Search results for: maturity classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2475

Search results for: maturity classification

1365 Experimental Study for Examination of Nature of Diffusion Process during Wine Microoxygenation

Authors: Ilirjan Malollari, Redi Buzo, Lorina Lici

Abstract:

This study was done for the characterization of polyphenols changes of anthocyanins, flavonoids, the color intensity and total polyphenols index, maturity and oxidation index during the process of micro-oxygenation of wine that comes from a specific geographic area in the southeastern region of the country. Also, through mathematical modeling of the oxygen distribution within solution of wort for wine fermentation, was shown the strong impact of carbon dioxide present in the liquor. Analytical results show periodic increases of color intensity and tonality, reduction level of free anthocyanins and flavonoids free because of polycondensation reactions between tannins and anthocyanins, increased total polyphenols index and decrease the ratio between the flavonoids and anthocyanins offering a red stabilize wine proved by sensory degustation tasting for color intensity, tonality, body, tannic perception, taste and remained back taste which comes by specific area associated with environmental indications. Micro-oxygenation of wine is a wine-making technique, which consists in the addition of small and controlled amounts of oxygen in the different stages of wine production but more efficiently after end of alcoholic fermentation. The objectives of the process include improved mouth feel (body and texture), color enhanced stability, increased oxidative stability, and decreased vegetative aroma during polyphenols changes process. A very important factor is polyphenolics organic grape composition strongly associated with the environment geographical specifics area in which it is grown the grape.

Keywords: micro oxygenation, polyphenols, environment, wine stability, diffusion modeling

Procedia PDF Downloads 210
1364 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
1363 M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López

Authors: Q. Rzina, M. Lahrouni, S. Rida, N. Saadaoui, Y. Almossaid, K. Oufdou, K. Fares

Abstract:

Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen.

Keywords: compost, municipal organic wastes, poultry manure, radish crop, sugar beet lime sludge

Procedia PDF Downloads 312
1362 Surface Sterilization Retain Postharvest Quality and Shelf Life of Strawberry and Cherry Tomato during Modified Atmosphere Packaging

Authors: Ju Young Kim, Mohammad Zahirul Islam, Mahmuda Akter Mele, Su Jeong Han, Hyuk Sung Yoon, In-Lee Choi, Ho-Min Kang

Abstract:

Strawberry and tomato fruits were harvested at the red ripens maturity stage in the Republic of Korea. The fruits were dipped in fungi solution and afterwards were sterilized with sodium hypochlorite (NaOCl) and chlorine dioxide (ClO2) gas. Some fruits were dipped in 150μL/L NaOCl solution for 10 minutes, and others were treated with 5μL/L ClO2 gas for 12 hours and packed with 20,000 cc OTR (oxygen transmission rate) film, the rest were packed in 10,000 cc OTR film inserted with 5μL/L ClO2 gas. 5μL/L ClO2 gas insert treatment showed the lowest carbon dioxide and ethylene, and the highest oxygen concentration was on the final storage day (15th day) in both strawberry and tomato fruits. Tomato fruits showed the lowest fresh weight loss in 5μL/L ClO2 gas insert treatment. The visual quality as well as shelf life showed the highest in 5μL/L ClO2 gas insert treatment of both strawberry and tomato fruits. In addition, the fungal incidence of strawberry and tomato fruits were the most suppressed in 5μL/L ClO2 gas insert treatment. 5μL/L ClO2 gas insert treatment showed higher firmness and soluble solids in both strawberry and tomato fruits. So, 5μL/L ClO2 gas insert treatment may be useful to prevent the fungal incidence as well as retaining the postharvest quality, and increase the shelf life of strawberry and tomato fruits for long term storage. This study was supported by Export Promotion Technology Development Program (314027-03), IPET, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Keywords: chlorine dioxide, ethylene, fungi, sodium hypochlorite

Procedia PDF Downloads 366
1361 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 150
1360 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique

Authors: Ahmet Karagoz, Irfan Karagoz

Abstract:

Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.

Keywords: automatic target recognition, sparse representation, image classification, SAR images

Procedia PDF Downloads 365
1359 Regeneration of Geological Models Using Support Vector Machine Assisted by Principal Component Analysis

Authors: H. Jung, N. Kim, B. Kang, J. Choe

Abstract:

History matching is a crucial procedure for predicting reservoir performances and making future decisions. However, it is difficult due to uncertainties of initial reservoir models. Therefore, it is important to have reliable initial models for successful history matching of highly heterogeneous reservoirs such as channel reservoirs. In this paper, we proposed a novel scheme for regenerating geological models using support vector machine (SVM) and principal component analysis (PCA). First, we perform PCA for figuring out main geological characteristics of models. Through the procedure, permeability values of each model are transformed to new parameters by principal components, which have eigenvalues of large magnitude. Secondly, the parameters are projected into two-dimensional plane by multi-dimensional scaling (MDS) based on Euclidean distances. Finally, we train an SVM classifier using 20% models which show the most similar or dissimilar well oil production rates (WOPR) with the true values (10% for each). Then, the other 80% models are classified by trained SVM. We select models on side of low WOPR errors. One hundred channel reservoir models are initially generated by single normal equation simulation. By repeating the classification process, we can select models which have similar geological trend with the true reservoir model. The average field of the selected models is utilized as a probability map for regeneration. Newly generated models can preserve correct channel features and exclude wrong geological properties maintaining suitable uncertainty ranges. History matching with the initial models cannot provide trustworthy results. It fails to find out correct geological features of the true model. However, history matching with the regenerated ensemble offers reliable characterization results by figuring out proper channel trend. Furthermore, it gives dependable prediction of future performances with reduced uncertainties. We propose a novel classification scheme which integrates PCA, MDS, and SVM for regenerating reservoir models. The scheme can easily sort out reliable models which have similar channel trend with the reference in lowered dimension space.

Keywords: history matching, principal component analysis, reservoir modelling, support vector machine

Procedia PDF Downloads 160
1358 Power System Cyber Security Risk in the Era of Digital Transformation

Authors: Rafat Rob, Khaled Alotaibi, Dana Nour, Abdullah Albadrani, Abdulmohsen Mulhim

Abstract:

Power systems digitization solutions provides a comprehensive smart, cohesive, interconnected network, extensive connectivity between digital assets, physical power plants, and resources to form digital economies. However, digitization has exposed the classical air gapped power plants to the rapid spread of cyber threats and attacks in the process delaying and forcing many organizations to rethink their cyber security policies and standards before they can augment their operation the new advanced digital devices. Cyber Security requirements for power systems (and industry control systems therein) demand a new approach, unique methodology, and design process that is completely different to Cyber Security measures designed for the IT systems. In practice, Cyber Security strategy, as applied to power systems, tends to be closely aligned to those measures applied for IT system purposes. The differentiator for Cyber Security in terms of power systems are the physical assets and applications used, alongside the ever-growing rate of expansion within the industry controls sector (in comparison to the relatively saturated growth observed for corporate IT systems). These factors increase the magnitude of the cyber security risk within such systems. The introduction of smart devices and sensors along the grid initiate vulnerable entry points to the systems. Every installed Smart Meter is a target; the way these devices communicate with each other may instigate a Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack. Attacking one sensor or meter has the potential to propagate itself throughout the power grid reaching the IT network, where it may manifest itself as a malware infiltration.

Keywords: supply chain, cybersecurity, maturity model, risk, smart grid

Procedia PDF Downloads 114
1357 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 308
1356 Active Features Determination: A Unified Framework

Authors: Meenal Badki

Abstract:

We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.

Keywords: feature determination, classification, active learning, sample-efficiency

Procedia PDF Downloads 75
1355 Use of Fractal Geometry in Machine Learning

Authors: Fuad M. Alkoot

Abstract:

The main component of a machine learning system is the classifier. Classifiers are mathematical models that can perform classification tasks for a specific application area. Additionally, many classifiers are combined using any of the available methods to reduce the classifier error rate. The benefits gained from the combination of multiple classifier designs has motivated the development of diverse approaches to multiple classifiers. We aim to investigate using fractal geometry to develop an improved classifier combiner. Initially we experiment with measuring the fractal dimension of data and use the results in the development of a combiner strategy.

Keywords: fractal geometry, machine learning, classifier, fractal dimension

Procedia PDF Downloads 216
1354 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 71
1353 Hybrid Knowledge Approach for Determining Health Care Provider Specialty from Patient Diagnoses

Authors: Erin Lynne Plettenberg, Jeremy Vickery

Abstract:

In an access-control situation, the role of a user determines whether a data request is appropriate. This paper combines vetted web mining and logic modeling to build a lightweight system for determining the role of a health care provider based only on their prior authorized requests. The model identifies provider roles with 100% recall from very little data. This shows the value of vetted web mining in AI systems, and suggests the impact of the ICD classification on medical practice.

Keywords: electronic medical records, information extraction, logic modeling, ontology, vetted web mining

Procedia PDF Downloads 172
1352 Challenging Barriers to the Evolution of the Saudi Animation Industry Life-Cycle

Authors: Ohud Alharbi, Emily Baines

Abstract:

The animation industry is one of the creative industries that have attracted recent historiographical attention. However, there has been very limited research on Saudi Arabian and wider Arabian animation industries, while there are a large number of studies that have covered this issue for North America, Europe and East Asia. The existing studies show that developed countries such as USA, Japan and the UK have reached the Maturity stage in their animation industry life-cycle. On the other hand, developing countries that are still in the Introduction phase of the industry life-cycle face challenges to improve their industry. Saudi Arabia is one of the countries whose animation industry is still in its infancy. Thus, the aim of this paper is to address the main barriers that hinder the evolution of the industry life-cycle for Saudi animation – challenges that are also relevant to many other early stage industries in developing countries. These barriers have been analysed using the early mobility barriers defined by Porter, to provide a conceptual structure for defining recommendations to enable the transition to a strong Growth phase industry. This study utilized qualitative methods to collect data, which involved in-depth interviews, document analysis and observations. It also undertook a comparative case study approach to investigate the animation industry life-cycle, with three selected case studies that have a more developed industry than Saudi animation. Case studies include: the United Kingdom, which represents a Mature animation industry; Egypt, which represents an established Growth stage industry; and the United Arab of Emirates, which is an early Growth stage industry. This study suggests adopting appropriate strategies that arise as findings from the comparative case studies, to overcome barriers and facilitate the growth of the Saudi animation industry.

Keywords: barriers, industry life-cycle, Saudi animation, industry

Procedia PDF Downloads 578
1351 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 59
1350 Software Architectural Design Ontology

Authors: Muhammad Irfan Marwat, Sadaqat Jan, Syed Zafar Ali Shah

Abstract:

Software architecture plays a key role in software development but absence of formal description of software architecture causes different impede in software development. To cope with these difficulties, ontology has been used as artifact. This paper proposes ontology for software architectural design based on IEEE model for architecture description and Kruchten 4+1 model for viewpoints classification. For categorization of style and views, ISO/IEC 42010 has been used. Corpus method has been used to evaluate ontology. The main aim of the proposed ontology is to classify and locate software architectural design information.

Keywords: semantic-based software architecture, software architecture, ontology, software engineering

Procedia PDF Downloads 548
1349 Automatic Differential Diagnosis of Melanocytic Skin Tumours Using Ultrasound and Spectrophotometric Data

Authors: Kristina Sakalauskiene, Renaldas Raisutis, Gintare Linkeviciute, Skaidra Valiukeviciene

Abstract:

Cutaneous melanoma is a melanocytic skin tumour, which has a very poor prognosis while is highly resistant to treatment and tends to metastasize. Thickness of melanoma is one of the most important biomarker for stage of disease, prognosis and surgery planning. In this study, we hypothesized that the automatic analysis of spectrophotometric images and high-frequency ultrasonic 2D data can improve differential diagnosis of cutaneous melanoma and provide additional information about tumour penetration depth. This paper presents the novel complex automatic system for non-invasive melanocytic skin tumour differential diagnosis and penetration depth evaluation. The system is composed of region of interest segmentation in spectrophotometric images and high-frequency ultrasound data, quantitative parameter evaluation, informative feature extraction and classification with linear regression classifier. The segmentation of melanocytic skin tumour region in ultrasound image is based on parametric integrated backscattering coefficient calculation. The segmentation of optical image is based on Otsu thresholding. In total 29 quantitative tissue characterization parameters were evaluated by using ultrasound data (11 acoustical, 4 shape and 15 textural parameters) and 55 quantitative features of dermatoscopic and spectrophotometric images (using total melanin, dermal melanin, blood and collagen SIAgraphs acquired using spectrophotometric imaging device SIAscope). In total 102 melanocytic skin lesions (including 43 cutaneous melanomas) were examined by using SIAscope and ultrasound system with 22 MHz center frequency single element transducer. The diagnosis and Breslow thickness (pT) of each MST were evaluated during routine histological examination after excision and used as a reference. The results of this study have shown that automatic analysis of spectrophotometric and high frequency ultrasound data can improve non-invasive classification accuracy of early-stage cutaneous melanoma and provide supplementary information about tumour penetration depth.

Keywords: cutaneous melanoma, differential diagnosis, high-frequency ultrasound, melanocytic skin tumours, spectrophotometric imaging

Procedia PDF Downloads 270
1348 Stress Perception, Ethics and Leadership Styles of Pilots: Implications for Airline Global Talent Acquisition and Talent Management Strategy

Authors: Arif Sikander, Imran Saeed

Abstract:

The behavioral pattern and performance of airline pilots are influenced by the level of stress, their ethical decision-making ability and above all their leadership style as part of the Crew Management process. Cultural differences of pilots, especially while working in ex-country airlines, could influence the stress perception. Culture also influences ethical decision making. Leadership style is also a variable dimension, and pilots need to adapt to the cultural settings while flying with the local pilots as part of their team. Studies have found that age, education, gender, and management experience are statistically significant factors in ethical maturity. However, in the decades to come, more studies are required to validate the results over and over again; thereby, providing support for the validity of the Moral Development Theory. Leadership style plays a vital role in ethical decision making. This study is grounded in the Moral Development theory and seeks to analyze the styles of leadership of airline pilots related to ethical decision making and also the influence of the culture on their stress perception. The sample for the study included commercial pilots from a National Airline. It is expected that these results should provide useful input to the literature in the context of developing appropriate Talent Management strategies. The authors intend to extend this study (carried out in one country) to major national carriers (many countries) to be able to develop a ultimate framework on Talent Management which should serve as a benchmark for any international airline as most of them (e.g., Emirates, Etihad, Cathay Pacific, China Southern, etc.) are dependent on the supply of this scarce resource from outside countries.

Keywords: ethics, leadership, pilot, stress

Procedia PDF Downloads 141
1347 The Development of User Behavior in Urban Regeneration Areas by Utilizing the Floating Population Data

Authors: Jung-Hun Cho, Tae-Heon Moon, Sun-Young Heo

Abstract:

A lot of urban problems, caused by urbanization and industrialization, have occurred around the world. In particular, the creation of satellite towns, which was attributed to the explicit expansion of the city, has led to the traffic problems and the hollowization of old towns, raising the necessity of urban regeneration in old towns along with the aging of existing urban infrastructure. To select urban regeneration priority regions for the strategic execution of urban regeneration in Korea, the number of population, the number of businesses, and deterioration degree were chosen as standards. Existing standards had a limit in coping with solving urban problems fundamentally and rapidly changing reality. Therefore, it was necessary to add new indicators that can reflect the decline in relevant cities and conditions. In this regard, this study selected Busan Metropolitan City, Korea as the target area as a leading city, where urban regeneration such as an international port city has been activated like Yokohama, Japan. Prior to setting the urban regeneration priority region, the conditions of reality should be reflected because uniform and uncharacterized projects have been implemented without a quantitative analysis about population behavior within the region. For this reason, this study conducted a characterization analysis and type classification, based on the user behaviors by using representative floating population of the big data, which is a hot issue all over the society in recent days. The target areas were analyzed in this study. While 23 regions were classified as three types in existing Busan Metropolitan City urban regeneration priority region, 23 regions were classified as four types in existing Busan Metropolitan City urban regeneration priority region in terms of the type classification on the basis of user behaviors. Four types were classified as follows; type (Ⅰ) of young people - morning type, Type (Ⅱ) of the old and middle-aged- general type with sharp floating population, type (Ⅲ) of the old and middle aged-24hour-type, and type (Ⅳ) of the old and middle aged with less floating population. Characteristics were shown in each region of four types, and the study results of user behaviors were different from those of existing urban regeneration priority region. According to the results, in type (Ⅰ) young people were the majority around the existing old built-up area, where floating population at dawn is four times more than in other areas. In Type (Ⅱ), there were many old and middle-aged people around the existing built-up area and general neighborhoods, where the average floating population was more than in other areas due to commuting, while in type (Ⅲ), there was no change in the floating population throughout 24 hours, although there were many old and middle aged people in population around the existing general neighborhoods. Type (Ⅳ) includes existing economy-based type, central built-up area type, and general neighborhood type, where old and middle aged people were the majority as a general type of commuting with less floating population. Unlike existing urban regeneration priority region, these types were sub-divided according to types, and in this study, approach methods and basic orientations of urban regeneration were set to reflect the reality to a certain degree including the indicators of effective floating population to identify the dynamic activity of urban areas and existing regeneration priority areas in connection with urban regeneration projects by regions. Therefore, it is possible to make effective urban plans through offering the substantial ground by utilizing scientific and quantitative data. To induce more realistic and effective regeneration projects, the regeneration projects tailored to the present local conditions should be developed by reflecting the present conditions on the formulation of urban regeneration strategic plans.

Keywords: floating population, big data, urban regeneration, urban regeneration priority region, type classification

Procedia PDF Downloads 213
1346 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.

Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning

Procedia PDF Downloads 243
1345 Riesz Mixture Model for Brain Tumor Detection

Authors: Mouna Zitouni, Mariem Tounsi

Abstract:

This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.

Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution

Procedia PDF Downloads 17
1344 Decline in Melon Yield and Its Contribution to Young Farmers' Diversification into Watermelon Farming in Oyo State, Nigeria

Authors: Oyediran Wasiu Oyeleke

Abstract:

Melon is a popular economic cucurbit in Southwest, Nigeria. In recent time, many young farmers are shifting from melon to watermelon farming due to poor yield and low monetary returns. Hence, this study was carried out to assess the decline in melon yield and its contribution to young farmers’ diversification into watermelon farming in Oyo state, Nigeria. Purposive sampling technique was used in selecting 75 respondents from five villages in Ibarapa block of the Oyo State Agricultural Development Project (ADP). Data collected were analyzed using descriptive statistics and Pearson Product Moment Correlation (PPMC). Results show that majority of the respondents (77.3%) were between 31-40 years of age and 46.70% had secondary school education. Most of the respondents (80%) cultivated more than 3 ha of land for watermelon. Majority of the respondents (74.7%) intercropped melon with other crops while watermelon was cultivated as a sole crop. None of the respondents either grew improved melon seeds (certified seeds) or applied fertilizers but all respondents cultivated treated watermelon seeds, applied fertilizers, and agro-chemicals. The average yields of melon fell from 376.53kg/ha in 2009 to 280.70kg/ha in 2011. However, the respondents were shifting into watermelon production because of available quality seeds and its early maturity, easy harvest, and high sales. There was a significant relationship between melon output and young farmers’ diversification to watermelon in the study area at p < 0.05. The study concluded that decline in the melon yield discouraged youth to continue melon farming in the study area. It is hereby recommended that certified melon seeds should be made available while extension service providers should provide training support for the young farmers in order to reposition and boost melon production in the study area.

Keywords: decline, melon yield, contribution, watermelon, diversification, young farmers

Procedia PDF Downloads 187
1343 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: adult education, affective domain, cognitive domain, memory loss, psychomotor domain

Procedia PDF Downloads 466
1342 Strategic Management for Corporate Social Responsibility in Colombian Industries: A Typology of CSR

Authors: Iris Maria Velez Osorio

Abstract:

There has been in the last decade a concern about the environment, particularly about clean and enough water for human consumption but, some enterprises had some trouble to understand the limited resources in the environment. This research tries to understand how some industries are better oriented to the preservation of the environment through investment for strategic management of scarce resources and try in the best way possible, the contaminants. It was made an industry classification since four different group of theories for Corporate Social Responsibility agree with variables of: investment in environmental care, water protection, and residues treatment finding different levels of commitment with CSR.

Keywords: corporate social responsibility, environment, strategic management, water

Procedia PDF Downloads 376
1341 Improving the Genetic Diversity of Soybean Seeds and Tolerance to Drought Irradiated with Gamma Rays

Authors: Aminah Muchdar

Abstract:

To increase the genetic diversity of soybean in order to adapt to agroecology in Indonesia conducted ways including introduction, cross, mutation and genetic transformation. The purpose of this research is to obtain early maturity soybean mutant lines, large seed tolerant to drought with high yield potential. This study consisted of two stages: the first is sensitivity of gamma rays carried out in the Laboratory BATAN. The genetic variety used is Anjasmoro. The method seeds irradiated with gamma rays at a rate of activity with the old ci 1046.16976 irradiation 0-71 minutes. Irradiation doses of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000gy. The results indicated all seeds irradiated with doses of 0 - 1000gy, just a dose of 200 and 300gy are able to show the percentage of germination, plant height, number of leaves, number of normal sprouts and green leaves of the best and can be continued for a second trial in order to assemble and to get mutants which is expected. The result of second stage of soybean M2 Population irradiated with diversity Gamma Irradiation performed that in the form of soybean planting, the seed planted is the first derivative of the M2 irradiated seeds. The result after the age of 30ADP has already showing growth and development of plants that vary when compared to its parent, both in terms of plant height, number of leaves, leaf shape and leaf forage level. In the generative phase, a plant that has been irradiated 200 and 300 gy seen some plants flower form packs, but not formed pods, there is also a form packs of flowers, but few pods produce soybean morphological characters such as plant height, number of branches, pods, days to flowering, harvesting, seed weight and seed number.

Keywords: gamma ray, genetic mutation, irradiation, soybean

Procedia PDF Downloads 400
1340 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 337
1339 Pyramid Binary Pattern for Age Invariant Face Verification

Authors: Saroj Bijarnia, Preety Singh

Abstract:

We propose a simple and effective biometrics system based on face verification across aging using a new variant of texture feature, Pyramid Binary Pattern. This employs Local Binary Pattern along with its hierarchical information. Dimension reduction of generated texture feature vector is done using Principal Component Analysis. Support Vector Machine is used for classification. Our proposed method achieves an accuracy of 92:24% and can be used in an automated age-invariant face verification system.

Keywords: biometrics, age invariant, verification, support vector machine

Procedia PDF Downloads 351
1338 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 61
1337 Effect of Diet Inulin Prebiotic on Growth, Reproductive Performance, Carcass Composition and Resistance to Environmental Stresses in Zebra Danio (Danio rerio)

Authors: Ehsan Ahmadifar

Abstract:

In this research, the effects of different levels (control group (T0), (T1)1, (T2)2 and (T3)3 gr Inulin per Kg diet) of prebiotic Inulin as nutritional supplement on Danio rerio were investigated for 4 month. Since the beginning of feeding larvae until adult (average weight: 67.1 g, length: 4.5 cm) were fed with experimental diets. The survival rate of fish had no significant effect on rate survival (P > 0.05). The highest food conversion ratio (FCR) was in control group and the lowest was observed in T3. Treatment of T3 significantly caused the best feed conversion ratio in Zebra fish (P < 0.05). By increasing the inulin diet during the experiment, specific growth rate increased. The highest and the lowest body weight gain and condition factor were observed in T3 and control, respectively (P < 0.05). Adding 3 gr inulin in Zebra fish diet can improve the performance of the growth indices and final biomass, also this prebiotic can be considered as a suitable supplement for Cyprinidae diet. In the first sampling stage for feeding fish, fat and muscle protein was significantly higher than the second sampling stage (P < 0.05). Given that the second stage fish were full sexual maturity, the amount of fat in muscle decreased (P < 0.05). Moisture and ash levels were significantly (P < 0.05) higher in the second stage sampling than the first stage. Overall, different stage of living affected on muscle chemical composition muscle. Reproductive performance in treatment T2 and T3 were significantly higher than other treatments (P < 0.05). According to the results, the prebiotic inulin does not have a significant impact on the sex ratio in zebrafish (P > 0.05). Based on histology of the gonads, the use of dietary inulin accelerates the process of gonad development in zebrafish.

Keywords: inulin, zebrafish, reproduction, histology

Procedia PDF Downloads 305
1336 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 262