Search results for: temperature change
1842 Investigation of Dry-Blanching and Freezing Methods of Fruits
Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné
Abstract:
Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.Keywords: blanching, freezing, fruits, microwave blanching, microwave
Procedia PDF Downloads 2671841 An Evaluation Study of Sleep and Sleep-Related Factors in Clinic Clients with Sleep Difficulties
Authors: Chi-Feng Lai, Wen-Chun Liao Liao
Abstract:
Many people are bothered by sleep difficulties in Taiwan’s society. However, majority of patients get medical treatments without a comprehensive sleep assessment. It is still a big challenge to formulate a comprehensive assessment of sleep difficulties in clinical settings, even though many assessment tools have existed in literature. This study tries to implement reliable and effective ‘comprehensive sleep assessment scales’ in a medical center and to explore differences in sleep-related factors between clinic clients with or without sleep difficulty complaints. The comprehensive sleep assessment (CSA) scales were composed of 5 dimensions: ‘personal factors’, ‘physiological factors’, ‘psychological factors’, ‘social factors’ and ‘environmental factors, and were first evaluated by expert validity and 20 participants with test-retest reliability. The Content Validity Index (CVI) of the CSA was 0.94 and the alpha of the consistency reliability ranged 0.996-1.000. Clients who visited sleep clinic due to sleep difficulties (n=32, 16 males and 16 females, ages 43.66 ±14.214) and gender-and age- matched healthy subjects without sleep difficulties (n=96, 47 males and 49 females, ages 41.99 ±13.69) were randomly recruited at a ratio of 1:3 (with sleep difficulties vs. without sleep difficulties) to compare their sleep and the CSA factors. Results show that all clinic clients with sleep difficulties did have poor sleep quality (PSQI>5) and mild to moderate daytime sleepiness (ESS >11). Personal factors of long working hours (χ2= 10.315, p=0.001), shift workers (χ2= 8.964, p=0.003), night shift (χ2=9.395, p=0.004) and perceived stress (χ2=9.503, p=0.002) were disruptors of sleep difficulties. Physiological factors from physical examination including breathing by mouth, low soft palate, high narrow palate, Edward Angle, tongue hypertrophy, and occlusion of the worn surface were observed in clinic clients. Psychological factors including higher perceived stress (χ2=32.542, p=0.000), anxiety and depression (χ2=32.868, p=0.000); social factors including lack of leisure activities (χ2=39.857, p=0.000), more drinking habits (χ2=1.798, p=0.018), irregular amount and frequency in meals (χ2=5.086, p=0.024), excessive dinner (χ2=21.511, p=0.000), being incapable of getting up on time due to previous poor night sleep (χ2=4.444, p=0.035); and environmental factors including lights (χ2=7.683, p=0.006), noise (χ2=5.086, p=0.024), low or high bedroom temperature (χ2=4.595, p=0.032) were existed in clients. In conclusion, the CSA scales can work as valid and reliable instruments for evaluating sleep-related factors. Findings of this study provide important reference for assessing clinic clients with sleep difficulties.Keywords: comprehensive sleep assessment, sleep-related factors, sleep difficulties
Procedia PDF Downloads 2751840 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties
Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.
Abstract:
Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant
Procedia PDF Downloads 2511839 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 931838 Management of Third Stage Labour in a Rural Ugandan Hospital
Authors: Brid Dinnee, Jessica Taylor, Joseph Hartland, Michael Natarajan
Abstract:
Background:The third stage of labour (TSL) can be complicated by Post-Partum Haemorrhage (PPH), which can have a significant impact on maternal mortality and morbidity. In Africa, 33.9% of maternal deaths are attributable to PPH1. In order to minimise this figure, current recommendations for the developing world are that all women have active management of the third stage of labour (AMTSL). The aim of this project was to examine TSL practice in a rural Ugandan Hospital, highlight any deviation from best practice and identify barriers to change in resource limited settings as part of a 4th year medical student External Student Selected Component field trip. Method: Five key elements from the current World Health Organisation (WHO) guidelines on AMTSL were used to develop an audit tool. All daytime vaginal deliveries over a two week period in July 2016 were audited. In addition to this, a retrospective comparison of PPH rates, between 2006 (when ubiquitous use of intramuscular oxytocin for management of TSL was introduced) and 2015 was performed. Results: Eight vaginal deliveries were observed; at all of which intramuscular oxytocin was administered and controlled cord traction used. Against WHO recommendation, all umbilical cords were clamped within one minute, and no infants received early skin-to-skin contact. In only one case was uterine massage performed after placental delivery. A retrospective comparison of data rates identified a 40% reduction in total number of PPHs from November 2006 to November 2015. Maternal deaths per delivery reduced from 2% to 0.5%. Discussion: Maternal mortality and PPH are still major issues in developing countries. Maternal mortality due to PPH can be reduced by good practices regarding TSL, but not all of these are used in low-resource settings. There is a notable difference in outcomes between the developed and developing world. At Kitovu Hospital, there has been a reduction in maternal mortality and number of PPHs following introduction of IM Oxytocin administration. In order to further improve these rates, staff education and further government funding is key.Keywords: post-partum haemorrhage, PPH, third stage labour, Uganda
Procedia PDF Downloads 2071837 Superiority of Bone Marrow Derived-Osteoblastic Cells (ALLOB®) over Bone Marrow Derived-Mesenchymal Stem Cells
Authors: Sandra Pietri, Helene Dubout, Sabrina Ena, Candice Hoste, Enrico Bastianelli
Abstract:
Bone Therapeutics is a bone cell therapy company addressing high unmet medical needs in the field of bone fracture repair, more specifically in non-union and delayed-union fractures where the bone repair process is impaired. The company has developed a unique allogeneic osteoblastic cell product (ALLOB®) derived from bone marrow which is currently tested in humans in the indication of delayed-union fractures. The purpose of our study was to directly compare ALLOB® vs. non-differentiated mesenchymal stem cells (MSC) for their in vitro osteogenic characteristics and their in vivo osteogenic potential in order to determine which cellular type would be the most adapted for bone fracture repair. Methods: Healthy volunteers’ bone marrow aspirates (n=6) were expended (i) into BM-MSCs using a complete MSC culture medium or (ii) into ALLOB® cells according to its manufacturing process. Cells were characterized in vitro by morphology, immunophenotype, gene expression and differentiation potential. Additionally, their osteogenic potential was assessed in vivo in the subperiosteal calvaria bone formation model in nude mice. Results: The in vitro side-by-side comparison studies showed that although ALLOB® and BM-MSC shared some common general characteristics such as the 3 minimal MSC criteria, ALLOB® expressed significantly higher levels of chondro/osteoblastic genes such as BMP2 (fold change (FC) > 100), ALPL (FC > 12), CBFA1 (FC > 3) and differentiated significantly earlier than BM-MSC toward the osteogenic lineage. Moreover the bone formation model in nude mice demonstrated that used at the same cellular concentration, ALLOB® was able to induce significantly more (160% vs.107% for control animals) bone formation than BM-MSC (118% vs. 107 % for control animals) two weeks after administration. Conclusion: Our side-by-side comparison studies demonstrated that in vitro and in vivo, ALLOB® displays superior osteogenic capacity to BM-MScs and is therefore a better candidate for the treatment of bone fractures.Keywords: gene expression, histomorphometry, mesenchymal stem cells, osteogenic differentiation potential, preclinical
Procedia PDF Downloads 3301836 Buddhism: Its Socio-Economic Relevance in the Present Changing World
Authors: Bandana Bhattacharya
Abstract:
‘Buddhism’, as such signifies the ‘ism’ that is based on Buddha’s life and teachings or that is concerned with the gospel of Buddha as recorded in the literature available in Pali, Sanskrit, Buddhist Sanskrit, Prakrit and even in the other non-Indian languages wherein it has been described a very abstruse, complex and lofty philosophy of life or ‘the way of life’ preached by Him (Buddha). It has another side too, i.e., the applicability of the tenets of Buddha according to the needs of the present society, where human life and outlook has been totally changed. Applied Buddhism signifies the applicability of the Buddha’s noble tenets. Along with the theological exposition and textual criticism of the Buddha’s discourses, it has now become almost obligatory for the Buddhist scholars to re-interpret Buddhism from modern perspectives. Basically Applied Buddhism defined a ‘way of life’ which may transform the higher quality of life or essence of life due to changed circumstances, places and time. Nowadays, if we observe the present situation of the world, we will find the current problems such as health, economic, politic, global warming, population explosion, pollution of all types including cultural scarcity essential commodities and indiscriminate use of human, natural and water resources are becoming more and more pronounced day by day, under such a backdrop of world situation. Applied Buddhism rather Buddhism may be the only instrument left now for mankind to address all such human achievements, lapses, and problems. Buddha’s doctrine is itself called ‘akālika, timeless’. On the eve of the Mahāparinibbāṇa at Kusinara, the Blessed One allows His disciples to change, modify and alter His minor teachings according to the needs of the future, although He has made some utterances, which would eternally remain fresh. Hence Buddhism has been able to occupy a prominent place in modern life, because of its timeless applicability, emanating from a set of eternal values. The logical and scientific outlook of Buddha may be traced in His very first sermon named the Dhammacakkapavattana-Sutta where He suggested to avoid the two extremes, namely, constantly attachment to sensual pleasures (Kāmasukhallikānuyoga) and devotion to self-mortification that is painful as well as unprofitable and asked to adopt Majjhimapaṭipadā, ‘Middle path’, which is very much applicable even today in every spheres of human life; and the absence of which is the root cause of all problems event at present. This paper will be a humble attempt to highlight the relevance of Buddhism in the present society.Keywords: applied Buddhism, ecology, self-awareness, value
Procedia PDF Downloads 1251835 Assessment of the Effect of Orally Administered Itopride on Gall Bladder Ejection Fraction by a Fatty Meal Cholescintigraphy in Patients with Diabetes
Authors: Avani Jain, Hasmukh Jain, S. Shelley, M. Indirani, Shilpa Kalal, Jayakanth Amalachandran
Abstract:
Aim of the Study: To assess the effect of orally administered Itopride on gall bladder ejection fraction by fatty meal cholescintigraphy in patients with diabetes. Materials and Methods: Thirty patients (20 males, 10 females, mean age 46+10 yrs) with history of diabetes mellitus (mean duration 4.8+4.1 yrs, fasting blood glucose level 130+35 mg/dl and 2-hours post-prandial blood glucose level 196+76 mg/dl) and found to have gall bladder dysfunction on fatty-meal stimulated cholescintigraphy were selected for this study. These patients underwent a repeat cholescintigraphy similar to baseline study, with 50 mg of Itopride orally along with fatty meal. Pre- and post-Itopride GBEF were then compared to assess the effect of Itopride on gall bladder contraction. Results: Out of these 30 patients, 2 had dyskinetic, 4 had akinetic, 22 had moderately hypokinetic and the remaining 2 had hypokinetic gall bladder function in the baseline study with > 60% GBEF being taken as the normal value. Mean percentage of GBEF in the baseline study was 32%+13% and the mean percentage of GBEF in the post-Itopride study was 57%+17% with change in mean percentage of GBEF being 24%+21%. GBEF of the “baseline study” was significantly lower as compared to GBEF in the “post-Itopride study” (p < 0.05). Conclusion: Diabetic patients with biliary-type pain often tend to have impaired gallbladder function. Cholescintigraphy with fatty meal-stimulation is a simple, cheap and useful investigation for assessment of gallbladder dysfunction in these patients, before any structural changes occur within the lumen or wall of the gall bladder. Improvement in gallbladder ejection fraction after oral administration of a single dose of Itopride, a newer prokinetic drug with fewer side effects, as assessed by cholescintigraphy, provides enough evidence of future therapeutic response. Administration of Itopride, in therapeutic dosage, therefore may be expected to cause significant improvement in gallbladder ejection fraction and hence prolong stone formation within the gall bladder and also prevent the associated long term complications. Hence, based on scintigraphic evidence, Itopride may be recommended, by clinicians, for management of symptomatic diabetic patients having gallbladder dysfunction.Keywords: itopride, gall bladder ejection fraction, fatty meal, cholescintigraphy, diabetes
Procedia PDF Downloads 4251834 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability
Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa
Abstract:
COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.Keywords: self-learning module, academic performance, statistics and probability, normal distribution
Procedia PDF Downloads 1141833 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 2691832 Antibacterial Effects of Some Medicinal and Aromatic Plant Extracts on Pathogenic Bacteria Isolated from Pear Orchards
Authors: Kubilay Kurtulus Bastas
Abstract:
Bacterial diseases are very destructive and cause economic losses on pears. Promising plant extracts for the management of plant diseases are environmentally safe, long-lasting and extracts of certain plants contain alkaloids, tannins, quinones, coumarins, phenolic compounds, and phytoalexins. In this study, bacteria were isolated from different parts of pear exhibiting characteristic symptoms of bacterial diseases from the Central Anatolia, Turkey. Pathogenic bacteria were identified by morphological, physiological, biochemical and molecular methods as fire blight (Erwinia amylovora (39%)), bacterial blossom blast and blister bark (Pseudomonas syringae pv. syringae (22%)), crown gall (Rhizobium radiobacter (1%)) from different pear cultivars, and determined virulence levels of the pathogens with pathogenicity tests. The air-dried 25 plant material was ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration (MIC) values were determined by using modified disc diffusion method at five different concentrations and streptomycin sulphate was used as control chemical. Bacterial suspensions were prepared as 108 CFU ml⁻¹ densities and 100 µl bacterial suspensions were spread to TSA medium. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the test organisms. Among the tested plants, Origanum vulgare, Hedera helix, Satureja hortensis, Rhus coriaria, Eucalyptus globulus, Rosmarinus officinalis, Ocimum basilicum, Salvia officinalis, Cuminum cyminum and Thymus vulgaris showed a good antibacterial activity and they inhibited the growth of the pathogens with inhibition zone diameter ranging from 7 to 27 mm at 20% (w/v) in absolute methanol in vitro conditions. In vivo, the highest efficacy was determined as 27% on reducing tumor formation of R. radiobacter, and 48% and 41% on reducing shoot blight of E. amylovora and P. s. pv. syringae on pear seedlings, respectively. Obtaining data indicated that some plant extracts may be used against the bacterial diseases on pome fruits within sustainable and organic management programs.Keywords: bacteria, eco-friendly management, organic, pear, plant extract
Procedia PDF Downloads 3351831 Is Electricity Consumption Stationary in Turkey?
Authors: Eyup Dogan
Abstract:
The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only.Keywords: unit root, electricity consumption, sectoral data, subnational data
Procedia PDF Downloads 4101830 Conservation of Sea Turtle in Cox’s Bazar- Teknaf Peninsula and Sonadia Island Ecologically Critical Area (ECA) of Bangladesh
Authors: Pronob Kumar Mozumder M. Nazrul Islam, M. Abdur Rob Mollah
Abstract:
This study was conducted in Cox’s Bazar-Teknaf Peninsula and Sonadia Island Ecologically Critical Areas during the period of October, 2011 to June, 2013. Six species of marine turtle are found in the Indian Ocean. Among them, olive ridley (Lepidochelys olivacea) listed as endangered in the IUCN Red List of Threatened Species. Marine turtle populations in the Indian Ocean have been depleted through long-term exploitation of eggs and adults, incidental capture (fisheries bycatch) and many other sources of mortality. The specific objective of the study was to conserve the sea turtles specially the olive ridley (Lepidochelys olivacea) with a view to contribute towards protection of the turtle species from extinction and to facilitate hatching of eggs through providing protection to turtle eggs or nest through ex-situ conservation efforts. In order to achieve the desired outputs and success, a total of five turtle hatcheries were established at Pechardwip, Khurermukh, Hazompara, Bodormokam, and Sonadia Eastpara sites. In total, 31,853 eggs were collected from 260 nests and were transferred to five hatcheries. The number of eggs/nest varied from 38 to 190 with an average clutch size of 122 eggs/ nest. Hatching of eggs took place during January to June with a peak in April. Sea turtle eggs were incubated by metabolic heat and the heat of the sun. The incubation period of turtle eggs in Cox’s Bazar-Teknaf Peninsula and Sonadia Island ECAs extended from 54 to 75 days depending on the month with an average of 66 days. During study period the temperature in the ECAs varied between 10.5-34.5°C. A total of 27,937 hatchlings of turtle were produced from the five hatcheries and all the hatchlings produced were released into the sea. Hatching rates varied from 74-98 % depending on the location and months with an average of 88 %. Sea turtles spend the majority of their lives in the sea, only emerging on beaches to nest. Despite the intense conservation efforts on the beaches, some populations have still declined to the edge of extinction. So proper conservation and awareness measure should be taken for prevention of turtle extinction.Keywords: conservation of sea turtle, Bangladesh, ecologically critical area, ECA, Lepidochelys olivacea
Procedia PDF Downloads 5131829 Sustainable Valorization of Wine Production Waste: Unlocking the Potential of Grape Pomace and Lees in the Vinho Verde Region
Authors: Zlatina Genisheva, Pedro Ferreira-Santos, Margarida Soares, Cândida Vilarinho, Joana Carvalho
Abstract:
The wine industry produces significant quantities of waste, much of which remains underutilized as a potential raw material. Typically, this waste is either discarded in the fields or incinerated, leading to environmental concerns. By-products of wine production, like lees and grape pomace, are readily available at relatively low costs and hold promise as raw materials for biochemical conversion into valuable products. Reusing these waste materials is crucial, not only for reducing environmental impact but also for enhancing profitability. The Vinhos Verdes demarcated region, the largest wine-producing area in Portugal, has remained relatively stagnant over time. This project aims to offer an alternative income source for producers in the region while also expanding the limited existing research on this area. The main objective of this project is the study of the sustainable valorization of grape pomace and lees from the production of DOC Vinho Verde. Extraction tests were performed to obtain high-value compounds, targeting phenolic compounds from grape pomace and protein-rich extracts from lees. An environmentally friendly technique, microwave extraction, was used for this process. This method is not only efficient but also aligns with the principles of green chemistry, reducing the use of harmful solvents and minimizing energy consumption. The findings from this study have the potential to open new revenue streams for the region’s wine producers while promoting environmental sustainability. The optimal conditions for extracting proteins from lees involve the use of NaOH at 150ºC. Regardless of the solvent employed, the ideal temperature for obtaining extracts rich in polyphenol compounds and exhibiting strong antioxidant activity is also 150ºC. For grape pomace, extracts with a high concentration of polyphenols and significant antioxidant properties were obtained at 210ºC. However, the highest total tannin concentrations were achieved at 150ºC, while the maximum total flavonoid content was obtained at 170ºC.Keywords: antioxidants, circular economy, polyphenol compounds, waste valorization
Procedia PDF Downloads 181828 Design Thinking Activities: A Tool in Overcoming Student Reticence
Authors: Marinel Dayawon
Abstract:
Student participation in classroom activities is vital in the teaching- learning the process as it develops self-confidence, social relationships and good academic performance of students. It is the teacher’s empathetic manner and creativity to create solutions that encourage teamwork and mutual support while dropping the academic competition within the class that hinder every shy student to walk with courage and talk with conviction because they consider their ideas, weak, as compared to the bright students. This study aimed to explore the different design thinking strategies that will change the mindset of shy students in classroom activities, maximizing their participation in all given tasks while sharing their views through ideation and providing them a wider world through compromise agreement within the members of the group, sensitivity to one’s idea, thus, arriving at a collective decision in the development of a prototype that indicates improvement in their classroom involvement. The study used the qualitative type of research. Triangulation is done through participant observation, focus group discussion and interview, documented through photos and videos. The respondents were the second- year Bachelor of Secondary Education students of the Institute of Teacher Education at Isabela State University- Cauayan City Campus. The result of the study revealed that reticent students when involved in game activities through a slap and tap method, writing their clustered ideas, using sticky notes is excited in sharing ideas as it doesn’t use oral communication. It is also observed after three weeks of using the design thinking strategies; shy students volunteer as secretary, rapporteur or group leader in the team- building activities as it represents the ideas of the heterogeneous group, removing the individual identity of the ideas. Superior students learned to listen to the ideas of the reticent students and involved them in the prototyping process of designing a remediation program for high school students showing reticence in the classroom, making their experience as a benchmark. The strategies made a 360- degrees transformation of the shy students, producing their journal log, in their journey to being open. Thus, faculty members are now adopting the design thinking approach.Keywords: design thinking activities, qualitative, reticent students, Isabela, Philippines
Procedia PDF Downloads 2251827 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial
Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler
Abstract:
Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training
Procedia PDF Downloads 1151826 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media
Authors: Amir Shafiee Kisomi, Mehrdad Mofidi
Abstract:
Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media
Procedia PDF Downloads 1531825 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin
Abstract:
This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine
Procedia PDF Downloads 3371824 Effects of Subsidy Reform on Consumption and Income Inequalities in Iran
Authors: Pouneh Soleimaninejadian, Chengyu Yang
Abstract:
In this paper, we use data on Household Income and Expenditure survey of Statistics Centre of Iran, conducted from 2005-2014, to calculate several inequality measures and to estimate the effects of Iran’s targeted subsidy reform act on consumption and income inequality. We first calculate Gini coefficients for income and consumption in order to study the relation between the two and also the effects of subsidy reform. Results show that consumption inequality has not been always mirroring changes in income inequality. However, both Gini coefficients indicate that subsidy reform caused improvement in inequality. Then we calculate Generalized Entropy Index based on consumption and income for years before and after the Subsidy Reform Act of 2010 in order to have a closer look into the changes in internal structure of inequality after subsidy reforms. We find that the improvement in income inequality is mostly caused by the decrease in inequality of lower income individuals. At the same time consumption inequality has been decreased as a result of more equal consumption in both lower and higher income groups. Moreover, the increase in Engle coefficient after the subsidy reform shows that a bigger portion of income is allocated to consumption on food which is a sign of lower living standard in general. This increase in Engle coefficient is due to rise in inflation rate and relative increase in price of food which partially is another consequence of subsidy reform. We have conducted some experiments on effect of subsidy payments and possible effects of change on distribution pattern and amount of cash subsidy payments on income inequality. Result of the effect of cash payments on income inequality shows that it leads to a definite decrease in income inequality and had a bigger share in improvement of rural areas compared to those of urban households. We also examine the possible effect of constant payments on the increasing income inequality for years after 2011. We conclude that reduction in value of payments as a result of inflation plays an important role regardless of the fact that there may be other reasons. We finally experiment with alternative allocations of transfers while keeping the total amount of cash transfers constant or make it smaller through eliminating three higher deciles from the cash payment program, the result shows that income equality would be improved significantly.Keywords: consumption inequality, generalized entropy index, income inequality, Irans subsidy reform
Procedia PDF Downloads 2361823 Assessment of Vehicular Emission and Its Impact on Urban Air Quality
Authors: Syed Imran Hussain Shah
Abstract:
Air pollution rapidly impacts the Earth's climate and environmental quality, causing public health nuisances and cardio-pulmonary illnesses. Air pollution is a global issue, and all population groups in all the regions in the developed and developing parts of the world were affected by it. The promise of a reduction in deaths and diseases as per SDG No. 3 is an international commitment towards sustainable development. In that context, assessing and evaluating the ambient air quality is paramount. This article estimates the air pollution released by the vehicles on roads of Lahore, a mega city having 13.98 million populations. A survey was conducted on different fuel stations to determine the estimated fuel pumped to different types of vehicles from different fuel stations. The number of fuel stations in Lahore is around 350. Another survey was also conducted to interview the drivers to know the per-litre fuel consumption of other vehicles. Therefore, a survey was conducted on 189 fuel stations and 400 drivers using a combination of random sampling and convenience sampling methods. The sampling was done in a manner to cover all areas of the city including central commercial hubs, modern housing societies, industrial zones, main highways, old traditional population centres, etc. Mathematical equations were also used to estimate the emissions from different modes of vehicles. Due to the increase in population, the number of vehicles is increasing, and consequently, traffic emissions were rising at a higher level. Motorcycles, auto rickshaws, motor cars, and vans were the main contributors to Carbon dioxide and vehicular emissions in the air. It has been observed that vehicles that use petrol fuel produce more Carbon dioxide emissions in the air. Buses and trucks were the main contributors to NOx in the air due to the use of diesel fuel. Whereas vans, buses, and trucks produce the maximum amount of SO2. PM10 and PM2.5 were mainly produced by motorcycles and motorcycle two-stroke rickshaws. Auto rickshaws and motor cars mainly produce benzene emissions. This study may act as a major tool for traffic and vehicle policy decisions to promote better fuel quality and more fuel-efficient vehicles to reduce emissions.Keywords: particulate matter, nitrogen dioxide, climate change, pollution control
Procedia PDF Downloads 131822 Surface Display of Lipase on Yarrowia lipolytica Cells
Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova
Abstract:
Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst
Procedia PDF Downloads 4831821 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities
Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang
Abstract:
Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles
Procedia PDF Downloads 1931820 Experimenting with Clay 3D Printing Technology to Create an Undulating Facade
Authors: Naeimehsadat Hosseininam, Rui Wang, Dishita Shah
Abstract:
In recent years, new experimental approaches with the help of the new technology have bridged the gaps between the application of natural materials and creating unconventional forms. Clay has been one of the oldest building materials in all ancient civilizations. The availability and workability of clay have contributed to the widespread application of this material around the world. The aim of this experimental research is to apply the Clay 3D printing technology to create a load bearing and visually dynamic and undulating façade. Creation of different unique pieces is the most significant goal of this research which justifies the application of 3D printing technology instead of the conventional mass industrial production. This study provides an abbreviated overview of the similar cases which have used the Clay 3D printing to generate the corresponding prototypes. The study of these cases also helps in understanding the potential and flexibility of the material and 3D printing machine in developing different forms. In the next step, experimental research carried out by 3D printing of six various options which designed considering the properties of clay as well as the methodology of them being 3D printed. Here, the ratio of water to clay (W/C) has a significant role in the consistency of the material and the workability of the clay. Also, the size of the selected nozzle impacts the shape and the smoothness of the final surface. Moreover, the results of these experiments show the limitations of clay toward forming various slopes. The most notable consequence of having steep slopes in the prototype is an unpredicted collapse which is the result of internal tension in the material. From the six initial design ideas, the final prototype selected with the aim of creating a self-supported component with unique blocks that provides a possibility of installing the insulation system within the component. Apart from being an undulated façade, the presented prototype has the potential to be used as a fence and an interior partition (double-sided). The central shaft also provides a space to run services or insulation in different parts of the wall. In parallel to present the capability and potential of the clay 3D printing technology, this study illustrates the limitations of this system in some certain areas. There are inevitable parameters such as printing speed, temperature, drying speed that need to be considered while printing each piece. Clay 3D printing technology provides the opportunity to create variations and design parametric building components with the application of the most practiced material in the world.Keywords: clay 3D printing, material capability, undulating facade, load bearing facade
Procedia PDF Downloads 1411819 Analysis and Optimized Design of a Packaged Liquid Chiller
Authors: Saeed Farivar, Mohsen Kahrom
Abstract:
The purpose of this work is to develop a physical simulation model for the purpose of studying the effect of various design parameters on the performance of packaged-liquid chillers. This paper presents a steady-state model for predicting the performance of package-Liquid chiller over a wide range of operation condition. The model inputs are inlet conditions; geometry and output of model include system performance variable such as power consumption, coefficient of performance (COP) and states of refrigerant through the refrigeration cycle. A computer model that simulates the steady-state cyclic performance of a vapor compression chiller is developed for the purpose of performing detailed physical design analysis of actual industrial chillers. The model can be used for optimizing design and for detailed energy efficiency analysis of packaged liquid chillers. The simulation model takes into account presence of all chiller components such as compressor, shell-and-tube condenser and evaporator heat exchangers, thermostatic expansion valve and connection pipes and tubing’s by thermo-hydraulic modeling of heat transfer, fluids flow and thermodynamics processes in each one of the mentioned components. To verify the validity of the developed model, a 7.5 USRT packaged-liquid chiller is used and a laboratory test stand for bringing the chiller to its standard steady-state performance condition is build. Experimental results obtained from testing the chiller in various load and temperature conditions is shown to be in good agreement with those obtained from simulating the performance of the chiller using the computer prediction model. An entropy-minimization-based optimization analysis is performed based on the developed analytical performance model of the chiller. The variation of design parameters in construction of shell-and-tube condenser and evaporator heat exchangers are studied using the developed performance and optimization analysis and simulation model and a best-match condition between the physical design and construction of chiller heat exchangers and its compressor is found to exist. It is expected that manufacturers of chillers and research organizations interested in developing energy-efficient design and analysis of compression chillers can take advantage of the presented study and its results.Keywords: optimization, packaged liquid chiller, performance, simulation
Procedia PDF Downloads 2781818 Consideration for a Policy Change to the South African Collective Bargaining Process: A Reflection on National Union of Metalworkers of South Africa v Trenstar (Pty) (2023) 44 ILJ 1189 (CC)
Authors: Carlos Joel Tchawouo Mbiada
Abstract:
At the back of the apartheid era, South Africa embarked on a democratic drive of all its institution underpinned by a social justice perspective to eradicate past injustices. These democratic values based on fundamental human rights and equality informed all rights enshrined in the Constitution of the Republic of South Africa, 1996. This means that all rights are therefore infused by social justice perspective and labour rights are no exception. Labour law is therefore regulated to the extent that it is viewed as too rigid. Hence a call for more flexibility to enhance investment and boost job creation. This view articulated by the Free Market Foundation fell on deaf ears as the opponents believe in what is termed regulated flexibility which affords greater protection to vulnerable workers while promoting business opportunities and investment. The question that this paper seeks to examine is to what extent the regulation of labour law will go to protect employees. This question is prompted by the recent Constitutional Court’s judgment of National Union of Metalworkers of South Africa v Trenstar which barred the employer from employing labour replacement in response to the strike action by its employees. The question whether employers may use replacement labour and have recourse to lock-outs in response to strike action is considered in the context of the dichotomy between the Free market foundation and social justice perspectives which are at loggerheads in the South African collective bargaining process. With the current unemployment rate soaring constantly, the aftermath of the Covid 19 pandemic, the effects of the war in Ukraine and lately the financial burden of load shedding on companies to run their businesses, this paper argues for a policy shift toward deregulation or a lesser state and judiciary intervention. This initiative will relieve the burden on companies to run a viable business while at the same time protecting existing jobs.Keywords: labour law, replacement labour, right to strike, free market foundation perspective, social justice perspective
Procedia PDF Downloads 1031817 Plethora of Drivers Transforming Colonial Cities: The Case of Allahabad
Authors: Akanksha Gupta, Vishal Dubey
Abstract:
In the Neoliberal era, there has been a much-talked discourse about urban issues that arise from a narrow approach of the single rationality of market-driven planning in Indian cities. More to this, India's urban planning is already jeopardized by the captious shortage of infrastructure, a cluster of incoherent governing bodies and implementation mechanism, leading cities to lie in the plethora of urban challenges. In this context, Allahabad (now known as Prayagraj) a city in North India is not an exception. Once known as the most planned splendid Colonial city of the British regime in India collapsed phenomenally because of the incompetent approach of planning machinery, straightforward market-driven accession and lack of attention on urban equity and sustainability. Particularly Civil Lines a Colonial neighbourhood, reached to the zenith of the glorified legacy of the Colonial era, transformed into filthy and congested urban form. Contextually this study contemplates and assesses the chronological episodes of major changes in land management reforms and policies under the ad hoc approach of political economy and land use planning which radically degraded the living environment in the present context. This study would empirically showcase the selected sample area detailing some of the major consequences in terms of gradual change in urban morphology, land use, and function. Here the method of study is primarily a qualitative study implying oral history and other historical methods to exhibit the idiom of planning conundrum. This subsequently reflects the repercussions translated into major issues like unclear land titles, encroachment, and unauthorized development and mushrooming of informal and squatter settlements. In nutshell, the study seeks to distinct out the limitations of the land reform and land management policies, which impacted the general degradation to the beautiful setting of Colonial neighbourhood. The Colonial legacy of Civil Lines now exists in the traces of history- memories of people, who once took pride in its serenity have now witnessed the transformation bit by bit till neo-liberal market forces completely swallow it.Keywords: civil lines, land reforms, policies, urban challenges
Procedia PDF Downloads 1171816 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production
Authors: Cristiane R. Magalhaes
Abstract:
Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.Keywords: building information modeling, building production, digital transformation, ICT
Procedia PDF Downloads 1221815 Association between Noise Levels, Particulate Matter Concentrations and Traffic Intensities in a Near-Highway Urban Area
Authors: Mohammad Javad Afroughi, Vahid Hosseini, Jason S. Olfert
Abstract:
Both traffic-generated particles and noise have been associated with the development of cardiovascular diseases, especially in near-highway environments. Although noise and particulate matters (PM) have different mechanisms of dispersion, sharing the same emission source in urban areas (road traffics) can result in a similar degree of variability in their levels. This study investigated the temporal variation of and correlation between noise levels, PM concentrations and traffic intensities near a major highway in Tehran, Iran. Tehran particulate concentration is highly influenced by road traffic. Additionally, Tehran ultrafine particles (UFP, PM<0.1 µm) are mostly emitted from combustion processes of motor vehicles. This gives a high possibility of a strong association between traffic-related noise and UFP in near-highway environments of this megacity. Hourly average of equivalent continuous sound pressure level (Leq), total number concentration of UFPs, mass concentration of PM2.5 and PM10, as well as traffic count and speed were simultaneously measured over a period of three days in winter. Additionally, meteorological data including temperature, relative humidity, wind speed and direction were collected in a weather station, located 3 km from the monitoring site. Noise levels showed relatively low temporal variability in near-highway environments compared to PM concentrations. Hourly average of Leq ranged from 63.8 to 69.9 dB(A) (mean ~ 68 dB(A)), while hourly concentration of particles varied from 30,800 to 108,800 cm-3 for UFP (mean ~ 64,500 cm-3), 41 to 75 µg m-3 for PM2.5 (mean ~ 53 µg m-3), and 62 to 112 µg m-3 for PM10 (mean ~ 88 µg m-3). The Pearson correlation coefficient revealed strong relationship between noise and UFP (r ~ 0.61) overall. Under downwind conditions, UFP number concentration showed the strongest association with noise level (r ~ 0.63). The coefficient decreased to a lesser degree under upwind conditions (r ~ 0.24) due to the significant role of wind and humidity in UFP dynamics. Furthermore, PM2.5 and PM10 correlated moderately with noise (r ~ 0.52 and 0.44 respectively). In general, traffic counts were more strongly associated with noise and PM compared to traffic speeds. It was concluded that noise level combined with meteorological data can be used as a proxy to estimate PM concentrations (specifically UFP number concentration) in near-highway environments of Tehran. However, it is important to measure joint variability of noise and particles to study their health effects in epidemiological studies.Keywords: noise, particulate matter, PM10, PM2.5, ultrafine particle
Procedia PDF Downloads 1941814 High Performance Liquid Cooling Garment (LCG) Using ThermoCore
Authors: Venkat Kamavaram, Ravi Pare
Abstract:
Modern warfighters experience extreme environmental conditions in many of their operational and training activities. In temperatures exceeding 95°F, the body’s temperature regulation can no longer cool through convection and radiation. In this case, the only cooling mechanism is evaporation. However, evaporative cooling is often compromised by excessive humidity. Natural cooling mechanisms can be further compromised by clothing and protective gear, which trap hot air and moisture close to the body. Creating an efficient heat extraction apparel system that is also lightweight without hindering dexterity or mobility of personnel working in extreme temperatures is a difficult technical challenge and one that needs to be addressed to increase the probability for the future success of the US military. To address this challenge, Oceanit Laboratories, Inc. has developed and patented a Liquid Cooled Garment (LCG) more effective than any on the market today. Oceanit’s LCG is a form-fitting garment with a network of thermally conductive tubes that extracts body heat and can be worn under all authorized and chemical/biological protective clothing. Oceanit specifically designed and developed ThermoCore®, a thermally conductive polymer, for use in this apparel, optimizing the product for thermal conductivity, mechanical properties, manufacturability, and performance temperatures. Thermal Manikin tests were conducted in accordance with the ASTM test method, ASTM F2371, Standard Test Method for Measuring the Heat Removal Rate of Personal Cooling Systems Using a Sweating Heated Manikin, in an environmental chamber using a 20-zone sweating thermal manikin. Manikin test results have shown that Oceanit’s LCG provides significantly higher heat extraction under the same environmental conditions than the currently fielded Environmental Control Vest (ECV) while at the same time reducing the weight. Oceanit’s LCG vests performed nearly 30% better in extracting body heat while weighing 15% less than the ECV. There are NO cooling garments in the market that provide the same thermal extraction performance, form-factor, and reduced weight as Oceanit’s LCG. The two cooling garments that are commercially available and most commonly used are the Environmental Control Vest (ECV) and the Microclimate Cooling Garment (MCG).Keywords: thermally conductive composite, tubing, garment design, form fitting vest, thermocore
Procedia PDF Downloads 1151813 Thermo-Hydro-Mechanical-Chemical Coupling in Enhanced Geothermal Systems: Challenges and Opportunities
Authors: Esmael Makarian, Ayub Elyasi, Fatemeh Saberi, Olusegun Stanley Tomomewo
Abstract:
Geothermal reservoirs (GTRs) have garnered global recognition as a sustainable energy source. The Thermo-Hydro-Mechanical-Chemical (THMC) integration coupling proves to be a practical and effective method for optimizing production in GTRs. The study outcomes demonstrate that THMC coupling serves as a versatile and valuable tool, offering in-depth insights into GTRs and enhancing their operational efficiency. This is achieved through temperature analysis and pressure changes and their impacts on mechanical properties, structural integrity, fracture aperture, permeability, and heat extraction efficiency. Moreover, THMC coupling facilitates potential benefits assessment and risks associated with different geothermal technologies, considering the complex thermal, hydraulic, mechanical, and chemical interactions within the reservoirs. However, THMC-coupling utilization in GTRs presents a multitude of challenges. These challenges include accurately modeling and predicting behavior due to the interconnected nature of processes, limited data availability leading to uncertainties, induced seismic events risks to nearby communities, scaling and mineral deposition reducing operational efficiency, and reservoirs' long-term sustainability. In addition, material degradation, environmental impacts, technical challenges in monitoring and control, accurate assessment of resource potential, and regulatory and social acceptance further complicate geothermal projects. Addressing these multifaceted challenges is crucial for successful geothermal energy resources sustainable utilization. This paper aims to illuminate the challenges and opportunities associated with THMC coupling in enhanced geothermal systems. Practical solutions and strategies for mitigating these challenges are discussed, emphasizing the need for interdisciplinary approaches, improved data collection and modeling techniques, and advanced monitoring and control systems. Overcoming these challenges is imperative for unlocking the full potential of geothermal energy making a substantial contribution to the global energy transition and sustainable development.Keywords: geothermal reservoirs, THMC coupling, interdisciplinary approaches, challenges and opportunities, sustainable utilization
Procedia PDF Downloads 69