Search results for: metal vapor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2769

Search results for: metal vapor

1659 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 114
1658 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 222
1657 Effect of Solid Waste on the Sustainability of the Water Resource Quality in the Gbarain Catchment of the Niger Delta Region of Nigeria

Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey

Abstract:

This paper would report on the effect of solid waste on water resource quality in the Gbarain catchment of the Niger Delta Region of Nigeria. The Gbarain catchment presently hosts two waste-dump sites located along the flanks of a seasonal flow stream and perennially waterlogged terrain. The anthropogenic activity has significantly affected the quality of surface and groundwater in the Gbarain catchment. These wastes have made the water resource environment toxic leading to the poisoning of aquatic life. The contaminated water resources could lead to serious environmental and human health challenges such as low agricultural yields to loss of vital human organs. The contamination is via geological processes such as seepage and direct infiltration of contaminants into watercourses. The results obtained from field and experimental investigations followed by modeling, and graphical interpretation indicate heavy metal load and fecal pollution in some of the groundwater. The metal load, Escherichia coli, and total coliforms counts exceed the international and regional recommended limits. The contaminate values include Lead (> 0.01 mg/L), Mercury (> 0.006 mg/L), Manganese (> 0.4 mg/L and Escherichia coli (> 0 per 100ml) of the samples. Land use planning, enactment, and implementation of environmental laws are necessary for this region, for effective surface water and groundwater resource management.

Keywords: aquatic life, solid waste, environmental health, human health, waste-dump site, water-resource environment

Procedia PDF Downloads 123
1656 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells

Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai

Abstract:

The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.

Keywords: silver nanoparticles, silica, cell viability, morphology

Procedia PDF Downloads 372
1655 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite

Authors: G. Purushotham, Joel Hemanth

Abstract:

An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.

Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills

Procedia PDF Downloads 381
1654 Bacteriological and Mineral Analyses of Leachate Samples from Erifun Dumpsite, Ado-Ekiti, Ekiti State, Nigeria

Authors: Adebowale T. Odeyemi, Oluwafemi A. Ajenifuja

Abstract:

The leachate samples collected from Erifun dumpsite along Federal Polythenic road, Ado-Ekiti, Ekiti State, were subjected to bacteriological and mineral analyses. The bacteriological estimation and isolation were done using serial dilution and pour plating techniques. Antibiotic susceptibility test was done using agar disc diffusion technique. Atomic Absorption Spectophotometry method was used to analyze the heavy metal contents in the leachate samples. The bacterial and coliform counts ranged from 4.2 × 105 CFU/ml to 2.97 × 106 CFU/ml and 5.0 × 104 CFU/ml to 2.45 x 106 CFU/ml, respectively. The isolated bacteria and percentage of occurrence include Bacillus cereus (22%), Enterobacter aerogenes (18%), Staphylococcus aureus (16%), Proteus vulgaris (14%), Escherichia coli (14%), Bacillus licheniformis (12%) and Klebsiella aerogenes (4%). The mineral value ranged as follow; iron (21.30mg/L - 25.60mg/L), zinc (1.80mg/L - 5.60mg/L), copper (1.00mg/L - 2.60mg/L), chromium (0.50mg/L - 1.30mg/L), candium (0.20mg/L - 1.30mg/L), nickel (0.20mg/L - 0.80mg/L), lead (0.05mg/L-0.30mg/L), cobalt (0.03mg/L - 0.30mg/L) and in all samples manganese was not detected. The entire organisms isolated exhibited a high level of resistance to most of the antibiotics used. There is an urgent need for awareness to be created about the present situation of the leachate in Erifun, on the need for treatment of the nearby stream and other water sources before they can be used for drinking and other domestic use. In conclusion, a good method of waste disposal is required in those communities to prevent leachate formation, percolation, and runoff into water bodies during the raining season.

Keywords: antibiotic susceptibility, dumpsite, bacteriological analysis, heavy metal

Procedia PDF Downloads 121
1653 Dipole and Quadrupole Scattering of Ultra Short Pulses on Metal Nanospheres

Authors: Sergey Svita, Valeriy Astapenko

Abstract:

The presentation is devoted to the theoretical analysis of ultrashort electromagnetic pulses (USP) scattering on metallic nanospheres in a dielectric medium in the vicinity of surface plasmon resonance due to excitation of dipole and quadrupole surface plasmons.

Keywords: surface plasmon, scattering, metallic nanosphere

Procedia PDF Downloads 362
1652 Green Synthesis of Silver and Silver-Gold Alloy Nanoparticle Using Cyanobacteria as Bioreagent

Authors: Piya Roychoudhury, Ruma Pal

Abstract:

Cyanobacteria, commonly known as blue green algae were found to be an effective bioreagent for nanoparticle synthesis. Nowadays silver nanoparticles (AgNPs) are very popular due to their antimicrobial and anti-proliferative activity. To exploit these characters in different biotechnological fields, it is very essential to synthesize more stable, non-toxic nano-silver. For this reason silver-gold alloy (Ag-AuNPs) nanoparticles are of great interest as they are more stable, harder and more effective than single metal nanoparticles. In the present communication we described a simple technique for rapid synthesis of biocompatible AgNP and Ag-AuNP employing cyanobacteria, Leptolyngbya and Lyngbya respectively. For synthesis of AgNP the biomass of Leptolyngbya valderiana (200 mg Fresh weight) was exposed to 9 mM AgNO3 solution (pH 4). For synthesis of Ag-AuNP Lyngbya majuscula (200 mg Fresh weight) was exposed to equimolar solution of hydrogen tetra-auro chlorate and silver nitrate (1mM, pH 4). After 72 hrs of exposure thallus of Leptolyngyba turned brown in color and filaments of Lyngbya turned pink in color that indicated synthesis of nanoparticles. The produced particles were extracted from the cyanobacterial biomass using nano-capping agent, sodium citrate. Firstly, extracted brown and pink suspensions were taken for Energy Dispersive X-ray (EDAX) analysis to confirm the presence of silver in brown suspension and presence of both gold and silver in pink suspension. Extracted nanoparticles showed a distinct single plasmon band (AgNP at 411 nm; Ag-Au NP at 481 nm) in Uv-vis spectroscopy. It was revealed from Transmission electron microscopy (TEM) that all the synthesized particles were spherical in nature with a size range of ~2-25 nm. In X-ray powder diffraction (XRD) analysis four intense peaks appeared at 38.2°, 44.5°, 64.8°and 77.8° which confirmed the crystallographic nature of synthesized particles. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by Fourier transform infrared spectroscopy (FTIR). Scanning Electron microscopy (SEM) images showed the surface topography of metal treated filaments of cyanobacteria. The stability of the particles was observed by Zeta potential study. Antibiotic property of synthesized particles was tested by Agar well diffusion method against gram negative bacteria Pseudomonas aeruginosa. Overall, this green-technique requires low energy, less manufacturing cost and produces rapidly eco-friendly metal nanoparticles.

Keywords: cyanobacteria, silver nanoparticles, silver-gold alloy nanoparticles, spectroscopy

Procedia PDF Downloads 302
1651 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 338
1650 Atomic Layer Deposition of Metal Oxides on Si/C Materials for the Improved Cycling Stability of High-Capacity Lithium-Ion Batteries

Authors: Philipp Stehle, Dragoljub Vrankovic, Montaha Anjass

Abstract:

Due to its high availability and extremely high specific capacity, silicon (Si) is the most promising anode material for next generation lithium-ion batteries (LIBs). However, Si anodes are suffering from high volume changes during cycling causing unstable solid-electrolyte interface (SEI). One approach for mitigation of these effects is to embed Si particles into a carbon matrix to create silicon/carbon composites (Si/C). These typically show more stable electrochemical performance than bare silicon materials. Nevertheless, the same failure mechanisms mentioned earlier appear in a less pronounced form. In this work, we further improved the cycling performance of two commercially available Si/C materials by coating thin metal oxide films of different thicknesses on the powders via Atomic Layer Deposition (ALD). The coated powders were analyzed via ICP-OES and AFM measurements. Si/C-graphite anodes with automotive-relevant loadings (~3.5 mAh/cm2) were processed out of the materials and tested in half coin cells (HCCs) and full pouch cells (FPCs). During long-term cycling in FPCs, a significant improvement was observed for some of the ALD-coated materials. After 500 cycles, the capacity retention was already up to 10% higher compared to the pristine materials. Cycling of the FPCs continued until they reached a state of health (SOH) of 80%. By this point, up to the triple number of cycles were achieved by ALD-coated compared to pristine anodes. Post-mortem analysis via various methods was carried out to evaluate the differences in SEI formation and thicknesses.

Keywords: silicon anodes, li-ion batteries, atomic layer deposition, silicon-carbon composites, surface coatings

Procedia PDF Downloads 100
1649 Fabrication of Cesium Iodide Columns by Rapid Heating Method

Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang

Abstract:

This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.

Keywords: cesium iodide, high efficiency, vapor, rapid heating, crystal column

Procedia PDF Downloads 343
1648 Growth Performance and Critical Supersaturation of Heterogeneous Condensation for High Concentration of Insoluble Sub-Micron Particles

Authors: Jie Yin, Jun Zhang

Abstract:

Measuring the growth performance and critical supersaturation of particle group have a high reference value for constructing a supersaturated water vapor environment that can improve the removal efficiency of the high-concentration particle group. The critical supersaturation and the variation of the growth performance with supersaturation for high-concentration particles were measured by a flow cloud chamber. Findings suggest that the influence of particle concentration on the growth performance will reduce with the increase of supersaturation. Reducing residence time and increasing particle concentration have similar effects on the growth performance of the high-concentration particle group. Increasing particle concentration and shortening residence time will increase the critical supersaturation of the particle group. The critical supersaturation required to activate a high-concentration particle group is lower than that of the single-particle when the minimum particle size in the particle group is the same as that of a single particle.

Keywords: sub-micron particles, heterogeneous condensation, critical supersaturation, nucleation

Procedia PDF Downloads 134
1647 Removal of Lead Ions from Aqueous Medium Using Devised Column Filters Packed with Chitosan from Trash Crab Shells: A Characterization Study

Authors: Charles Klein O. Gorit, Mark Tristan J. Quimque Jr., M. Cecilia V. Almeda, Concepcion M. Salvana

Abstract:

Chitosan is a promising biopolymer commonly found in crustacean shells that has plausible effects in water purification and wastewater treatment. It is a primary derivative of chitin and considered second of the most abundant biopolymer prior to cellulose. Morphological analysis had been done using Scanning Electron Microscopy with Energy Dispersive Microscopy (SEM/EDS), and due to its porous nature, it showcases a certain degree of porosity, hence, larger adsorption site of heavy metal. The Energy Dispersive Spectroscopy of the chitosan and ‘lead-bound’ chitosan, shows a relative increase of percent abundance of lead cation from 1.44% to 2.08% hence, adsorption occurs. Chitosan, as a nitrogenous polysaccharide, subjected to Fourier transform infrared spectroscopy (FTIR) analysis shows amide bands ranging from 1635.36 cm⁻¹ for amide 1 band and 1558.40 cm-1 for amide 2 band with NH stretching. For ‘lead-bound’ chitosan, the FT-IR analysis shows a change in peaks upon adsorption of Pb(II) cation. The spectrum shows broadening of OH and NH stretching band. Such observation can be attributed to the probability that the attachment of Pb(II) ions is in these functional groups. A column filter was devised with lead-bound chitosan to determine the zero point charge (pHzpc) of the biopolymer. The results show that at pH 8.34, below than the zpc level of literatures cited for lead which ranges from pH 4 to 7, favors the adsorption site of chitosan and its capability to adsorb traces amount of aqueous lead.

Keywords: chitosan, biopolymer, FT-IR, SEM, zero-point charge, heavy metal, lead ions

Procedia PDF Downloads 133
1646 Analysis of Criteria for Determining the Location of Hilal Observation in the Tropical Regions: Study of Hilal Observation Location in Bengkulu City

Authors: Badrun Taman

Abstract:

This study aims to review the use of the Bengkulu Provincial Government Mess as the location of rukyatul hilal because its determination has not been carried out scientifically. There are three things that will be analyzed, namely geographical-astronomical conditions, the suitability of the location with ideal criteria, and the determination of the location of rukyatul hilal in accordance with regional conditions based on the results of the study. The research method used is qualitative with an astronomical geographical approach. The results showed that the factor that strengthened the disturbance from the weather aspect was the western sky horizon in the form of the Indian Ocean sea level. The potential for geographical disturbances on this horizon is high sea waves, relatively high sea breezes, and more seawater vapor due to sea surface temperatures and high air humidity. This study found new criteria for determining the location of the observation crescent. The criteria is the western horizon is not sea level (especially the Indian Ocean).

Keywords: criteria, location, Rukyatul Hilal, tropics, Indian ocean

Procedia PDF Downloads 72
1645 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)

Authors: Ahmad Kayvani Fard, Yehia Manawi

Abstract:

Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.

Keywords: membrane distillation, waste heat, seawater desalination, membrane, freshwater, direct contact membrane distillation

Procedia PDF Downloads 210
1644 Energy Analysis of an Ejector Based Solar Assisted Trigeneration System for Dairy Application

Authors: V. Ravindra, P. A. Saikiran, M. Ramgopal

Abstract:

This paper presents an energy analysis of a solar assisted trigeneration system using an Ejector for dairy applications. The working fluid in the trigeneration loop is Supercritical CO₂. The trigeneration system is a combination of Brayton cycle and ejector based vapor compression refrigeration cycle. The heating and cooling outputs are used for simultaneous pasteurization and chilling of the milk. The electrical power is used to drive the auxiliary equipment in the dairy plant. A numerical simulation is done with Engineering Equation Solver (EES), and a parametric analysis is performed by varying the operating variables over a meaningful range. The results show that the overall performance index decreases with increase in ambient temperature. For an ejector based system, the compressor work and cooling output are significant output quantities. An increase in total mass flow rate of the refrigerant (primary + secondary) results in an increase in the compressor work and cooling output.

Keywords: trigeneration, solar thermal, supercritical CO₂, ejector

Procedia PDF Downloads 103
1643 Geostatistical Simulation of Carcinogenic Industrial Effluent on the Irrigated Soil and Groundwater, District Sheikhupura, Pakistan

Authors: Asma Shaheen, Javed Iqbal

Abstract:

The water resources are depleting due to an intrusion of industrial pollution. There are clusters of industries including leather tanning, textiles, batteries, and chemical causing contamination. These industries use bulk quantity of water and discharge it with toxic effluents. The penetration of heavy metals through irrigation from industrial effluent has toxic effect on soil and groundwater. There was strong positive significant correlation between all the heavy metals in three media of industrial effluent, soil and groundwater (P < 0.001). The metal to the metal association was supported by dendrograms using cluster analysis. The geospatial variability was assessed by using geographically weighted regression (GWR) and pollution model to identify the simulation of carcinogenic elements in soil and groundwater. The principal component analysis identified the metals source, 48.8% variation in factor 1 have significant loading for sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn) of tannery effluent-based process. In soil and groundwater, the metals have significant loading in factor 1 representing more than half of the total variation with 51.3 % and 53.6 % respectively which showed that pollutants in soil and water were driven by industrial effluent. The cumulative eigen values for the three media were also found to be greater than 1 representing significant clustering of related heavy metals. The results showed that heavy metals from industrial processes are seeping up toxic trace metals in the soil and groundwater. The poisonous pollutants from heavy metals turned the fresh resources of groundwater into unusable water. The availability of fresh water for irrigation and domestic use is being alarming.

Keywords: groundwater, geostatistical, heavy metals, industrial effluent

Procedia PDF Downloads 213
1642 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst

Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka

Abstract:

Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.

Keywords: eco-friendly leaching, optimization, metal recovery, leaching

Procedia PDF Downloads 48
1641 Characterization of Edible Film from Uwi Starch (Dioscorea alata L.)

Authors: Miksusanti, Herlina, Wiwin

Abstract:

The research about modification uwi starch (Dioscorea alata L) by using propylene oxide has been done. Concentration of propylene oxide were 6%(v/w), 8%(v/w), and 10%(v/w). The amilograf parameters after modification were characteristic breakdown viscosity 43 BU and setback viscosity 975 BU. The modification starch have edible properties according to FDA (Food and Drug Administration) which have degree of modification < 7%, degree of substitution < 0,1 and propylene oxide concentration < 10%(v/w). The best propylene oxide in making of edible film was 8 %( v/w). The starch control can be made into edible film with thickness 0,136 mm, tensile strength 20,4605 MPa and elongation 22%. Modification starch of uwi can be made into edible film with thickness 0,146 mm, tensile strength 25, 3521 Mpa, elongation 30% and water vapor transmission 7, 2651 g/m2/24 hours. FTIR characterization of uwi starch showed the occurrence of hydroxypropylation. The peak spectrum at 2900 cm-1 showed bonding of C-H from methyl group, which is characteristic for modification starch with hydroxypropyl. Characterization with scanning electron microscopy showed that modification of uwi starch has turned the granule of starch to be fully swallon.

Keywords: uwi starch, edible film, propylen oxide, modification

Procedia PDF Downloads 274
1640 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 98
1639 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel

Authors: E. A. Krasikov

Abstract:

Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.

Keywords: annealing, embrittlement, radiation, RPV steel

Procedia PDF Downloads 321
1638 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 232
1637 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 145
1636 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 464
1635 Functionalized Magnetic Iron Oxide Nanoparticles for Extraction of Protein and Metal Nanoparticles from Complex Fluids

Authors: Meenakshi Verma, Mandeep Singh Bakshi, Kultar Singh

Abstract:

Magnetic nanoparticles have received incredible importance in view of their diverse applications, which arise primarily due to their response to the external magnetic field. The magnetic behaviour of magnetic nanoparticles (NPs) helps them in numerous different ways. The most important amongst them is the ease with which they can be purified and also can be separated from the media in which they are present merely by applying an external magnetic field. This exceptional ease of separation of the magnetic NPs from an aqueous media enables them to use for extracting/removing metal pollutants from complex aqueous medium. Functionalized magnetic NPs can be subjected for the metallic impurities extraction if are favourably adsorbed on the NPs surfaces. We have successfully used the magnetic NPs as vehicles for gold and silver NPs removal from the complex fluids. The NPs loaded with gold and silver NPs pollutant fractions has been easily removed from the aqueous media by using external magnetic field. Similarly, we have used the magnetic NPs for extraction of protein from complex media and then constantly washed with pure water to eliminate the unwanted surface adsorbed components for quantitative estimation. The purified and protein loaded magnetic NPs are best analyzed with SDS Page to not only for characterization but also for separating the protein fractions. A collective review of the results indicates that we have synthesized surfactant coated iron oxide NPs and then functionalized these with selected materials. These surface active magnetic NPs work very well for the extraction of metallic NPs from the aqueous bulk and make the whole process environmentally sustainable. Also, magnetic NPs-Au/Ag/Pd hybrids have excellent protein extracting properties. They are much easier to use in order to extract the magnetic impurities as well as protein fractions under the effect of external magnetic field without any complex conventional purification methods.

Keywords: magnetic nanoparticles, protein, functionalized, extraction

Procedia PDF Downloads 82
1634 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 249
1633 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique

Authors: S. S. Sravanthi, Swati Ghosh Acharyya

Abstract:

Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity. 

Keywords: automobiles, welding, corrosion, lap joints, Micro XRD

Procedia PDF Downloads 109
1632 The Effect of TiO₂ Nano-Thin Films on Light Transmission and Self-Cleaning Capabilities of Glass Surface

Authors: Ahmad Alduweesh

Abstract:

Self-cleaning surfaces have become essential in various applications. For instance, in photovoltaics, they provide an easy-cost effecting way to keep the solar cells clean. Titanium dioxide (TiO₂) nanoparticles were fabricated at different thicknesses to study the effect of different thicknesses on the hydrophilicity behavior of TiO₂, eventually leading to customizing hydrophilicity levels to desired values under natural light. As a result, a remarkable increase was noticed in surface hydrophilicity after applying thermal annealing on the as-deposited TiO₂ thin-films, with contact angle dropping from around 85.4ᵒ for as-deposited thin-films down to 5.1ᵒ for one of the annealed samples. The produced thin films were exposed to the outside environment to observe the effect of dust. The transmittance of light using UV-VIS spectroscopy will be conducted on the lowest and highest thicknesses (5-40 nm); this will show whether the Titania has successfully enabled more sunlight to penetrate the glass or not. Surface characterizations, including AFM and contact angle, have been included in this test.

Keywords: physical vapor deposition, TiO₂, nano-thin films, hydrophobicity, hydrophilicity, self-cleaning surfaces

Procedia PDF Downloads 91
1631 Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels.

Keywords: hydrodynamic cavitation, pretreatment, biomass, methane fermentation, Virginia fanpetals

Procedia PDF Downloads 415
1630 Reliability of Dissimilar Metal Soldered Joint in Fabrication of Electromagnetic Interference Shielded Door Frame

Authors: Rehan Waheed, Hasan Aftab Saeed, Wasim Tarar, Khalid Mahmood, Sajid Ullah Butt

Abstract:

Electromagnetic Interference (EMI) shielded doors made from brass extruded channels need to be welded with shielded enclosures to attain optimum shielding performance. Control of welding induced distortion is a problem in welding dissimilar metals like steel and brass. In this research, soldering of the steel-brass joint has been proposed to avoid weld distortion. The material used for brass channel is UNS C36000. The thickness of brass is defined by the manufacturing process, i.e. extrusion. The thickness of shielded enclosure material (ASTM A36) can be varied to produce joint between the dissimilar metals. Steel sections of different gauges are soldered using (91% tin, 9% zinc) solder to the brass, and strength of joint is measured by standard test procedures. It is observed that thin steel sheets produce a stronger bond with brass. The steel sections further require to be welded with shielded enclosure steel sheets through TIG welding process. Stresses and deformation in the vicinity of soldered portion is calculated through FE simulation. Crack formation in soldered area is also studied through experimental work. It has been found that in thin sheets deformation produced due to applied force is localized and has no effect on soldered joint area whereas in thick sheets profound cracks have been observed in soldered joint. The shielding effectiveness of EMI shielded door is compromised due to these cracks. The shielding effectiveness of the specimens is tested and results are compared.

Keywords: dissimilar metal, EMI shielding, joint strength, soldering

Procedia PDF Downloads 145