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolopis nana, and Schistosoma mansoni implied a lower probability of developing severe COVID-19. There were 11 deaths (1•5%), and all were among patients without parasites (p=0•009). Conclusions: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19.

Keywords: COVID-19, SARS-COV-2, intestinal parasite, RT-PCR, co-infection

Procedia PDF Downloads 62
30894 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez

Abstract:

Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as cross-section properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Keywords: columns, plastic hinge length, regression analysis, reinforced concrete

Procedia PDF Downloads 480
30893 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 133
30892 Estimation of Respiratory Parameters in Pressure Controlled Ventilation System with Double Lungs on Secretion Clearance

Authors: Qian Zhang, Dongkai Shen, Yan Shi

Abstract:

A new mechanical ventilator with automatic secretion clearance function can improve the secretion clearance safely and efficiently. However, in recent modeling studies on various mechanical ventilators, it was considered that human had one lung, and the coupling effect of double lungs was never illustrated. In this paper, to expound the coupling effect of double lungs, a mathematical model of a ventilation system of a bi-level positive airway pressure (BiPAP) controlled ventilator with secretion clearance was set up. Moreover, an experimental study about the mechanical ventilation system of double lungs on BiPAP ventilator was conducted to verify the mathematical model. Finally, the coupling effect of double lungs of the mathematical ventilation was studied by simulation and orthogonal experimental design. This paper adds to previous studies and can be referred to optimization methods in medical researches.

Keywords: double lungs, coupling effect, secretion clearance, orthogonal experimental design

Procedia PDF Downloads 609
30891 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 33
30890 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 95
30889 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: pollution, printing industry, simple linear regression analysis, wastewater

Procedia PDF Downloads 235
30888 The Link Between Collaboration Interactions and Team Creativity Among Nursing Student Teams in Taiwan: A Moderated Mediation Model

Authors: Hsing Yuan Liu

Abstract:

Background: Considerable theoretical and empirical work has identified a relationship between collaboration interactions and creativity in an organizational context. The mechanisms underlying this link, however, are not well understood in healthcare education. Objectives: The aims of this study were to explore the impact of collaboration interactions on team creativity and its underlying mechanism and to verify a moderated mediation model. Design, setting, and participants: This study utilized a cross-sectional, quantitative, descriptive design. The survey data were collected from 177 nursing students who enrolled in 18-week capstone courses of small interdisciplinary groups collaborating to design healthcare products in Taiwan during 2018 and 2019. Methods: Questionnaires assessed the nursing students' perceptions about their teams' swift trust (of cognition- and affect-based), conflicts (of task, process, and relationship), interaction behaviors (constructive controversy, helping behaviors, and spontaneous communication), and creativity. This study used descriptive statistics to compare demographics, swift trust scores, conflict scores, interaction behavior scores, and creativity scores for interdisciplinary teams. Data were analyzed using Pearson’s correlation coefficient and simple and hierarchical multiple regression models. Results: Pearson’s correlation analysis showed the cognition-based team swift trust was positively correlated with team creativity. The mediation model indicated constructive controversy fully mediated the effect of cognition-based team swift trust on student teams’ creativity. The moderated mediation model indicated that task conflict negatively moderates the mediating effect of the constructive controversy on the link between cognition-based team swift trust and team creativity. Conclusion: Our findings suggest nursing student teams’ interaction behaviors and task conflict are crucial mediating and moderated mediation variables on the relationship between collaboration interactions and team creativity, respectively. The empirical data confirms the validity of our proposed moderated mediation models of team creativity. Therefore, this study's validated moderated mediation model could provide guidance for nursing educators to improve collaboration interaction outcomes and creativity on nursing student teams.

Keywords: team swift trust, team conflict, team interaction behavior, moderated mediating effects, interdisciplinary education, nursing students

Procedia PDF Downloads 187
30887 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 169
30886 Improving Oxidative Stability of Encapsulated Krill and Black Cumin Oils and its Application in Functional Yogurt

Authors: Tamer El-Messery, Beraat Ozcelik

Abstract:

This study aimed to produce functional yogurt supplemented with microencapsulated krill oil as a source of omega 3, which is known, to maintain the normal brain function, reduce the risk of cancer, and preventing cardiovascular disease. Krill oil was mixed with black cumin oil (1:1) in order to increase its oxidative stability. β-caroteine (10 mg/100 ml) was used as a standard antioxidant. Maltodextrin (MD) was mixed with whey protein concentrate (WPC) and gum Arabic (GA) at the ratio of 8:2:0.5 ratios and used for microencapsulation of single or mixed oils. The microcapsules were dried by freeze and spray drying in order to maximize encapsulation efficiency and minimize lipid oxidation. The feed emulsions used for particle production were characterized for stability, viscosity and particle size, zeta potential, and oxidative stability. The oxidative stability for mixed krill oil and black cumin oil was the highest. The highest encapsulation efficiency was obtained using spray drying, which also showed the highest oxidative stability. The addition of encapsulated krill and black cumin oils (1:1) powder in yogurt manufacture reduced slightly effects on the development of acidity, textural parameters, and water holding capacity of yogurt as compared to control.

Keywords: Krill oil, black cumin oil, micro-encapsulation, oxidative stability, functional yogurt

Procedia PDF Downloads 107
30885 Driving Forces of Bank Liquidity: Evidence from Selected Ethiopian Private Commercial Banks

Authors: Tadele Tesfay Teame, Tsegaye Abrehame, Hágen István Zsombor

Abstract:

Liquidity is one of the main concerns for banks, and thus achieving the optimum level of liquidity is critical. The main objective of this study is to discover the driving force of selected private commercial banks’ liquidity. In order to achieve the objective explanatory research design and quantitative research approach were used. Data has been collected from a secondary source of the sampled Ethiopian private commercial banks’ financial statements, the National Bank of Ethiopia, and the Minister of Finance, the sample covering the period from 2011 to 2022. Bank-specific and macroeconomic variables were analyzed by using the balanced panel fixed effect regression model. Bank’s liquidity ratio is measured by the total liquid asset to total deposits. The findings of the study revealed that bank size, capital adequacy, loan growth rate, and non-performing loan had a statistically significant impact on private commercial banks’ liquidity, and annual inflation rate and interest rate margin had a statistically significant impact on the liquidity of Ethiopian private commercial banks measured by L1 (bank liquidity). Thus, banks in Ethiopia should not only be concerned about internal structures and policies/procedures, but they must consider both the internal environment and the macroeconomic environment together in developing their strategies to efficiently manage their liquidity position and private commercial banks to maintain their financial proficiency shall have bank liquidity management policy by assimilating both bank-specific and macro-economic variables.

Keywords: liquidity, Ethiopian private commercial banks, liquidity ratio, panel data regression analysis

Procedia PDF Downloads 100