Search results for: atomic data
24738 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 6924737 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria
Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu
Abstract:
Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.Keywords: agriculture, bioaccumulation, heavy metal, plant tissues
Procedia PDF Downloads 39024736 Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve
Authors: Krzysztof Gwozdzinski, Janusz Mazur
Abstract:
Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve.Keywords: Bory Tucholskie Biosphere Reserve, Bory Tucholskie National Park, heavy metals, lakes
Procedia PDF Downloads 12324735 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm
Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu
Abstract:
Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model
Procedia PDF Downloads 20324734 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset
Authors: Gabriele Borg, Alexei Debono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.Keywords: graph neural networks, traffic management, big data, mobile data patterns
Procedia PDF Downloads 13324733 Learning Compression Techniques on Smart Phone
Authors: Farouk Lawan Gambo, Hamada Mohammad
Abstract:
Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.Keywords: data compression, learning preference, mobile learning, multimedia
Procedia PDF Downloads 44824732 Investigation of Delivery of Triple Play Services
Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 54224731 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures
Authors: Karine B. de Oliveira, Carina F. Dorneles
Abstract:
The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.Keywords: context, data source, index, matching, search, similarity, structure
Procedia PDF Downloads 36524730 Spatially Random Sampling for Retail Food Risk Factors Study
Authors: Guilan Huang
Abstract:
In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling
Procedia PDF Downloads 35024729 Automatic MC/DC Test Data Generation from Software Module Description
Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau
Abstract:
Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage
Procedia PDF Downloads 44324728 Blockchain-Based Approach on Security Enhancement of Distributed System in Healthcare Sector
Authors: Loong Qing Zhe, Foo Jing Heng
Abstract:
A variety of data files are now available on the internet due to the advancement of technology across the globe today. As more and more data are being uploaded on the internet, people are becoming more concerned that their private data, particularly medical health records, are being compromised and sold to others for money. Hence, the accessibility and confidentiality of patients' medical records have to be protected through electronic means. Blockchain technology is introduced to offer patients security against adversaries or unauthorised parties. In the blockchain network, only authorised personnel or organisations that have been validated as nodes may share information and data. For any change within the network, including adding a new block or modifying existing information about the block, a majority of two-thirds of the vote is required to confirm its legitimacy. Additionally, a consortium permission blockchain will connect all the entities within the same community. Consequently, all medical data in the network can be safely shared with all authorised entities. Also, synchronization can be performed within the cloud since the data is real-time. This paper discusses an efficient method for storing and sharing electronic health records (EHRs). It also examines the framework of roles within the blockchain and proposes a new approach to maintain EHRs with keyword indexes to search for patients' medical records while ensuring data privacy.Keywords: healthcare sectors, distributed system, blockchain, electronic health records (EHR)
Procedia PDF Downloads 19224727 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover
Authors: M. Osipova
Abstract:
Thanks to informational technologies development every sphere of economics is becoming more and more data-centralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.Keywords: human resources management, salary expectations, statistics, turnover
Procedia PDF Downloads 35524726 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater
Authors: Morlu Stevens, Bareki Batlokwa
Abstract:
The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater
Procedia PDF Downloads 31424725 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass
Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian
Abstract:
In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 10824724 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 10124723 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 11124722 Evaluation the Concentration of Pb, Cd, Cu, Ni, Zn, Cr in Rainbow Trout and Water of Haraz River
Authors: Meysam Tehranisharif, Hadi Nakhaee, Seyed Aaghaali Seyed Moosavi, Solmaz Ahadi
Abstract:
Being the second largest river in the southern Caspian Sea basin, the Haraz River flows northwards through the Alborz mountains in the central region of Mazandaran province.The Haraz basin has specific geological characteristics affecting the river water quality.This area has been a rich source of minerals from times immemorial. About 45 mines (coal, limestone, sand and gravel, etc.) have been operational for the last eight decades. In the other hand this region is one of the most famous fish culturing area around Tehran & many farms are located beside this river .The aim of this study was to determine the concentration of Zn, Cd, Cr, pb , Cu, Ni in fish muscles & water in Haraz river. In order to determine the heavy metals concentration in all parts of the river , 4 station (Haraz , Razan , chelrood & Amol)were selected . Totally 32 samples were colleted from 8 farms (4 sample from each farm and 2 farms from each station). 4 water samples were collected. Biometeric were performed , then 10 grams of fish muscle were dissected and samples were prepared according to standard method. Heavy metal concentration were determined by atomic absorption method. The mean concentration of Zn in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.72 , 0.32,0.522,0.5 & 1.72,1.81,1.77,1.7 ppm respectively. Ni didn't detect in fish samples but the mean concentration in water samples in Haraz , Razan , Chelrood and Amool were 1.1 ,0.9,1.1,1.1 ppm respectively. The mean concentration of Cr in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.586,0.492,0.5,0.552 & 2.2 , 2.2,2.1,2.22 ppm respectively . Cd didn't detect in any sample. Pb concentration in fish samples & water in Haraz , Razan , Chelrood & Amool were 0.44,0.34, o.37,0.48 & 0.11,0.11,0.11,0.14 ppm repectively .The mean concentration of Cu in fish muscles & water in Haraz , Razan , Chelrood and Amool were 0.754,0.372,0.539,2.3 &0.11,0.21,0.17,0.37 ppm respectively. Cu concentration in The fish muscles and water was increased significantly in Amol station .The results of this study showed that heavy metal concentration in fish muscles and water are lower than standards.Keywords: heavy metals, fish, water, Haraz , Iran
Procedia PDF Downloads 34324721 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer
Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam
Abstract:
Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations
Procedia PDF Downloads 13224720 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment
Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan
Abstract:
With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.Keywords: data sharing, cross-domain, data exchange, publish-subscribe
Procedia PDF Downloads 12424719 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 52524718 Strained Channel Aluminum Nitride/Gallium Nitride Heterostructures Homoepitaxially Grown on Aluminum Nitride-On-Sapphire Template by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, GuanLin Wu, Fang liu, JunShuai Xue, JinCheng Zhang, Yue Hao
Abstract:
Due to its outstanding material properties like high thermal conductivity and ultra-wide bandgap, Aluminum nitride (AlN) has the promising potential to provide high breakdown voltage and high output power among III-nitrides for various applications in electronics and optoelectronics. This work presents material growth and characterization of strained channel Aluminum nitride/Gallium nitride (AlN/GaN) heterostructures grown by plasma-assisted molecular beam epitaxy (PA-MBE) on AlN-on-sapphire templates. To improve the crystal quality and manifest the ability of the PA-MBE approach, a thick AlN buffer with a thickness of 180 nm is first grown on AlN template, which acts as a back-barrier to enhance the breakdown characteristic and isolates the leakage path existing in the interface between AlN epilayer and AlN template, as well as improve the heat dissipation. The grown AlN buffer features a root-mean-square roughness of 0.2 nm over a scanned area of 2×2 µm2 measured by atomic force microscopy (AFM), and exhibits full-width at half-maximum of 95 and 407 arcsec for the (002) and (102) plane the X-ray rocking curve, respectively, tested by high resolution x-ray diffraction (HR-XRD). With a thin and strained GaN channel, the electron mobility of 294 cm2 /Vs. with a carrier concentration of 2.82×1013 cm-2 at room temperature is achieved in AlN/GaN double-channel heterostructures, and the depletion capacitance is as low as 14 pF resolved by the capacitance-voltage, which indicates the promising opportunities for future applications in next-generation high temperature, high-frequency and high-power electronics with a further increased electron mobility by optimization of heterointerface quality.Keywords: AlN/GaN, HEMT, MBE, homoepitaxy
Procedia PDF Downloads 9724717 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 8724716 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors
Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin
Abstract:
IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)
Procedia PDF Downloads 14124715 New Security Approach of Confidential Resources in Hybrid Clouds
Authors: Haythem Yahyaoui, Samir Moalla, Mounir Bouden, Skander ghorbel
Abstract:
Nowadays, Cloud environments are becoming a need for companies, this new technology gives the opportunities to access to the data anywhere and anytime, also an optimized and secured access to the resources and gives more security for the data which stored in the platform, however, some companies do not trust Cloud providers, in their point of view, providers can access and modify some confidential data such as bank accounts, many works have been done in this context, they conclude that encryption methods realized by providers ensure the confidentiality, although, they forgot that Cloud providers can decrypt the confidential resources. The best solution here is to apply some modifications on the data before sending them to the Cloud in the objective to make them unreadable. This work aims on enhancing the quality of service of providers and improving the trust of the customers.Keywords: cloud, confidentiality, cryptography, security issues, trust issues
Procedia PDF Downloads 37824714 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 44824713 Impact of Map Generalization in Spatial Analysis
Authors: Lin Li, P. G. R. N. I. Pussella
Abstract:
When representing spatial data and their attributes on different types of maps, the scale plays a key role in the process of map generalization. The process is consisted with two main operators such as selection and omission. Once some data were selected, they would undergo of several geometrical changing processes such as elimination, simplification, smoothing, exaggeration, displacement, aggregation and size reduction. As a result of these operations at different levels of data, the geometry of the spatial features such as length, sinuosity, orientation, perimeter and area would be altered. This would be worst in the case of preparation of small scale maps, since the cartographer has not enough space to represent all the features on the map. What the GIS users do is when they wanted to analyze a set of spatial data; they retrieve a data set and does the analysis part without considering very important characteristics such as the scale, the purpose of the map and the degree of generalization. Further, the GIS users use and compare different maps with different degrees of generalization. Sometimes, GIS users are going beyond the scale of the source map using zoom in facility and violate the basic cartographic rule 'it is not suitable to create a larger scale map using a smaller scale map'. In the study, the effect of map generalization for GIS analysis would be discussed as the main objective. It was used three digital maps with different scales such as 1:10000, 1:50000 and 1:250000 which were prepared by the Survey Department of Sri Lanka, the National Mapping Agency of Sri Lanka. It was used common features which were on above three maps and an overlay analysis was done by repeating the data with different combinations. Road data, River data and Land use data sets were used for the study. A simple model, to find the best place for a wild life park, was used to identify the effects. The results show remarkable effects on different degrees of generalization processes. It can see that different locations with different geometries were received as the outputs from this analysis. The study suggests that there should be reasonable methods to overcome this effect. It can be recommended that, as a solution, it would be very reasonable to take all the data sets into a common scale and do the analysis part.Keywords: generalization, GIS, scales, spatial analysis
Procedia PDF Downloads 33024712 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 7124711 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 15224710 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 9024709 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 86