Search results for: bio-medical sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1741

Search results for: bio-medical sensors

631 Power System Cyber Security Risk in the Era of Digital Transformation

Authors: Rafat Rob, Khaled Alotaibi, Dana Nour, Abdullah Albadrani, Abdulmohsen Mulhim

Abstract:

Power systems digitization solutions provides a comprehensive smart, cohesive, interconnected network, extensive connectivity between digital assets, physical power plants, and resources to form digital economies. However, digitization has exposed the classical air gapped power plants to the rapid spread of cyber threats and attacks in the process delaying and forcing many organizations to rethink their cyber security policies and standards before they can augment their operation the new advanced digital devices. Cyber Security requirements for power systems (and industry control systems therein) demand a new approach, unique methodology, and design process that is completely different to Cyber Security measures designed for the IT systems. In practice, Cyber Security strategy, as applied to power systems, tends to be closely aligned to those measures applied for IT system purposes. The differentiator for Cyber Security in terms of power systems are the physical assets and applications used, alongside the ever-growing rate of expansion within the industry controls sector (in comparison to the relatively saturated growth observed for corporate IT systems). These factors increase the magnitude of the cyber security risk within such systems. The introduction of smart devices and sensors along the grid initiate vulnerable entry points to the systems. Every installed Smart Meter is a target; the way these devices communicate with each other may instigate a Denial of Service (DoS) and Distributed Denial of Service (DDoS) attack. Attacking one sensor or meter has the potential to propagate itself throughout the power grid reaching the IT network, where it may manifest itself as a malware infiltration.

Keywords: supply chain, cybersecurity, maturity model, risk, smart grid

Procedia PDF Downloads 114
630 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping

Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope

Abstract:

The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.

Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing

Procedia PDF Downloads 82
629 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan

Abstract:

Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.

Keywords: environment, Landsat 8, SW Algorithm, TIR

Procedia PDF Downloads 355
628 Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell

Authors: Nisha Singh, Neeru Adlakha

Abstract:

Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications.

Keywords: calcium signalling, coupling, finite difference method, inositol 1, 4, 5-triphosphate

Procedia PDF Downloads 292
627 Detection and Quantification of Ochratoxin A in Food by Aptasensor

Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet

Abstract:

Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.

Keywords: aptamer, aptasensor, detection, Ochratoxin A

Procedia PDF Downloads 181
626 Monitoring of the Chillon Viaducts after Rehabilitation with Ultra High Performance Fiber Reinforced Cement-Based Composite

Authors: Henar Martín-Sanz García, Eleni Chatzi, Eugen Brühwiler

Abstract:

Located on the shore of Geneva Lake, in Switzerland, the Chillon Viaducts are two parallel structures consisted of post-tensioned concrete box girders, with a total length of 2 kilometers and 100m spans. Built in 1969, the bridges currently accommodate a traffic load of 50.000 vehicles per day, thereby holding a key role both in terms of historic value as well as socio-economic significance. Although several improvements have been carried out in the past two decades, recent inspections demonstrate an Alkali-Aggregate reaction in the concrete deck and piers reducing the concrete strength. In order to prevent further expansion of this issue, a layer of 40 mm of Ultra High Performance Fiber Reinforced cement-based Composite (UHPFRC) (incorporating rebars) was casted over the slabs, acting as a waterproof membrane and providing significant increase in resistance of the bridge structure by composite UHPFRC – RC composite action in particular of the deck slab. After completing the rehabilitation works, a Structural Monitoring campaign was installed on the deck slab in one representative span, based on accelerometers, strain gauges, thermal and humidity sensors. This campaign seeks to reveal information on the behavior of UHPFRC-concrete composite systems, such as increase in stiffness, fatigue strength, durability and long-term performance. Consequently, the structural monitoring is expected to last for at least three years. A first insight of the analyzed results from the initial months of measurements is presented herein, along with future improvements or necessary changes on the deployment.

Keywords: composite materials, rehabilitation, structural health monitoring, UHPFRC

Procedia PDF Downloads 279
625 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate

Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra

Abstract:

Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.

Keywords: convection, earth, geothermal energy, thermal comfort

Procedia PDF Downloads 73
624 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties

Authors: Abdulrahman Sumayli

Abstract:

Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.

Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging

Procedia PDF Downloads 140
623 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 294
622 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs

Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua

Abstract:

Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.

Keywords: adsorption, organic dyes, iodine, metal organic frameworks

Procedia PDF Downloads 276
621 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 152
620 A Portable Device for Pulse Wave Velocity Measurements

Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen

Abstract:

Pulse wave velocity (PWV) of blood flow provides important information of vessel property and blood pressure which can be used to assess cardiovascular disease. However, the above measurements need expensive equipment, such as Doppler ultrasound, MRI, angiography etc. The photoplethysmograph (PPG) signals are commonly utilized to detect blood volume changes. In this study, two infrared (IR) probes are designed and placed at a fixed distance from finger base and fingertip. An analog circuit with automatic gain adjustment is implemented to get the stable original PPG signals from above two IR probes. In order to obtain the time delay precisely between two PPG signals, we obtain the pulse transit time from the second derivative of the original PPG signals. To get a portable, wireless and low power consumption PWV measurement device, the low energy Bluetooth 4.0 (BLE) and the microprocessor (Cortex™-M3) are used in this study. The PWV is highly correlated with blood pressure. This portable device has potential to be used for continuous blood pressure monitoring.

Keywords: pulse wave velocity, photoplethysmography, portable device, biomedical engineering

Procedia PDF Downloads 527
619 Dynamic Analysis of Mono-Pile: Spectral Element Method

Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna

Abstract:

Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.

Keywords: mono-pile, visco-elastic, impedance, LabView

Procedia PDF Downloads 118
618 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 338
617 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 292
616 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 134
615 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications

Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi

Abstract:

In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.

Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect

Procedia PDF Downloads 425
614 Influence of Urban Design on Pain and Disability in Women with Chronic Low Back Pain in Urban Cairo

Authors: Maha E. Ibrahim, Mona Abdel Aziz

Abstract:

Background: Chronic low back pain (CLBP) in urban communities represents a challenge to healthcare systems worldwide. The traditional biomedical approach to back pain has been particularly inadequate. Failure of the biomedical model to explain the poor correlation between pain and disability on the one hand, and biological and physical factors that explain those symptoms on the other has led to the adoption of the biopsychosocial model, to recognize the reciprocal influence of physical, social and psychological factors implicated in CLBP, a condition that shows higher prevalence among women residing in urban areas. Urban design of the built community has been shown to exert a significant influence on physical and psychological health. However, little research has investigated the relationship between elements of the built environment, and the level of pain and disability of women with CLBP. As Egypt embarks on building a new capital city, and new settlements proliferate, better understanding of this relationship could greatly reduce the economic and human costs of this widespread medical problem for women. Methods: This study was designed as an exploratory mixed qualitative and quantitative study. Twenty-Six women with CLBP living in two neighborhoods in Cairo, different in their urban structure, but adjacent in their locations (Old Maadi and New Maadi) were interviewed using semi-structured interviews (8 from Old Maadi and 18 from New Maadi). Located in the South of Cairo, New Maadi is a neighborhood with the characteristic modern urban style (narrow streets and tall, adjacent buildings), while Old Maadi is known for being greener, quieter and more relaxed than the usual urban districts of Cairo. The interviews examined their perceptions of the built environment, including building shapes and colors and street light, as well as their sense of safety and comfort, and how it affects their physical and psychological health in general, and their back condition in particular. In addition, they were asked to rate their level of pain and to fill the Oswestry Disability Index (ODI), and the General Health Questionnaire (GHQ-12) to rate their level of disability and psychological status, respectively. Results: Women in both districts had moderate to severe pain and moderate disability with no significant differences between the two districts. However, those living in New Maadi had significantly worse scores on the GHQ-12 than those living in Old Maadi. Most women did not feel that specific elements of the built environment affected their back pain, however, they expressed distress of the elements that were ugly, distorted or damaged, especially where there were no ways of avoiding or fixing them. Furthermore, most women affirmed that the unsightly and uncomfortable elements of their neighborhoods affected their mood states and were a constant source of stress. Conclusion: This exploratory study concludes that elements of the urban built environment do not exert a direct effect on CLBP. However, the perception of women regarding these elements does affect their mood states, and their levels of stress, making them a possible indirect cause of increased suffering in these women.

Keywords: built environment, chronic back pain, disability, urban Cairo

Procedia PDF Downloads 146
613 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A

Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim

Abstract:

Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.

Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor

Procedia PDF Downloads 188
612 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant

Procedia PDF Downloads 53
611 Polymer Composites Containing Gold Nanoparticles for Biomedical Use

Authors: Bozena Tyliszczak, Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Agnieszka Sobczak-Kupiec

Abstract:

Introduction: Nanomaterials become one of the leading materials in the synthesis of various compounds. This is a reason for the fact that nano-size materials exhibit other properties compared to their macroscopic equivalents. Such a change in size is reflected in a change in optical, electric or mechanical properties. Among nanomaterials, particular attention is currently directed into gold nanoparticles. They find application in a wide range of areas including cosmetology or pharmacy. Additionally, nanogold may be a component of modern wound dressings, which antibacterial activity is beneficial in the viewpoint of the wound healing process. Specific properties of this type of nanomaterials result in the fact that they may also be applied in cancer treatment. Studies on the development of new techniques of the delivery of drugs are currently an important research subject of many scientists. This is due to the fact that along with the development of such fields of science as medicine or pharmacy, the need for better and more effective methods of administering drugs is constantly growing. The solution may be the use of drug carriers. These are materials that combine with the active substance and lead it directly to the desired place. A role of such a carrier may be played by gold nanoparticles that are able to covalently bond with many organic substances. This allows the combination of nanoparticles with active substances. Therefore gold nanoparticles are widely used in the preparation of nanocomposites that may be used for medical purposes with special emphasis on drug delivery. Methodology: As part of the presented research, synthesis of composites was carried out. The mentioned composites consisted of the polymer matrix and gold nanoparticles that were introduced into the polymer network. The synthesis was conducted with the use of a crosslinking agent, and photoinitiator and the materials were obtained by means of the photopolymerization process. Next, incubation studies were conducted using selected liquids that simulated fluids are occurring in the human body. The study allows determining the biocompatibility of the tested composites in relation to selected environments. Next, the chemical structure of the composites was characterized as well as their sorption properties. Conclusions: Conducted research allowed for the preliminary characterization of prepared polymer composites containing gold nanoparticles in the viewpoint of their application for biomedical use. Tested materials were characterized by biocompatibility in tested environments. What is more, synthesized composites exhibited relatively high swelling capacity that is essential in the viewpoint of their potential application as drug carriers. During such an application, composite swells and at the same time releases from its interior introduced active substance; therefore, it is important to check the swelling ability of such material. Acknowledgements: The authors would like to thank The National Science Centre (Grant no: UMO - 2016/21/D/ST8/01697) for providing financial support to this project. This paper is based upon work from COST Action (CA18113), supported by COST (European Cooperation in Science and Technology).

Keywords: nanocomposites, gold nanoparticles, drug carriers, swelling properties

Procedia PDF Downloads 116
610 An In-Depth Experimental Study of Wax Deposition in Pipelines

Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.

Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop

Procedia PDF Downloads 105
609 Study on the Neurotransmitters and Digestion of Amino Acids Affecting Psychological Chemical Imbalance

Authors: Yoonah Lee, Richard Kyung

Abstract:

With technological advances in the computational biomedical field, the ability to measure neurotransmitters’ chemical imbalances that affect depression and anxiety has been established. By comparing the thermodynamics stability of amino acid supplements, such as glutamine, tyrosine, phe-nylalanine, and methionine, this research analyzes mood-regulating neurotransmitters, amino acid supplements, and antipsychotic substances (ie. Reserpine molecule and CRF complexes) in relation to depression and anxiety and suggests alternative complexes that are low in energy to act as more efficient treatments for mood disorders. To determine a molecule’s thermodynamic stability, this research examines the molecular energy using Avogadro, a software for building virtual molecules and calculating optimized geometry using GAFF (General Amber Force Field) and UFF (Universal Force Field). The molecules, built using Avogadro, is analyzed using their theoretical values and atomic properties.

Keywords: amino acids, anxiety, depression, neurotransmitters

Procedia PDF Downloads 162
608 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
607 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1

Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi

Abstract:

Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.

Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR

Procedia PDF Downloads 409
606 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 497
605 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 239
604 Use of Smartwatches for the Emotional Self-Regulation of Individuals with Autism Spectrum Disorder (ASD)

Authors: Juan C. Torrado, Javier Gomez, Guadalupe Montero, German Montoro, M. Dolores Villalba

Abstract:

One of the most challenging aspects of the executive dysfunction of people with Autism Spectrum Disorders is the behavior control. This is related to a deficit in their ability to regulate, recognize and manage their own emotions. Some researchers have developed applications for tablets and smartphones to practice strategies of relaxation and emotion recognition. However, they cannot be applied to the very moment of temper outbursts, anger episodes or anxiety, since they require to carry the device, start the application and be helped by caretakers. Also, some of these systems are developed for either obsolete technologies (old versions of tablet devices, PDAs, outdated operative systems of smartphones) or specific devices (self-developed or proprietary ones) that create differentiation between the users and the rest of the individuals in their context. For this project we selected smartwatches. Focusing on emergent technologies ensures a wide lifespan of the developed products, because the derived products are intended to be available in the same moment the very technology gets popularized, not later. We also focused our research in commercial versions of smartwatches, since this way differentiation is easily avoided, so the users’ abandonment rate lowers. We have developed a smartwatch system along with a smartphone authoring tool to display self-regulation strategies. These micro-prompting strategies are conformed of pictograms, animations and temporizers, and they are designed by means of the authoring tool: When both devices synchronize their data, the smartwatch holds the self-regulation strategies, which are triggered when the smartwatch sensors detect a remarkable rise of heart rate and movement. The system is being currently tested in an educational center of people with ASD of Madrid, Spain.

Keywords: assistive technologies, emotion regulation, human-computer interaction, smartwatches

Procedia PDF Downloads 296
603 Biological Evaluation of Some Modern Titanium Alloys for Dental Implants

Authors: Roxana Maria Angelescu, Raluca Ion, Anişoara Cîmpean, Doina Răducanu, Mariana Lucia Angelescu

Abstract:

In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well.

Keywords: biocompatibility tests, dental implants, titanium alloys, biomedical engineering

Procedia PDF Downloads 502
602 Canopy Temperature Acquired from Daytime and Nighttime Aerial Data as an Indicator of Trees’ Health Status

Authors: Agata Zakrzewska, Dominik Kopeć, Adrian Ochtyra

Abstract:

The growing number of new cameras, sensors, and research methods allow for a broader application of thermal data in remote sensing vegetation studies. The aim of this research was to check whether it is possible to use thermal infrared data with a spectral range (3.6-4.9 μm) obtained during the day and the night to assess the health condition of selected species of deciduous trees in an urban environment. For this purpose, research was carried out in the city center of Warsaw (Poland) in 2020. During the airborne data acquisition, thermal data, laser scanning, and orthophoto map images were collected. Synchronously with airborne data, ground reference data were obtained for 617 studied species (Acer platanoides, Acer pseudoplatanus, Aesculus hippocastanum, Tilia cordata, and Tilia × euchlora) in different health condition states. The results were as follows: (i) healthy trees are cooler than trees in poor condition and dying both in the daytime and nighttime data; (ii) the difference in the canopy temperatures between healthy and dying trees was 1.06oC of mean value on the nighttime data and 3.28oC of mean value on the daytime data; (iii) condition classes significantly differentiate on both daytime and nighttime thermal data, but only on daytime data all condition classes differed statistically significantly from each other. In conclusion, the aerial thermal data can be considered as an alternative to hyperspectral data, a method of assessing the health condition of trees in an urban environment. Especially data obtained during the day, which can differentiate condition classes better than data obtained at night. The method based on thermal infrared and laser scanning data fusion could be a quick and efficient solution for identifying trees in poor health that should be visually checked in the field.

Keywords: middle wave infrared, thermal imagery, tree discoloration, urban trees

Procedia PDF Downloads 115