Search results for: practice performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16702

Search results for: practice performance

5362 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT

Procedia PDF Downloads 244
5361 Smart Contracts: Bridging the Divide Between Code and Law

Authors: Abeeb Abiodun Bakare

Abstract:

The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.

Keywords: smart-contracts, law, blockchain, legal, technology

Procedia PDF Downloads 51
5360 Unraveling Language Contact through Syntactic Dynamics of ‘Also’ in Hong Kong and Britain English

Authors: Xu Zhang

Abstract:

This article unveils an indicator of language contact between English and Cantonese in one of the Outer Circle Englishes, Hong Kong (HK) English, through an empirical investigation into 1000 tokens from the Global Web-based English (GloWbE) corpus, employing frequency analysis and logistic regression analysis. It is perceived that Cantonese and general Chinese are contextually marked by an integral underlying thinking pattern. Chinese speakers exhibit a reliance on semantic context over syntactic rules and lexical forms. This linguistic trait carries over to their use of English, affording greater flexibility to formal elements in constructing English sentences. The study focuses on the syntactic positioning of the focusing subjunct ‘also’, a linguistic element used to add new or contrasting prominence to specific sentence constituents. The English language generally allows flexibility in the relative position of 'also’, while there is a preference for close marking relationships. This article shifts attention to Hong Kong, where Cantonese and English converge, and 'also' finds counterparts in Cantonese ‘jaa’ and Mandarin ‘ye’. Employing a corpus-based data-driven method, we investigate the syntactic position of 'also' in both HK and GB English. The study aims to ascertain whether HK English exhibits a greater 'syntactic freedom,' allowing for a more distant marking relationship with 'also' compared to GB English. The analysis involves a random extraction of 500 samples from both HK and GB English from the GloWbE corpus, forming a dataset (N=1000). Exclusions are made for cases where 'also' functions as an additive conjunct or serves as a copulative adverb, as well as sentences lacking sufficient indication that 'also' functions as a focusing particle. The final dataset comprises 820 tokens, with 416 for GB and 404 for HK, annotated according to the focused constituent and the relative position of ‘also’. Frequency analysis reveals significant differences in the relative position of 'also' and marking relationships between HK and GB English. Regression analysis indicates a preference in HK English for a distant marking relationship between 'also' and its focused constituent. Notably, the subject and other constituents emerge as significant predictors of a distant position for 'also.' Together, these findings underscore the nuanced linguistic dynamics in HK English and contribute to our understanding of language contact. It suggests that future pedagogical practice should consider incorporating the syntactic variation within English varieties, facilitating leaners’ effective communication in diverse English-speaking environments and enhancing their intercultural communication competence.

Keywords: also, Cantonese, English, focus marker, frequency analysis, language contact, logistic regression analysis

Procedia PDF Downloads 60
5359 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 62
5358 Hierarchical Queue-Based Task Scheduling with CloudSim

Authors: Wanqing You, Kai Qian, Ying Qian

Abstract:

The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.

Keywords: hierarchical queue, load balancing, CloudSim, information technology

Procedia PDF Downloads 428
5357 Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn

Authors: Anna Vildová, H. Hendrychová, J. Kubeš, L. Tůmová

Abstract:

The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall.

Keywords: Silybum marianum (L.) Gaertn., elicitation, silver nitrate, taxifolin

Procedia PDF Downloads 447
5356 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field

Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian

Abstract:

Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.

Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering

Procedia PDF Downloads 179
5355 Enhancing Large Language Models' Data Analysis Capability with Planning-and-Execution and Code Generation Agents: A Use Case for Southeast Asia Real Estate Market Analytics

Authors: Kien Vu, Jien Min Soh, Mohamed Jahangir Abubacker, Piyawut Pattamanon, Soojin Lee, Suvro Banerjee

Abstract:

Recent advances in Generative Artificial Intelligence (GenAI), in particular Large Language Models (LLMs) have shown promise to disrupt multiple industries at scale. However, LLMs also present unique challenges, notably, these so-called "hallucination" which is the generation of outputs that are not grounded in the input data that hinders its adoption into production. Common practice to mitigate hallucination problem is utilizing Retrieval Agmented Generation (RAG) system to ground LLMs'response to ground truth. RAG converts the grounding documents into embeddings, retrieve the relevant parts with vector similarity between user's query and documents, then generates a response that is not only based on its pre-trained knowledge but also on the specific information from the retrieved documents. However, the RAG system is not suitable for tabular data and subsequent data analysis tasks due to multiple reasons such as information loss, data format, and retrieval mechanism. In this study, we have explored a novel methodology that combines planning-and-execution and code generation agents to enhance LLMs' data analysis capabilities. The approach enables LLMs to autonomously dissect a complex analytical task into simpler sub-tasks and requirements, then convert them into executable segments of code. In the final step, it generates the complete response from output of the executed code. When deployed beta version on DataSense, the property insight tool of PropertyGuru, the approach yielded promising results, as it was able to provide market insights and data visualization needs with high accuracy and extensive coverage by abstracting the complexities for real-estate agents and developers from non-programming background. In essence, the methodology not only refines the analytical process but also serves as a strategic tool for real estate professionals, aiding in market understanding and enhancement without the need for programming skills. The implication extends beyond immediate analytics, paving the way for a new era in the real estate industry characterized by efficiency and advanced data utilization.

Keywords: large language model, reasoning, planning and execution, code generation, natural language processing, prompt engineering, data analysis, real estate, data sense, PropertyGuru

Procedia PDF Downloads 94
5354 An Improved Tracking Approach Using Particle Filter and Background Subtraction

Authors: Amir Mukhtar, Dr. Likun Xia

Abstract:

An improved, robust and efficient visual target tracking algorithm using particle filtering is proposed. Particle filtering has been proven very successful in estimating non-Gaussian and non-linear problems. In this paper, the particle filter is used with color feature to estimate the target state with time. Color distributions are applied as this feature is scale and rotational invariant, shows robustness to partial occlusion and computationally efficient. The performance is made more robust by choosing the different (YIQ) color scheme. Tracking is performed by comparison of chrominance histograms of target and candidate positions (particles). Color based particle filter tracking often leads to inaccurate results when light intensity changes during a video stream. Furthermore, background subtraction technique is used for size estimation of the target. The qualitative evaluation of proposed algorithm is performed on several real-world videos. The experimental results demonstrate that the improved algorithm can track the moving objects very well under illumination changes, occlusion and moving background.

Keywords: tracking, particle filter, histogram, corner points, occlusion, illumination

Procedia PDF Downloads 385
5353 Machine Installation and Maintenance Management

Authors: Mohammed Benmostefa

Abstract:

In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.

Keywords: maintenance, vibration, efficiency, production, machinery

Procedia PDF Downloads 92
5352 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 206
5351 The Effects of an Intervention Program on Psychosocial Factors and Consequences during the COVID-19 Pandemic in a Chilean Technology Services Company: A Quasi-Experimental Study

Authors: Julio Lavarello-Salinas, Verónica Kramm-Vergara, Pedro Gil-La Orden

Abstract:

During the COVID-19 pandemic, mental health became a relevant factor in people’s performance within organizations. The aim of this study was to analyze the effects of an organizational intervention program on the psychosocial factors of demands, resources, and the consequences of psychosocial risks in a technology services company during the COVID-19 pandemic. A quasi-experimental study was carried out with 105 employees who took part in an eight-week intervention program divided into two large stages. Pre- and post- measurements were collected using the UNIPSICO Questionnaire, considering its factors of demands, resources, and consequences of psychosocial risks. The Spanish Burnout Inventory (SBI) was also included. The results showed significant improvements in the perception of some psychosocial demand factors, all the resource factors, and all the consequences of psychosocial risks, except the guilt dimension of the SBI. Thus, we can conclude that the program was effective and that the study limitations should be improved in future studies.

Keywords: UNIPSICO questionnaire, occupational health, work stress, work psychosocial risk

Procedia PDF Downloads 111
5350 Topology Optimisation for Reduction in Material Use for Precast Concrete Elements: A Case Study of a 3D-Printed Staircase

Authors: Dengyu You, Alireza Kashani

Abstract:

This study explores the potential of 3D concrete printing in manufacturing prefabricated staircases. The applications of 3D concrete printing in large-scale construction could enhance the industry’s implementation of the Industry 4.0 concept. In addition, the current global challenge is to achieve Net Zero Emissions by 2050. Innovation in the construction industry could potentially speed up achieving this target. The 3D printing technology offers a possible solution that reduces cement usage, minimises framework wastes, and is capable of manufacturing complex structures. The performance of the 3D concrete printed lightweight staircase needs to be evaluated. In this study, the staircase is designed using computer-aided technologies, fabricated by 3D concrete printing technologies, and tested with Australian Standard (AS 1657-2018 Fixed platforms, walkways, stairways, and ladders – design, construction, and installation) under a laboratory environment. The experiment results will be further compared with the FEM analysis. The results indicate that 3D concrete printing is capable of fast production, reducing material usage, and is highly automotive, which meets the industry’s future development goal.

Keywords: concrete 3D printing, staircase, sustainability, automation

Procedia PDF Downloads 110
5349 Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model

Authors: Xiaobao Han, Huacong Li, Jia Li

Abstract:

For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model.

Keywords: linear parameter varying (LPV), parameterized Lyapunov function (PLF), linear matrix inequalities (LMI), diagonal dominance pre-compensator

Procedia PDF Downloads 402
5348 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 294
5347 Design of a Robot with a Transformable Track System in Tackling Motion Barrier

Authors: Kai-Yi Cho, Fa-Shian Chang, Lih-Tyng Hwang, Chih-Feng Liu, Jeng-Nan Lee, Shun-Min Wang, Jhu-Wei Ji

Abstract:

This paper presents a ground robot which has the tracked transformative structures of the motion mechanism. The robot has a good ability to adapt to the terrain, due to the front end of the track can be deformed, it can more easily pass the more complex area, such as to climb stairs and ramp areas. Usually in the disaster area, where the terrain is generally broken and complicated, there will be many slopes, broken walls, rubble, and obstacles, then if you want the robot through this area, you need to have a good off-road performance for possible complex terrain, this robot with the transformative tracked mechanism has a strong adaptability, it can overcome the limitation of the terrains to be a good rescue robot. Also, the robot has a good flexibility in the shape of contact with the ground; that can adapt the varied terrain by the deformable track, thus able to pass the different terrains, that was verified through the experiments on a test-platform and a field test. The prototype of the robot system has been developed, and experiments are carried out to verify the validity of the proposed design.

Keywords: tracked robot, rescue robot, transformation mechanism, deformable track, hull design

Procedia PDF Downloads 333
5346 Daily Dietary Intake and Cognitive Functioning among Population in Malaysia

Authors: Khor Khai Ling, Vashnarekha A/P Kumarasuriar, Tan Kok Wei, Ooi Pei Boon

Abstract:

The food pyramid had been stressed for years and used to promote a healthy diet. Recently, the Ministry of Health in Malaysia has changed the food pyramid structure. They moved fruits and vegetables to the bottom layer and encouraged citizens to consume more fruits and vegetables. Past research has shown that the amount of vegetables and fruits consumption has associated with cognitive health. However, Malaysians have yet to achieve the amount of fruit and vegetable intake as per recommendation. Thus, this study aims to investigate Malaysian’s habitual diet and cognitive functioning via a cross-sectional study. One hundred and ninety-three participants will be recruited via convenient sampling. A Food Frequency Questionnaire (FFQ) measures the habitual diet, and an online cognitive test measures attention, executive functioning, and memory objectively. The collected one hundred samples to the date of abstract submission, and the data collection is still in progress. This study will provide an insight to Malaysian about the diet pattern and its relationship with cognitive performance.

Keywords: attention, cognitive, executive functioning, habitual diet, memory

Procedia PDF Downloads 206
5345 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 375
5344 Utilization of Chicken Skin Based Products as Fat Replacers for Improving the Nutritional Quality, Physico-Chemical Characteristics and Sensory Attributes of Beef Fresh Sausage

Authors: Hussein M. H. Mohamed, Hamdy M. B. Zaki

Abstract:

Fresh sausage is one of the cheapest and delicious meat products that are gaining popularity all over the world. It is considered as a practice of adding value to low-value meat cuts of high fat and connective tissue contents. One of the most important characteristics of fresh sausage is the distinctive marbling appearance between lean and fatty portions, which can be achieved by using animal fat. For achieving the marbling appearance of fresh sausage, a lager amount of fat needs to be used. The use of animal fat may represent a health concern due to its content of saturated fatty acids and trans-fats, which increase the risk of heart diseases. There is a need for reducing the fat content of fresh sausage to obtain a healthy product. However, fat is responsible for the texture, flavor, and juiciness of the product. Therefore, developing reduced-fat products is a challenging process. The main objectives of the current study were to incorporate chicken skin based products (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) during the formulation of fresh sausage as fat replacers and to study the effect of these products on the nutritional quality, physicochemical properties, and sensory attributes of the processed product. Three fresh sausage formulae were prepared using chicken skin based fat replacers (chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion) beside one formula prepared using mesenteric beef fat as a control. The proximate composition, fatty acid profiles, Physico-chemical characteristics, and sensory attributes of all formulas were assessed. The results revealed that the use of chicken skin based fat replacers resulted in significant (P < 0.05) reduction of fat contents from 17.67 % in beef mesenteric fat formulated sausage to 5.77, 8.05 and 8.46 in chicken skin emulsion, gelatinized chicken skin, and gelatinized chicken skin emulsion formulated sausages, respectively. Significant reduction in the saturated fatty acid contents and a significant increase in mono-unsaturated, poly-unsaturated, and omega-3 fatty acids have been observed in all formulae processed with chicken skin based fat replacers. Moreover, significant improvements in the physico-chemical characteristics and non-significant changes in the sensory attributes have been obtained. From the obtained results, it can be concluded that the chicken skin based products can be used safely to improve the nutritional quality and physico chemical properties of beef fresh sausages without changing the sensory attributes of the product. This study may encourage meat processors to utilize chicken skin based fat replacers for the production of high quality and healthy beef fresh sausages.

Keywords: chicken skin emulsion, fresh sausage, gelatinized chicken skin, gelatinized chicken skin emulsion

Procedia PDF Downloads 132
5343 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 457
5342 A Comparative Study on the Use of Learning Resources in Learning Biochemistry by MBBS Students at Ras Al Khaimah Medical and Health Sciences University, UAE

Authors: B. K. Manjunatha Goud, Aruna Chanu Oinam

Abstract:

The undergraduate medical curriculum is oriented towards training the students to undertake the responsibilities of a physician. During the training period, adequate emphasis is placed on inculcating logical and scientific habits of thought; clarity of expression and independence of judgment; and ability to collect and analyze information and to correlate them. At Ras Al Khaimah Medical and Health Sciences University (RAKMHSU), Biochemistry a basic medical science subject is taught in the 1st year of 5 years medical course with vertical interdisciplinary interaction with all subjects, which needs to be taught and learned adequately by the students to be related to clinical case or clinical problem in medicine and future diagnostics so that they can practice confidently and skillfully in the community. Based on these facts study was done to know the extent of usage of library resources by the students and the impact of study materials on their preparation for examination. It was a comparative cross sectional study included 100 and 80 1st and 2nd-year students who had successfully completed Biochemistry course. The purpose of the study was explained to all students [participants]. Information was collected on a pre-designed, pre-tested and self-administered questionnaire. The questionnaire was validated by the senior faculties and pre tested on students who were not involved in the study. The study results showed that 80.30% and 93.15% of 1st and 2nd year students have the clear idea of course outline given in course handout or study guide. We also found a statistically significant number of students agreed that they were benefited from the practical session and writing notes in the class hour. A high percentage of students [50% and 62.02%] disagreed that that reading only the handouts is enough for their examination as compared to other students. The study also showed that only 35% and 41% of students visited the library on daily basis for the learning process, around 65% of students were using lecture notes and text books as a tool for learning and to understand the subject and 45% and 53% of students used the library resources (recommended text books) compared to online sources before the examinations. The results presented here show that students perceived that e-learning resources like power point presentations along with text book reading using SQ4R technique had made a positive impact on various aspects of their learning in Biochemistry. The use of library by students has overall positive impact on learning process especially in medical field enhances the outcome, and medical students are better equipped to treat the patient. But it’s also true that use of library use has been in decline which will impact the knowledge aspects and outcome. In conclusion, a student has to be taught how to use the library as learning tool apart from lecture handouts.

Keywords: medical education, learning resources, study guide, biochemistry

Procedia PDF Downloads 180
5341 Prenatal Genetic Screening and Counselling Competency Challenges of Nurse-Midwife

Authors: Girija Madhavanprabhakaran, Frincy Franacis, Sheeba Elizabeth John

Abstract:

Introduction: A wide range of prenatal genetic screening is introduced with increasing incidences of congenital anomalies even in low-risk pregnancies and is an emerging standard of care. Being frontline caretakers, the role and responsibilities of nurses and midwives are critical as they are working along with couples to provide evidence-based supportive educative care. The increasing genetic disorders and advances in prenatal genetic screening with limited genetic counselling facilities urge nurses and midwifery nurses with essential competencies to help couples to take informed decision. Objective: This integrative literature review aimed to explore nurse midwives’ knowledge and role in prenatal screening and genetic counselling competency and the challenges faced by them to cater to all pregnant women to empower their autonomy in decision making and ensuring psychological comfort. Method: An electronic search using keywords prenatal screening, genetic counselling, prenatal counselling, nurse midwife, nursing education, genetics, and genomics were done in the PUBMED, SCOPUS and Medline, Google Scholar. Finally, based on inclusion criteria, 8 relevant articles were included. Results: The main review results suggest that nurses and midwives lack essential support, knowledge, or confidence to be able to provide genetic counselling and help the couples ethically to ensure client autonomy and decision making. The majority of nurses and midwives reported inadequate levels of knowledge on genetic screening and their roles in obtaining family history, pedigrees, and providing genetic information for an affected client or high-risk families. The deficiency of well-recognized and influential clinical academic midwives in midwifery practice is also reported. Evidence recommended to update and provide sound educational training to improve nurse-midwife competence and confidence. Conclusion: Overcoming the challenges to achieving informed choices about fetal anomaly screening globally is a major concern. Lack of adequate knowledge and counselling competency, communication insufficiency, need for education and policy are major areas to address. Prenatal nurses' and midwives’ knowledge on prenatal genetic screening and essential counselling competencies can ensure services to the majority of pregnant women around the globe to be better-informed decision-makers and enhances their autonomy, and reduces ethical dilemmas.

Keywords: challenges, genetic counselling, prenatal screening, prenatal counselling

Procedia PDF Downloads 204
5340 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 124
5339 Image Transform Based on Integral Equation-Wavelet Approach

Authors: Yuan Yan Tang, Lina Yang, Hong Li

Abstract:

Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments.

Keywords: harmonic model, partial differential equation (PDE), integral equation, integral representation, boundary measure formula, wavelet collocation

Procedia PDF Downloads 565
5338 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels

Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam

Abstract:

The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.

Keywords: urea, NOx emissions, diesel engines, biodiesels

Procedia PDF Downloads 499
5337 Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications

Authors: B. D. Polat, Ö. Keleş

Abstract:

Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating. In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nano-structured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods.

Keywords: Cu-Sn thin film, oblique angle deposition, lithium ion batteries, anode

Procedia PDF Downloads 354
5336 Simulation of Pedestrian Service Time at Different Delay Times

Authors: Imran Badshah

Abstract:

Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls.

Keywords: agent-based simulation, anylogic model, pedestrian behavior, time delay

Procedia PDF Downloads 216
5335 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 137
5334 Strategies for Improving and Sustaining Quality in Higher Education

Authors: Anshu Radha Aggarwal

Abstract:

Higher Education (HE) in the India has experienced a series of remarkable changes over the last fifteen years as successive governments have sought to make the sector more efficient and more accountable for investment of public funds. Rapid expansion in student numbers and pressures to widen Participation amongst non-traditional students are key challenges facing HE. Learning outcomes can act as a benchmark for assuring quality and efficiency in HE and they also enable universities to describe courses in an unambiguous way so as to demystify (and open up) education to a wider audience. This paper examines how learning outcomes are used in HE and evaluates the implications for curriculum design and student learning. There has been huge expansion in the field of higher education, both technical and non-technical, in India during the last two decades, and this trend is continuing. It is expected that another about 400 colleges and 300 universities will be created by the end of the 13th Plan Period. This has lead to many concerns about the quality of education and training of our students. Many studies have brought the issues ailing our curricula, delivery, monitoring and assessment. Govt. of India, (via MHRD, UGC, NBA,…) has initiated several steps to bring improvement in quality of higher education and training, such as National Skills Qualification Framework, making accreditation of institutions mandatory in order to receive Govt. grants, and so on. Moreover, Outcome-based Education and Training (OBET) has also been mandated and encouraged in the teaching/learning institutions. MHRD, UGC and NBAhas made accreditation of schools, colleges and universities mandatory w.e.f Jan 2014. Outcome-based Education and Training (OBET) approach is learner-centric, whereas the traditional approach has been teacher-centric. OBET is a process which involves the re-orientation/restructuring the curriculum, implementation, assessment/measurements of educational goals, and achievement of higher order learning, rather than merely clearing/passing the university examinations. OBET aims to bring about these desired changes within the students, by increasing knowledge, developing skills, influencing attitudes and creating social-connect mind-set. This approach has been adopted by several leading universities and institutions around the world in advanced countries. Objectives of this paper is to highlight the issues concerning quality in higher education and quality frameworks, to deliberate on the various education and training models, to explain the outcome-based education and assessment processes, to provide an understanding of the NAAC and outcome-based accreditation criteria and processes and to share best-practice outcomes-based accreditation system and process.

Keywords: learning outcomes, curriculum development, pedagogy, outcome based education

Procedia PDF Downloads 529
5333 Controlled Mobile Platform for Service Based Humanoid Robot System

Authors: Shrikant V. Sangludkar, Dilip I. Sangotra, Sachin T. Bagde, Abhijeet A. Khandagale

Abstract:

The paper discloses a controlled tracked humanoid robot moving platform. A driving and driven wheel are controlled by a control module to drive a robot body to move according to data signals of a monitoring module, in addition, remote transmission can be achieved, and a certain remote control function can be realized. A power management module circuit board looks after in used for providing electric drive for moving of the robot body and distribution of separate power source to be used in internal of robot system. An external port circuit board is arranged, the tracked robot moving platform can be used immediately for any data acquisition. The moving platform is simple and compact in structure, strong in adaptation performance, stable in operation and suitable for being operated in severe environments. Meanwhile, a layered modular installation structure is adopted, and therefore the moving platform is convenient to assemble and disassemble.

Keywords: moving platform, humanoid robot, embedded controlled drive, mobile robot, museum robots, self-localization, obstacle avoidance, communication

Procedia PDF Downloads 431