Search results for: geothermal gradient anomalies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1155

Search results for: geothermal gradient anomalies

45 Drivetrain Comparison and Selection Approach for Armored Wheeled Hybrid Vehicles

Authors: Çağrı Bekir Baysal, Göktuğ Burak Çalık

Abstract:

Armored vehicles may have different traction layouts as a result of terrain capabilities and mobility needs. Two main categories of layouts can be separated as wheeled and tracked. Tracked vehicles have superior off-road capabilities but what they gain on terrain performance they lose on mobility front. Wheeled vehicles on the other hand do not have as good terrain capabilities as tracked vehicles but they have superior mobility capabilities such as top speed, range and agility with respect to tracked vehicles. Conventional armored vehicles employ a diesel ICE as main power source. In these vehicles ICE is mechanically connected to the powertrain. This determines the ICE rpm as a result of speed and torque requested by the driver. ICE efficiency changes drastically with torque and speed required and conventional vehicles suffer in terms of fuel consumption because of this. Hybrid electric vehicles employ at least one electric motor in order to improve fuel efficiency. There are different types of hybrid vehicles but main types are Series Hybrid, Parallel Hybrid and Series-Parallel Hybrid. These vehicles introduce an electric motor for traction and also can have a generator electric motor for range extending purposes. Having an electric motor as the traction power source brings the flexibility of either using the ICE as an alternative traction source while it is in efficient range or completely separating the ICE from traction and using it solely considering efficiency. Hybrid configurations have additional advantages for armored vehicles in addition to fuel efficiency. Heat signature, silent operation and prolonged stationary missions can be possible with the help of the high-power battery pack that will be present in the vehicle for hybrid drivetrain. Because of the reasons explained, hybrid armored vehicles are becoming a target area for military and also for vehicle suppliers. In order to have a better idea and starting point when starting a hybrid armored vehicle design, hybrid drivetrain configuration has to be selected after performing a trade-off study. This study has to include vehicle mobility simulations, integration level, vehicle level and performance level criteria. In this study different hybrid traction configurations possible for an 8x8 vehicle is compared using above mentioned criteria set. In order to compare hybrid traction configurations ease of application, cost, weight advantage, reliability, maintainability, redundancy and performance criteria have been used. Performance criteria points have been defined with the help of vehicle simulations and tests. Results of these simulations and tests also help determining required tractive power for an armored vehicle including conditions like trench and obstacle crossing, gradient climb. With the method explained in this study, each configuration is assigned a point for each criterion. This way, correct configuration can be selected objectively for every application. Also, key aspects of armored vehicles, mine protection and ballistic protection will be considered for hybrid configurations. Results are expected to vary for different types of vehicles but it is observed that having longitudinal differential locking capability improves mobility and having high motor count increases complexity in general.

Keywords: armored vehicles, electric drivetrain, electric mobility, hybrid vehicles

Procedia PDF Downloads 86
44 Assessment of Environmental Mercury Contamination from an Old Mercury Processing Plant 'Thor Chemicals' in Cato Ridge, KwaZulu-Natal, South Africa

Authors: Yohana Fessehazion

Abstract:

Mercury is a prominent example of a heavy metal contaminant in the environment, and it has been extensively investigated for its potential health risk in humans and other organisms. In South Africa, massive mercury contamination happened in1980s when the England-based mercury reclamation processing plant relocated to Cato Ridge, KwaZulu-Natal Province, and discharged mercury waste into the Mngceweni River. This mercury waste discharge resulted in high mercury concentration that exceeded the acceptable levels in Mngceweni River, Umgeni River, and human hair of the nearby villagers. This environmental issue raised the alarm, and over the years, several environmental assessments were reported the dire environmental crises resulting from the Thor Chemicals (now known as Metallica Chemicals) and urged the immediate removal of the around 3,000 tons of mercury waste stored in the factory storage facility over two decades. Recently theft of some containers with the toxic substance from the Thor Chemicals warehouse and the subsequent fire that ravaged the facility furtherly put the factory on the spot escalating the urgency of left behind deadly mercury waste removal. This project aims to investigate the mercury contamination leaking from an old Thor Chemicals mercury processing plant. The focus will be on sediments, water, terrestrial plants, and aquatic weeds such as the prominent water hyacinth weeds in the nearby water systems of Mngceweni River, Umgeni River, and Inanda Dam as a bio-indicator and phytoremediator for mercury pollution. Samples will be collected in spring around October when the condition is favourable for microbial activity to methylate mercury incorporated in sediments and blooming season for some aquatic weeds, particularly water hyacinth. Samples of soil, sediment, water, terrestrial plant, and aquatic weed will be collected per sample site from the point of source (Thor Chemicals), Mngceweni River, Umgeni River, and the Inanda Dam. One-way analysis of variance (ANOVA) tests will be conducted to determine any significant differences in the Hg concentration among all sampling sites, followed by Least Significant Difference post hoc test to determine if mercury contamination varies with the gradient distance from the source point of pollution. The flow injection atomic spectrometry (FIAS) analysis will also be used to compare the mercury sequestration between the different plant tissues (roots and stems). The principal component analysis is also envisaged for use to determine the relationship between the source of mercury pollution and any of the sampling points (Umgeni and Mngceweni Rivers and the Inanda Dam). All the Hg values will be expressed in µg/L or µg/g in order to compare the result with the previous studies and regulatory standards. Sediments are expected to have relatively higher levels of Hg compared to the soils, and aquatic macrophytes, water hyacinth weeds are expected to accumulate a higher concentration of mercury than terrestrial plants and crops.

Keywords: mercury, phytoremediation, Thor chemicals, water hyacinth

Procedia PDF Downloads 223
43 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 131
42 Heat Accumulation in Soils of Belarus

Authors: Maryna Barushka, Aleh Meshyk

Abstract:

The research analyzes absolute maximum soil temperatures registered at 36 gauge stations in Belarus from 1950 to 2013. The main method applied in the research is cartographic, in particular, trend surface analysis. Warming that had never been so long and intensive before started in 1988. The average temperature in January and February of that year exceeded the norm by 7-7.5 С, in March and April by 3-5С. In general, that year, as well as the year of 2008, happened to be the hottest ones in the whole period of instrumental observation. Yearly average air temperature in Belarus in those years was +8.0-8.2 С, which exceeded the norm by 2.0 – 2.2 С. The warming has been observed so far. The only exception was in 1996 when the yearly average air temperature in Belarus was below normal by 0.5 С. In Belarus the value of trend line of standard temperature deviation in the warmest months (July-August) has been positive for the past 25 years. In 2010 absolute maximum air and soil temperature exceeded the norm at 15 gauge stations in Belarus. The structure of natural processes includes global, regional, and local constituents. Trend surface analysis of the investigated characteristics makes it possible to determine global, regional, and local components. Linear trend surface shows the occurrence of weather deviations on a global scale, outside Belarus. Maximum soil temperature appears to be growing in the south-west direction with the gradient of 5.0 С. It is explained by the latitude factor. Polynomial trend surfaces show regional peculiarities of Belarus. Extreme temperature regime is formed due to some factors. The prevailing one is advection of turbulent flow of the ground layer of the atmosphere. In summer influence of the Azores High producing anticyclones is great. The Gulf Stream current forms the values of temperature trends in a year period. The most intensive flow of the Gulf Stream in the second half of winter and the second half of summer coincides with the periods of maximum temperature trends in Belarus. It is possible to estimate a local component of weather deviations in the analysis of the difference in values of the investigated characteristics and their trend surfaces. Maximum positive deviation (up to +4 С) of averaged soil temperature corresponds to the flat terrain in Pripyat Polesie, Brest Polesie, and Belarusian Poozerie Area. Negative differences correspond to the higher relief which partially compensates extreme heat regime of soils. Another important factor for maximum soil temperature in these areas is peat-bog soils with the least albedo of 8-15%. As yearly maximum soil temperature reaches 40-60 С, this could be both negative and positive factors for Belarus’s environment and economy. High temperature causes droughts resulting in crops dying and soil blowing. On the other hand, vegetation period has lengthened thanks to bigger heat resources, which allows planting such heat-loving crops as melons and grapes with appropriate irrigation. Thus, trend surface analysis allows determining global, regional, and local factors in accumulating heat in the soils of Belarus.

Keywords: soil, temperature, trend surface analysis, warming

Procedia PDF Downloads 134
41 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1

Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.

Abstract:

In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.

Keywords: biochip, herpes virus, SPR

Procedia PDF Downloads 417
40 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs

Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel

Abstract:

Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.

Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management

Procedia PDF Downloads 165
39 The Use of Graphic Design Elements for Design of Newspaper for Women

Authors: Pibool Waijittragum

Abstract:

This paper has its objectives to reveal contents and personality suitable to women’s newspapers. The research methodology employed in this study is the questionnaire which is derived from a literature review related to newspapers, graphic elements method for print media design and 12 sample sizes of different daily newspapers. In order to acquire an in-depth understanding and comprehensible view of desirable for a women’s newspaper design, graphic elements that related to that personality as well as other preferable elements for a women’s newspaper, including seven editorial Many Thai newspapers were offer a women’s documentary and column space. With its feminine looks, most of them appeared with warm tones and friendly mood through their headlines, contents, illustrations and graphics. The study found that most desirable personalities for a women’s newspaper design in Thailand are: Modern, Chic and Natural. Each personality has significant graphic elements as follows: 1. Modern: significant elements of modern personality comprises of the composition with graduation pattern which creates attractiveness by using an anomalous alignment layout grid and outstanding structure to create focal points and dynamic movement. Dark to black color that has narrowed, limited hue coupled with bright color tones. The round shape of the Thai font style was suitable for this concept. Such Thai fonts have harmonious proportion and consistent stroke with the urban-polite look. 2. Chic: significant elements of chic personality comprises of the proper composition with distinctive scale, using rhythmic repetition and a contrast of scale to draw in reader attention. Vivid and bright color tones with extensive hues coupled with similar color tones and round shape of the Thai font style with a light stroke and consistent line. 3. Natural: significant elements of natural personality comprises of the proper composition using rhythmic repetition that creates a focal point through striking images and harmonious perspective. Warm color tones with restricted hues that appear to look natural. Duo tone color was suitable through the gradually increasing gradient. The Thai style with hand writing font was suitable through the inconsistent stroke. There are 10 types of daily content that were revealed to be the most desirable for Thai women readers, these are: Daily News, Economics News, Education News, Entertainment News, International news, Political News, Public Health News, Scientific News, Social News and Sports News. As well, there are 16 topics identified as very desirable for Thai women readers, such as: Art and Culture, Automobile, Classified, Special Scoop, Editorial, Advertisement, Entertainment, Health and Quality of Life, History, Horoscope, Lifestyle and Fashion, Literature, Nature - Environment and Tourism, Night Life, Stars and Jet Set Gossip, Women’s Issue.

Keywords: women behaviors, feminine looks, newspaper design, news content

Procedia PDF Downloads 174
38 South African Multiple Deprivation-Concentration Index Quantiles Differentiated by Components of Success and Impediment to Tuberculosis Control Programme Using Mathematical Modelling in Rural O. R. Tambo District Health Facilities

Authors: Ntandazo Dlatu, Benjamin Longo-Mbenza, Andre Renzaho, Ruffin Appalata, Yolande Yvonne Valeria Matoumona Mavoungou, Mbenza Ben Longo, Kenneth Ekoru, Blaise Makoso, Gedeon Longo Longo

Abstract:

Background: The gap between complexities related to the integration of Tuberculosis /HIV control and evidence-based knowledge motivated the initiation of the study. Therefore, the objective of this study was to explore correlations between national TB management guidelines, multiple deprivation indexes, quantiles, components and levels of Tuberculosis control programme using mathematical modeling in rural O.R. Tambo District Health Facilities, South Africa. Methods: The study design used mixed secondary data analysis and cross-sectional analysis between 2009 and 2013 across O.R Tambo District, Eastern Cape, South Africa using univariate/ bivariate analysis, linear multiple regression models, and multivariate discriminant analysis. Health inequalities indicators and component of an impediment to the tuberculosis control programme were evaluated. Results: In total, 62 400 records for TB notification were analyzed for the period 2009-2013. There was a significant but negative between Financial Year Expenditure (r= -0.894; P= 0.041) Seropositive HIV status(r= -0.979; P= 0.004), Population Density (r = -0.881; P= 0.048) and the number of TB defaulter in all TB cases. It was shown unsuccessful control of TB management program through correlations between numbers of new PTB smear positive, TB defaulter new smear-positive, TB failure all TB, Pulmonary Tuberculosis case finding index and deprivation-concentration-dispersion index. It was shown successful TB program control through significant and negative associations between declining numbers of death in co-infection of HIV and TB, TB deaths all TB and SMIAD gradient/ deprivation-concentration-dispersion index. The multivariate linear model was summarized by unadjusted r of 96%, adjusted R2 of 95 %, Standard Error of estimate of 0.110, R2 changed of 0.959 and significance for variance change for P=0.004 to explain the prediction of TB defaulter in all TB with equation y= 8.558-0.979 x number of HIV seropositive. After adjusting for confounding factors (PTB case finding the index, TB defaulter new smear-positive, TB death in all TB, TB defaulter all TB, and TB failure in all TB). The HIV and TB death, as well as new PTB smear positive, were identified as the most important, significant, and independent indicator to discriminate most deprived deprivation index far from other deprivation quintiles 2-5 using discriminant analysis. Conclusion: Elimination of poverty such as overcrowding, lack of sanitation and environment of highest burden of HIV might end the TB threat in O.R Tambo District, Eastern Cape, South Africa. Furthermore, ongoing adequate budget comprehensive, holistic and collaborative initiative towards Sustainable Developmental Goals (SDGs) is necessary for complete elimination of TB in poor O.R Tambo District.

Keywords: tuberculosis, HIV/AIDS, success, failure, control program, health inequalities, South Africa

Procedia PDF Downloads 171
37 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 277
36 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties

Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser

Abstract:

Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.

Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing

Procedia PDF Downloads 45
35 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 90
34 Modeling of Hot Casting Technology of Beryllium Oxide Ceramics with Ultrasonic Activation

Authors: Zamira Sattinova, Tassybek Bekenov

Abstract:

The article is devoted to modeling the technology of hot casting of beryllium oxide ceramics. The stages of ultrasonic activation of beryllium oxide slurry in the plant vessel to improve the rheological property, hot casting in the moulding cavity with cooling and solidification of the casting are described. Thermoplastic slurry (hereinafter referred to as slurry) shows the rheology of a non-Newtonian fluid with yield and plastic viscosity. Cooling-solidification of the slurry in the forming cavity occurs in the liquid, taking into account crystallization and solid state. In this work is the method of calculation of hot casting of the slurry using the method of effective molecular viscosity of viscoplastic fluid. It is shown that the slurry near the cooled wall is in a state of crystallization and plasticity, and the rest may still be in the liquid phase. Nonuniform distribution of temperature, density and concentration of kinetically free binder takes place along the cavity section. This leads to compensation of shrinkage by the influx of slurry from the liquid into the crystallization zones and plasticity of the castings. In the plasticity zone, the shrinkage determined by the concentration of kinetically free binder is compensated under the action of the pressure gradient. The solidification mechanism, as well as the mechanical behavior of the casting mass during casting, the rheological and thermophysical properties of the thermoplastic BeO slurry due to ultrasound exposure have not been well studied. Nevertheless, experimental data allow us to conclude that the effect of ultrasonic vibrations on the slurry mass leads to it: a change in structure, an increase in technological properties, a decrease in heterogeneity and a change in rheological properties. In the course of experiments, the effect of ultrasonic treatment and its duration on the change in viscosity and ultimate shear stress of the slurry depending on temperature (55-75℃) and the mass fraction of the binder (10 - 11.7%) have been studied. At the same time, changes in these properties before and after ultrasound exposure have been analyzed, as well as the nature of the flow in the system under study. The experience of operating the unit with ultrasonic impact has shown that at the same time, the casting capacity of the slurry increases by an average of 15%, and the viscosity decreases by more than half. Experimental study of physicochemical properties and phase change with simultaneous consideration of all factors affecting the quality of products in the process of continuous casting is labor-intensive. Therefore, an effective way to control the physical processes occurring in the formation of articles with predetermined properties and shapes is to simulate the process and determine its basic characteristics. The results of the calculations show the whole stage of hot casting of beryllium oxide slurry, taking into account the change in its state of aggregation. Ultrasonic treatment improves rheological properties and increases the fluidity of the slurry in the forming cavity. Calculations show the influence of velocity, temperature factors and structural data of the cavity on the cooling-solidification process of the casting. In the calculations, conditions for molding with shrinkage of the slurry by hot casting have been found, which makes it possible to obtain a solidifying product with a uniform beryllium oxide structure at the outlet of the cavity.

Keywords: hot casting, thermoplastic slurry molding, shrinkage, beryllium oxide

Procedia PDF Downloads 30
33 Increasing System Adequacy Using Integration of Pumped Storage: Renewable Energy to Reduce Thermal Power Generations Towards RE100 Target, Thailand

Authors: Mathuravech Thanaphon, Thephasit Nat

Abstract:

The Electricity Generating Authority of Thailand (EGAT) is focusing on expanding its pumped storage hydropower (PSH) capacity to increase the reliability of the system during peak demand and allow for greater integration of renewables. To achieve this requirement, Thailand will have to double its current renewable electricity production. To address the challenges of balancing supply and demand in the grid with increasing levels of RE penetration, as well as rising peak demand, EGAT has already been studying the potential for additional PSH capacity for several years to enable an increased share of RE and replace existing fossil fuel-fired generation. In addition, the role that pumped-storage hydropower would play in fulfilling multiple grid functions and renewable integration. The proposed sites for new PSH would help increase the reliability of power generation in Thailand. However, most of the electricity generation will come from RE, chiefly wind and photovoltaic, and significant additional Energy Storage capacity will be needed. In this paper, the impact of integrating the PSH system on the adequacy of renewable rich power generating systems to reduce the thermal power generating units is investigated. The variations of system adequacy indices are analyzed for different PSH-renewables capacities and storage levels. Power Development Plan 2018 rev.1 (PDP2018 rev.1), which is modified by integrating a six-new PSH system and RE planning and development aftermath in 2030, is the very challenge. The system adequacy indices through power generation are obtained using Multi-Objective Genetic Algorithm (MOGA) Optimization. MOGA is a probabilistic heuristic and stochastic algorithm that is able to find the global minima, which have the advantage that the fitness function does not necessarily require the gradient. In this sense, the method is more flexible in solving reliability optimization problems for a composite power system. The optimization with hourly time step takes years of planning horizon much larger than the weekly horizon that usually sets the scheduling studies. The objective function is to be optimized to maximize RE energy generation, minimize energy imbalances, and minimize thermal power generation using MATLAB. The PDP2018 rev.1 was set to be simulated based on its planned capacity stepping into 2030 and 2050. Therefore, the four main scenario analyses are conducted as the target of renewables share: 1) Business-As-Usual (BAU), 2) National Targets (30% RE in 2030), 3) Carbon Neutrality Targets (50% RE in 2050), and 5) 100% RE or full-decarbonization. According to the results, the generating system adequacy is significantly affected by both PSH-RE and Thermal units. When a PSH is integrated, it can provide hourly capacity to the power system as well as better allocate renewable energy generation to reduce thermal generations and improve system reliability. These results show that a significant level of reliability improvement can be obtained by PSH, especially in renewable-rich power systems.

Keywords: pumped storage hydropower, renewable energy integration, system adequacy, power development planning, RE100, multi-objective genetic algorithm

Procedia PDF Downloads 58
32 Cross-Sectional Associations between Deprivation Status and Physical Activity, Dietary Behaviours, Health-Related Variables, and Health-Related Quality of Life among Children Aged 9-11 Years

Authors: Maria Cardova

Abstract:

Aim and objectives: The purpose of this studywas to explore to what extent the deprivation statusinfluenced children’s physical activity, dietary behaviour, and health outcomes such as weight status. Background: The United Kingdom’s childhood obesity rates are currently ranked among the highest in Europe. North West England deals with highest rates of childhood obesity. Data from the UK Millennium Cohort Study suggested a deprivation gradient to childhood obesity in England, with obesity rates being the highest in the most deprived areas. Traditionally, it has been individual conception of health, but the contemporary stance is that health behaviours affecting obesity are influenced by a broad range of factors operating at multiple levels. According to socio-ecological model of health behaviour, differences in obesity rates and health outcomes are likely explained by differences in lifestyle behaviours including physical activity and diet behaviours. However, higher rates of obesity among deprived children are not due to physical inactivity, in fact, most socially disadvantaged children are the most physically active. Poor diet including high consumption of fast food and sugar-sweetened beverages and low consumption of fruit and vegetables was found to be the most prevalent among adolescents living in poverty. Methods: This study adopted quantitative approach. It consisted of combination of basic demographic data, anthropometry, and questionnaires. Children (N = 165, mean age = 10.04 years; 53.33% female; 46.66% male) completed survey packs during school day including KIDSCREEN, Youth Activity Profile, Beverage and Snack Questionnaire, and Child Body Image Scale questionnaires as well as had anthropometric measurements taken including Body mass index, waist circumference, weight, and height. Children’s deprivation status was based on the English Indices of Multiple Deprivation scores of the school they attended. Results: Children from more deprived areas had higher weight status, waist circumference. Deprivation status had also effect on some dimensions of the KIDSCREEN questionnaire, such as that those from more deprived areas felt less socially accepted and bullied by their peers, had worse feelings about themselves such as body image, and more difficulty with school and learning. Children from more deprived areas reported higher rates of physical activity and also differences in snack and fruit and vegetable intake than their more affluent peers. Conclusion: Results demonstrated that, children living in the most-deprived areas appear to be at greater risk of unfavourable health-related variables and behaviours and are exposed to home and neighbourhood environments that are less conducive to health-promoting behaviours compared to their peers from less deprived areas. These findings indicate that children living in highly deprived areas represent an important group for future interventions designed to promote health-behaviours that would impact on the quality of life of the child and other health variables such as weight status.

Keywords: children, dietary behaviour, health, obesity, physical Activity, weight Status

Procedia PDF Downloads 137
31 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 167
30 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy

Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets

Abstract:

Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery

Procedia PDF Downloads 377
29 Assessment of Antioxidant and Cholinergic Systems, and Liver Histopathologies in Lithobates catesbeianus Exposed to the Waters of an Urban Stream

Authors: Diego R. Boiarski, Camila M. Toigo, Thais M. Sobjak, Andrey F. P. Santos, Silvia Romao, Ana T. B. Guimaraes

Abstract:

Anthropogenic activities promote changes in the community’s structures and decrease the species abundance of amphibians. Biological communities of fluvial systems are assemblies of organisms that have adapted to regional conditions, including the physical environment and food resources, and are further refined through interactions with other species. The aim of this study was to assess neurotoxic alterations and in the antioxidant system on tadpoles of Lithobates catesbeianus exposed to waters from Cascavel River, in the south of Brazil. A total of 420 L of water was collected from the Cascavel River, 140 L from each of the three different locations: Site 1 – headwater; Site 2 – stretch of the stream that runs through an urbanized area; Site 3 – a stretch from the rural area. Twelve tadpoles were acclimated in each aquarium (100 L of water) for seven days. The water from each aquarium was replaced with the ones sampled from the river, except the one from the control aquarium. After seven days, a portion of the liver was removed and conditioned for ChE, SOD, CAT and LPO analysis; other part of the tissue was conditioned for histological analysis. The statistical analysis performed was one-way ANOVA, followed by post-hoc Tukey-HSD test, and the multivariate principal components analysis. It was not observed any neurotoxic effect, but a slight increase in SOD activity and elevation of CAT activity in both urban and rural environment. A decrease in LPO reaction was detected, mainly among the tadpoles exposed to the waters from the rural area. The results of the present study demonstrate the alteration of the antioxidant system, as well as liver histopathologies in tadpoles exposed mainly to waters collected in urban and rural environments. These alterations may cause the reduction in the velocity of the metamorphosis process from the tadpoles. Further, were observed histological alterations, highlighting necrotic areas mainly among the animals exposed to urban waters. Those damages can lead to metabolic dysfunction, interfering with survival capacity, diminishing not only individual fitness but for the whole population. In the interpretation synthesis of all biomarkers, the cellular damage gradient is perceptible, characterized by the variables related to the antioxidant system, due to the flow direction of the stream. This result is indicative that along the course of the creek occurs dumping of organic material, which promoted an acute response upon tadpoles of L. catesbeianus. and it was also observed the difference in tissue damage between the experimental groups and the control group, the latter presenting histological alterations, but to a lesser degree than the animals exposed to the waters of the Cascavel river. These damages, caused by reactive oxygen species possibly resulting from the contamination by organic compounds, can lead the animals to a series of metabolic dysfunctions, interfering with its metamorphosis capacity. Interruption of metamorphosis may affect survival, which may impair its growth, development and reproduction, diminishing not only the fitness of each individual but in a long-term, to the entire population.

Keywords: American bullfrog, histopathology, oxidative stress, urban creeks pollution

Procedia PDF Downloads 188
28 Sedimentation and Morphology of the Kura River-Deltaic System in the Southern Caucasus under Anthropogenic and Sea-Level Controls

Authors: Elmira Aliyeva, Dadash Huseynov, Robert Hoogendoorn, Salomon Kroonenberg

Abstract:

The Kura River is the major water artery in the Southern Caucasus; it is a third river in the Caspian Sea basin in terms of length and size of the catchment area, the second in terms of the water budget, and the first in the volume of sediment load. Understanding of major controls on the Kura fluvial- deltaic system is valuable for efficient management of the highly populated river basin and coastal zone. We have studied grain size of sediments accumulated in the river channels and delta and dated by 210Pb method, astrophotographs, old topographic and geological maps, and archive data. At present time sediments are supplied by the Kura River to the Caspian Sea through three distributary channels oriented north-east, south-east, and south-west. The river is dominated by the suspended load - mud, silt, very fine sand. Coarse sediments are accumulated in the distributaries, levees, point bar, and delta front. The annual suspended sediment budget in the time period 1934-1952 before construction of the Mingechavir water reservoir in 1953 in the Kura River midstream area was 36 mln.t/yr. From 1953 to 1964, the suspended load has dropped to 12 mln.t/yr. After regulation of the Kura River discharge the volume of suspended load transported via north-eastern channel reduced from 35% of the total sediment amount to 4%, and through the main south-eastern channel increased from 65% to 96% with further fall to 56% due to creation of new south-western channel in 1964. Between 1967-1976 the annual sediment budget of the Kura River reached 22,5 mln. t/yr. From 1977 to 1986, the sediment load carried by the Kura River dropped to 17,6 mln.t/yr. The historical data show that between 1860 and 1907, during relatively stable Caspian Sea level two channels - N and SE, appear to have distributed an equal amount of sediments as seen from the bilateral geometry of the delta. In the time period 1907-1929, two new channels - E and NE, appeared. The growth of three delta lobes - N, NE, and SE, and rapid progradation of the delta has occurred on the background of the Caspian Sea level rise as a result of very high sediment supply. Since 1929 the Caspian Sea level decline was followed by the progradation of the delta occurring along the SE channel. The eastern and northern channels have been silted up. The slow rate of progradation at its initial stage was caused by the artificial reduction in the sediment budget. However, the continuous sea-level fall has brought to this river bed gradient increase, high erosional rate, increase in the sediment supply, and more rapid progradation. During the subsequent sea-level rise after 1977 accompanied by the decrease in the sediment budget, the southern part of the delta has turned into a complex of small, shallow channels oriented to the south. The data demonstrate that behaviour of the Kura fluvial – deltaic system and variations in the sediment budget besides anthropogenic regulation are strongly governed by the Caspian Sea level very rapid changes.

Keywords: anthropogenic control on sediment budget, Caspian sea-level variations, Kura river sediment load, morphology of the Kura river delta, sedimentation in the Kura river delta

Procedia PDF Downloads 156
27 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 106
26 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 121
25 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy

Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais

Abstract:

Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.

Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology

Procedia PDF Downloads 204
24 Reduced General Dispersion Model in Cylindrical Coordinates and Isotope Transient Kinetic Analysis in Laminar Flow

Authors: Masood Otarod, Ronald M. Supkowski

Abstract:

This abstract discusses a method that reduces the general dispersion model in cylindrical coordinates to a second order linear ordinary differential equation with constant coefficients so that it can be utilized to conduct kinetic studies in packed bed tubular catalytic reactors at a broad range of Reynolds numbers. The model was tested by 13CO isotope transient tracing of the CO adsorption of Boudouard reaction in a differential reactor at an average Reynolds number of 0.2 over Pd-Al2O3 catalyst. Detailed experimental results have provided evidence for the validity of the theoretical framing of the model and the estimated parameters are consistent with the literature. The solution of the general dispersion model requires the knowledge of the radial distribution of axial velocity. This is not always known. Hence, up until now, the implementation of the dispersion model has been largely restricted to the plug-flow regime. But, ideal plug-flow is impossible to achieve and flow regimes approximating plug-flow leave much room for debate as to the validity of the results. The reduction of the general dispersion model transpires as a result of the application of a factorization theorem. Factorization theorem is derived from the observation that a cross section of a catalytic bed consists of a solid phase across which the reaction takes place and a void or porous phase across which no significant measure of reaction occurs. The disparity in flow and the heterogeneity of the catalytic bed cause the concentration of reacting compounds to fluctuate radially. These variabilities signify the existence of radial positions at which the radial gradient of concentration is zero. Succinctly, factorization theorem states that a concentration function of axial and radial coordinates in a catalytic bed is factorable as the product of the mean radial cup-mixing function and a contingent dimensionless function. The concentration of adsorbed compounds are also factorable since they are piecewise continuous functions and suffer the same variability but in the reverse order of the concentration of mobile phase compounds. Factorability is a property of packed beds which transforms the general dispersion model to an equation in terms of the measurable mean radial cup-mixing concentration of the mobile phase compounds and mean cross-sectional concentration of adsorbed species. The reduced model does not require the knowledge of the radial distribution of the axial velocity. Instead, it is characterized by new transport parameters so denoted by Ωc, Ωa, Ωc, and which are respectively denominated convection coefficient cofactor, axial dispersion coefficient cofactor, and radial dispersion coefficient cofactor. These cofactors adjust the dispersion equation as compensation for the unavailability of the radial distribution of the axial velocity. Together with the rest of the kinetic parameters they can be determined from experimental data via an optimization procedure. Our data showed that the estimated parameters Ωc, Ωa Ωr, are monotonically correlated with the Reynolds number. This is expected to be the case based on the theoretical construct of the model. Computer generated simulations of methanation reaction on nickel provide additional support for the utility of the newly conceptualized dispersion model.

Keywords: factorization, general dispersion model, isotope transient kinetic, partial differential equations

Procedia PDF Downloads 269
23 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75
22 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles

Authors: Huan Peng, Chenye Zeng, Zhao Wang

Abstract:

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.

Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles

Procedia PDF Downloads 63
21 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles

Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova

Abstract:

Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.

Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles

Procedia PDF Downloads 118
20 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
19 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 341
18 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 60
17 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 336
16 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 76