Search results for: marketing theory and applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11654

Search results for: marketing theory and applications

434 Temporal and Spatio-Temporal Stability Analyses in Mixed Convection of a Viscoelastic Fluid in a Porous Medium

Authors: P. Naderi, M. N. Ouarzazi, S. C. Hirata, H. Ben Hamed, H. Beji

Abstract:

The stability of mixed convection in a Newtonian fluid medium heated from below and cooled from above, also known as the Poiseuille-Rayleigh-Bénard problem, has been extensively investigated in the past decades. To our knowledge, mixed convection in porous media has received much less attention in the published literature. The present paper extends the mixed convection problem in porous media for the case of a viscoelastic fluid flow owing to its numerous environmental and industrial applications such as the extrusion of polymer fluids, solidification of liquid crystals, suspension solutions and petroleum activities. Without a superimposed through-flow, the natural convection problem of a viscoelastic fluid in a saturated porous medium has already been treated. The effects of the viscoelastic properties of the fluid on the linear and nonlinear dynamics of the thermoconvective instabilities have also been treated in this work. Consequently, the elasticity of the fluid can lead either to a Hopf bifurcation, giving rise to oscillatory structures in the strongly elastic regime, or to a stationary bifurcation in the weakly elastic regime. The objective of this work is to examine the influence of the main horizontal flow on the linear and characteristics of these two types of instabilities. Under the Boussinesq approximation and Darcy's law extended to a viscoelastic fluid, a temporal stability approach shows that the conditions for the appearance of longitudinal rolls are identical to those found in the absence of through-flow. For the general three-dimensional (3D) perturbations, a Squire transformation allows the deduction of the complex frequencies associated with the 3D problem using those obtained by solving the two-dimensional one. The numerical resolution of the eigenvalue problem concludes that the through-flow has a destabilizing effect and selects a convective configuration organized in purely transversal rolls which oscillate in time and propagate in the direction of the main flow. In addition, by using the mathematical formalism of absolute and convective instabilities, we study the nature of unstable three-dimensional disturbances. It is shown that for a non-vanishing through-flow, general three-dimensional instabilities are convectively unstable which means that in the absence of a continuous noise source these instabilities are drifted outside the porous medium, and no long-term pattern is observed. In contrast, purely transversal rolls may exhibit a transition to absolute instability regime and therefore affect the porous medium everywhere including in the absence of a noise source. The absolute instability threshold, the frequency and the wave number associated with purely transversal rolls are determined as a function of the Péclet number and the viscoelastic parameters. Results are discussed and compared to those obtained from laboratory experiments in the case of Newtonian fluids.

Keywords: instability, mixed convection, porous media, and viscoelastic fluid

Procedia PDF Downloads 341
433 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin

Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa

Abstract:

Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.

Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®

Procedia PDF Downloads 131
432 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago

Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu

Abstract:

Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.

Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago

Procedia PDF Downloads 50
431 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation

Authors: Kathryn McMillan

Abstract:

A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.

Keywords: child protection, family violence, parenting, risk screening, triage.

Procedia PDF Downloads 77
430 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 191
429 Exploring the Social Health and Well-Being Factors of Hydraulic Fracturing

Authors: S. Grinnell

Abstract:

A PhD Research Project exploring the Social Health and Well-Being Impacts associated with Hydraulic Fracturing, with an aim to produce a Best Practice Support Guidance for those anticipating dealing with planning applications or submitting Environmental Impact Assessments (EIAs). Amid a possible global energy crisis, founded upon a number of factors, including unstable political situations, increasing world population growth, people living longer, it is perhaps inevitable that Hydraulic Fracturing (commonly referred to as ‘fracking’) will become a major player within the global long-term energy and sustainability agenda. As there is currently no best practice guidance for governing bodies the Best Practice Support Document will be targeted at a number of audiences including, consultants undertaking EIAs, Planning Officers, those commissioning EIAs Industry and interested public stakeholders. It will offer a robust, evidence-based criteria and recommendations which provide a clear narrative and consistent and shared approach to the language used along with containing an understanding of the issues identified. It is proposed that the Best Practice Support Document will also support the mitigation of health impacts identified. The Best Practice Support Document will support the newly amended Environmental Impact Assessment Directive (2011/92/EU), to be transposed into UK law by 2017. A significant amendment introduced focuses on, ‘higher level of protection to the environment and health.’ Methodology: A qualitative research methods approach is being taken with this research. It will have a number of key stages. A literature review has been undertaken and been critically reviewed and analysed. This was followed by a descriptive content analysis of a selection of international and national policies, programmes and strategies along with published Environmental Impact Assessments and associated planning guidance. In terms of data collection, a number of stakeholders were interviewed as well as a number of focus groups of local community groups potentially affected by fracking. These were determined from across the UK. A theme analysis of all the data collected and the literature review will be undertaken, using NVivo. Best Practice Supporting Document will be developed based on the outcomes of the analysis and be tested and piloted in the professional fields, before a live launch. Concluding statement: Whilst fracking is not a new concept, the technology is now driving a new force behind the use of this engineering to supply fuels. A number of countries have pledged moratoria on fracking until further investigation from the impacts on health have been explored, whilst other countries including Poland and the UK are pushing to support the use of fracking. If this should be the case, it will be important that the public’s concerns, perceptions, fears and objections regarding the wider social health and well-being impacts are considered along with the more traditional biomedical health impacts.

Keywords: fracking, hydraulic fracturing, socio-economic health, well-being

Procedia PDF Downloads 243
428 The Shadowy History of Berlin Underground: 1939-45/Der Schattenmann: Tagebuchaufzeichnungen 1938-1945

Authors: Christine Wiesenthal

Abstract:

This paper asks how to read a particularly vexed and complicated life writing text. For over half a century, the wartime journals of Ruth Andreas Friedrich (1901-1977) circulated as among a handful of more or less authoritative and “authentic” first-hand accounts of German resistance under Hitler. A professional journalist, Andreas Friedrich is remembered today largely through her publications at the war’s end, which appeared in English as Berlin Underground (published by Henry Holt in 1947), just before their publication in Germany as Der Schattenmann “The Shadow Man” (also in 1947). A British edition by the now obscure Latimer House Limited (London) followed in 1948; it is based closely on but is not identical to, the Henry Holt American edition, which in turn differs significantly from its German counterpart. Both Berlin Underground and Der Schattenmann figure Andreas-Friedrich as a key figure in an anti-fascist cell that operated in Berlin under the code name “Uncle Emil,” and provide a riveting account of political terror, opportunism, and dissent under the Nazi regime. Recent scholars have, however, begun to raise fascinating and controversial questions about Andreas-Friedrich’s own writing/reconstruction process in compiling the journals and about her highly selective curatorial role and claims. The apparent absence of any surviving original manuscript for Andreas-Friedrich’s journals amplifies the questions around them. Crucially, so too does the role of the translator of the English editions of Berlin Underground, the enigmatic June Barrows Mussey, a subject that has thus far gone virtually unnoticed and which this paper will focus on. Mussey, a prolific American translator, simultaneously cultivated a career as a professional magician, publishing a number of books on that subject under the alias Henry Hay. While the record indicates that Mussey attempted to compartmentalize his professional life, research into the publishing and translation history of Berlin Underground suggests that the two roles converge in the fact of the translator’s invisibility, by effacing the traces of his own hand and leaving unmarked his own significant textual interventions, Mussey, in effect, edited, abridged, and altered Andreas Friedrich’s journals for the second time. In fact, it could be said that while the fictitious “Uncle Emil” is positioned as “the shadow man” of the German edition, Mussey himself also emerges as precisely that in the English rendering of the journals. The implications of Mussey’s translation of Andreas Friedrich’s journals are one of the most important un-examined gaps in the shadowy publishing history of Berlin Underground, a history full of “tricks” (Mussey’s words) and illusions of transparency. Based largely on archival research of unpublished materials and methods of close reading and comparative analysis, this study will seek to convey some preliminary insights and exploratory work and frame questions toward what is ultimately envisioned as an experimental project in poetic historiography. As this work is still in the early stages, it would be especially welcome to have the opportunity provided by this conference to connect with a community of life writing colleagues who might help think through some of the challenges and possibilities that lie ahead.

Keywords: women’s wartime diaries, translation studies, auto/biographical theory, politics of life writing

Procedia PDF Downloads 54
427 Urban Dynamics Modelling of Mixed Land Use for Sustainable Urban Development in Indian Context

Authors: Rewati Raman, Uttam K. Roy

Abstract:

One of the main adversaries of city planning in present times is the ever-expanding problem of urbanization and the antagonistic issues accompanying it. The prevalent challenges in urbanization such as population growth, urban sprawl, poverty, inequality, pollution, congestion, etc. call for reforms in the urban fabric as well as in planning theory and practice. One of the various paradigms of city planning, land use planning, has been the major instruments for spatial planning of cities and regions in India. Zoning regulation based land use planning in the form of land use and development control plans (LUDCP) and development control regulations (DCR) have been considered mainstream guiding principles in land use planning for decades. In spite of many advantages of such zoning based regulations, over a period of time, it has been critiqued by scholars for its own limitations of isolation and lack of vitality, inconvenience in business in terms of proximity to residence and low operating cost, unsuitable environment for small investments, higher travel distance for facilities, amenities and thereby higher expenditure, safety issues etc. Mixed land use has been advocated as a tool to avoid such limitations in city planning by researchers. In addition, mixed land use can offer many advantages like housing variety and density, the creation of an economic blend of compatible land use, compact development, stronger neighborhood character, walkability, and generation of jobs, etc. Alternatively, the mixed land use beyond a suitable balance of use can also bring disadvantages like traffic congestion, encroachments, very high-density housing leading to a slum like condition, parking spill out, non-residential uses operating on residential premises paying less tax, chaos hampering residential privacy, pressure on existing infrastructure facilities, etc. This research aims at studying and outlining the various challenges and potentials of mixed land use zoning, through modeling tools, as a competent instrument for city planning in lieu of the present urban scenario. The methodology of research adopted in this paper involves the study of a mixed land use neighborhood in India, identification of indicators and parameters related to its extent and spatial pattern and the subsequent use of system dynamics as a modeling tool for simulation. The findings from this analysis helped in identifying the various advantages and challenges associated with the dynamic nature of a mixed use urban settlement. The results also confirmed the hypothesis that mixed use neighborhoods are catalysts for employment generation, socioeconomic gains while improving vibrancy, health, safety, and security. It is also seen that certain challenges related to chaos, lack of privacy and pollution prevail in mixed use neighborhoods, which can be mitigated by varying the percentage of mixing as per need, ensuring compatibility of adjoining use, institutional interventions in the form of policies, neighborhood micro-climatic interventions, etc. Therefore this paper gives a consolidated and holistic framework and quantified outcome pertaining to the extent and spatial pattern of mixed land use that should be adopted to ensure sustainable urban planning.

Keywords: mixed land use, sustainable development, system dynamics analysis, urban dynamics modelling

Procedia PDF Downloads 176
426 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier

Authors: M. V. Rane, Tareke Tekia

Abstract:

Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration

Procedia PDF Downloads 348
425 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 59
424 A Web-Based Real Property Updating System for Efficient and Sustainable Urban Development: A Case Study in Ethiopia

Authors: Eyosiyas Aga

Abstract:

The development of information communication technology has transformed the paper-based mapping and land registration processes to a computerized and networked system. The computerization and networking of real property information system play a vital role in good governance and sustainable development of emerging countries through cost effective, easy and accessible service delivery for the customer. The efficient, transparent and sustainable real property system is becoming the basic infrastructure for the urban development thus improve the data management system and service delivery in the organizations. In Ethiopia, the real property administration is paper based as a result, it confronted problems of data management, illegal transactions, corruptions, and poor service delivery. In order to solve this problem and to facilitate real property market, the implementation of web-based real property updating system is crucial. A web-based real property updating is one of the automation (computerizations) methods to facilitate data sharing, reduce time and cost of the service delivery in real property administration system. In additions, it is useful for the integration of data onto different information systems and organizations. This system is designed by combining open source software which supported by open Geo-spatial consortium. The web-based system is mainly designed by using open source software with the help of open Geo-spatial Consortium. The Open Geo-spatial Consortium standards such as the Web Feature Service and Web Map Services are the most widely used standards to support and improves web-based real property updating. These features allow the integration of data from different sources, and it can be used to maintain consistency of data throughout transactions. The PostgreSQL and Geoserver are used to manage and connect a real property data to the flex viewer and user interface. The system is designed for both internal updating system (municipality); which is mainly updating of spatial and textual information, and the external system (customer) which focus on providing and interacting with the customer. This research assessed the potential of open source web applications and adopted this technology for real property updating system in Ethiopia through simple, cost effective and secured way. The system is designed by combining and customizing open source software to enhance the efficiency of the system in cost effective way. The existing workflow for real property updating is analyzed to identify the bottlenecks, and the new workflow is designed for the system. The requirement is identified through questionnaire and literature review, and the system is prototype for the study area. The research mainly aimed to integrate human resource with technology in designing of the system to reduce data inconsistency and security problems. In additions, the research reflects on the current situation of real property administration and contributions of effective data management system for efficient, transparent and sustainable urban development in Ethiopia.

Keywords: cadaster, real property, sustainable, transparency, web feature service, web map service

Procedia PDF Downloads 267
423 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 117
422 Predicting Career Adaptability and Optimism among University Students in Turkey: The Role of Personal Growth Initiative and Socio-Demographic Variables

Authors: Yagmur Soylu, Emir Ozeren, Erol Esen, Digdem M. Siyez, Ozlem Belkis, Ezgi Burc, Gülce Demirgurz

Abstract:

The aim of the study is to determine the predictive power of personal growth initiative, socio-demographic variables (such as sex, grade, and working condition) on career adaptability and optimism of bachelor students in Dokuz Eylul University in Turkey. According to career construction theory, career adaptability is viewed as a psychosocial construct, which refers to an individual’s resources for dealing with current and expected tasks, transitions and traumas in their occupational roles. Career optimism is defined as positive results for future career development of individuals in the expectation that it will achieve or to put the emphasis on the positive aspects of the event and feel comfortable about the career planning process. Personal Growth Initiative (PGI) is defined as being proactive about one’s personal development. Additionally, personal growth is defined as the active and intentional engagement in the process of personal. A study conducted on college students revealed that individuals with high self-development orientation make more effort to discover the requirements of the profession and workspaces than individuals with low levels of personal development orientation. University life is a period that social relations and the importance of academic activities are increased, the students make efforts to progress through their career paths and it is also an environment that offers opportunities to students for their self-realization. For these reasons, personal growth initiative is potentially an important variable which has a key role for an individual during the transition phase from university to the working life. Based on the review of the literature, it is expected that individual’s personal growth initiative, sex, grade, and working condition would significantly predict one’s career adaptability. In the relevant literature, it can be seen that there are relatively few studies available on the career adaptability and optimism of university students. Most of the existing studies have been carried out with limited respondents. In this study, the authors aim to conduct a comprehensive research with a large representative sample of bachelor students in Dokuz Eylul University, Izmir, Turkey. By now, personal growth initiative and career development constructs have been predominantly discussed in western contexts where individualistic tendencies are likely to be seen. Thus, the examination of the same relationship within the context of Turkey where collectivistic cultural characteristics can be more observed is expected to offer valuable insights and provide an important contribution to the literature. The participants in this study were comprised of 1500 undergraduate students being included from thirteen faculties in Dokuz Eylul University. Stratified and random sampling methods were adopted for the selection of the participants. The Personal Growth Initiative Scale-II and Career Futures Inventory were used as the major measurement tools. In data analysis stage, several statistical analysis concerning the regression analysis, one-way ANOVA and t-test will be conducted to reveal the relationships of the constructs under investigation. At the end of this project, we will be able to determine the level of career adaptability and optimism of university students at varying degrees so that a fertile ground is likely to be created to carry out several intervention techniques to make a contribution to an emergence of a healthier and more productive youth generation in psycho-social sense.

Keywords: career optimism, career adaptability, personal growth initiative, university students

Procedia PDF Downloads 421
421 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 140
420 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties

Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta

Abstract:

Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.

Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability

Procedia PDF Downloads 102
419 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage

Authors: M. Vezir Kahraman, Emre Basturk

Abstract:

Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing

Procedia PDF Downloads 228
418 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 60
417 Introducing Data-Driven Learning into Chinese Higher Education English for Academic Purposes Writing Instructional Settings

Authors: Jingwen Ou

Abstract:

Writing for academic purposes in a second or foreign language is one of the most important and the most demanding skills to be mastered by non-native speakers. Traditionally, the EAP writing instruction at the tertiary level encompasses the teaching of academic genre knowledge, more specifically, the disciplinary writing conventions, the rhetorical functions, and specific linguistic features. However, one of the main sources of challenges in English academic writing for L2 students at the tertiary level can still be found in proficiency in academic discourse, especially vocabulary, academic register, and organization. Data-Driven Learning (DDL) is defined as “a pedagogical approach featuring direct learner engagement with corpus data”. In the past two decades, the rising popularity of the application of the data-driven learning (DDL) approach in the field of EAP writing teaching has been noticed. Such a combination has not only transformed traditional pedagogy aided by published DDL guidebooks in classroom use but also triggered global research on corpus use in EAP classrooms. This study endeavors to delineate a systematic review of research in the intersection of DDL and EAP writing instruction by conducting a systematic literature review on both indirect and direct DDL practice in EAP writing instructional settings in China. Furthermore, the review provides a synthesis of significant discoveries emanating from prior research investigations concerning Chinese university students’ perception of Data-Driven Learning (DDL) and the subsequent impact on their academic writing performance following corpus-based training. Research papers were selected from Scopus-indexed journals and core journals from two main Chinese academic databases (CNKI and Wanfang) published in both English and Chinese over the last ten years based on keyword searches. Results indicated an insufficiency of empirical DDL research despite a noticeable upward trend in corpus research on discourse analysis and indirect corpus applications for material design by language teachers. Research on the direct use of corpora and corpus tools in DDL, particularly in combination with genre-based EAP teaching, remains a relatively small fraction of the whole body of research in Chinese higher education settings. Such scarcity is highly related to the prevailing absence of systematic training in English academic writing registers within most Chinese universities' EAP syllabi due to the Chinese English Medium Instruction policy, where only English major students are mandated to submit English dissertations. Findings also revealed that Chinese learners still held mixed attitudes towards corpus tools influenced by learner differences, limited access to language corpora, and insufficient pre-training on corpus theoretical concepts, despite their improvements in final academic writing performance.

Keywords: corpus linguistics, data-driven learning, EAP, tertiary education in China

Procedia PDF Downloads 58
416 Memories of Lost Fathers: The Unfinished Transmission of Generational Values in Hungarian Cinema by Peter Falanga

Authors: Peter Falanga

Abstract:

During the process of de-Stalinization that began in 1956 with the Twentieth Congress of the Soviet Communist Party, many filmmakers in Hungary chose to explore their country’s political discomforts by using Socialist Realism as a negative model against which they could react to the dominating ideology. A renewed national film industry and a more permissive political regime would allow filmmakers to take to task the plight of the preceding generation who had experienced the fatal political turmoil of both World Wars and the purges of Stalin. What follows is no longer the multigenerational unity found in Socialist Realism wherein both the old and the young embrace Stalin’s revolutionary optimism; instead, the protagonists are parentless, and thus their connection to the previous generation is partially severed. In these films, violent historical forces leave one generation to search for both a connection with their family’s past, and for moral guidance to direct their future. István Szabó’s Father (1966), Márta Mészáros Diary for My Children (1984), and Pál Gábor’s Angi Vera (1978) each consider the fraught relationship between successive generations through the lens of postwar youth. A characteristic each of their protagonist’s share is that they are all missing one or both parents, and cope with familial loss either through recalling memories of their parents in dream-like sequences, or, in the case of Angi Vera, through embracing the surrogate paternalism that the Communist Party promises to provide. This paper considers the argument these films present about the progress of Hungarian history, and how this topic is explored in more recent films that similarly focus on the transmission of generational values. Scholars such as László Strausz and John Cunningham have written on the continuous concern with the transmission of generational values in more recent films such as István Szabó’s Sunshine (1999), Béla Tarr’s Werckmeister Harmonies (2000), György Pálfi’s Taxidermia (2006), Ágnes Kocsis’ Pál Adrienn (2010), and Kornél Mundruczó’s Evolution (2021). These films, they argue, make intimate portrayals of the various sweeping political changes in Hungary’s history and question how these epochs or events have impacted Hungarian identities. If these films attempt to personalize historical shifts of Hungary, then what is the significance of featuring characters who have lost one or both parents? An attempt to understand this coherent trend in Hungarian cinema will profit from examining the earlier, celebrated films of Szabó, Mészáros, and Gábor, who inaugurated this preoccupation with generational values. The pervasive interplay of dreams and memory in their films invites an additional element to their argument concerning historical progression. This paper incorporates Richard Teniman’s notion of the “dialectics of memory” in which memory is in a constant process of negation and reinvention to explain why these Directors prefer to explore Hungarian identity through the disarranged form of psychological realism over the linear causality structure of historical realism.

Keywords: film theory, Eastern European Studies, film history, Eastern European History

Procedia PDF Downloads 122
415 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 345
414 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 104
413 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
412 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 340
411 Approach-Avoidance Conflict in the T-Maze: Behavioral Validation for Frontal EEG Activity Asymmetries

Authors: Eva Masson, Andrea Kübler

Abstract:

Anxiety disorders (AD) are the most prevalent psychological disorders. However, far from most affected individuals are diagnosed and receive treatment. This gap is probably due to the diagnosis criteria, relying on symptoms (according to the DSM-5 definition) with no objective biomarker. Approach-avoidance conflict tasks are one common approach to simulate such disorders in a lab setting, with most of the paradigms focusing on the relationships between behavior and neurophysiology. Approach-avoidance conflict tasks typically place participants in a situation where they have to make a decision that leads to both positive and negative outcomes, thereby sending conflicting signals that trigger the Behavioral Inhibition System (BIS). Furthermore, behavioral validation of such paradigms adds credibility to the tasks – with overt conflict behavior, it is safer to assume that the task actually induced a conflict. Some of those tasks have linked asymmetrical frontal brain activity to induced conflicts and the BIS. However, there is currently no consensus for the direction of the frontal activation. The authors present here a modified version of the T-Maze paradigm, a motivational conflict desktop task, in which behavior is recorded simultaneously to the recording of high-density EEG (HD-EEG). Methods: In this within-subject design, HD-EEG and behavior of 35 healthy participants was recorded. EEG data was collected with a 128 channels sponge-based system. The motivational conflict desktop task consisted of three blocks of repeated trials. Each block was designed to record a slightly different behavioral pattern, to increase the chances of eliciting conflict. This variety of behavioral patterns was however similar enough to allow comparison of the number of trials categorized as ‘overt conflict’ between the blocks. Results: Overt conflict behavior was exhibited in all blocks, but always for under 10% of the trials, in average, in each block. However, changing the order of the paradigms successfully introduced a ‘reset’ of the conflict process, therefore providing more trials for analysis. As for the EEG correlates, the authors expect a different pattern for trials categorized as conflict, compared to the other ones. More specifically, we expect an elevated alpha frequency power in the left frontal electrodes at around 200ms post-cueing, compared to the right one (relative higher right frontal activity), followed by an inversion around 600ms later. Conclusion: With this comprehensive approach of a psychological mechanism, new evidence would be brought to the frontal asymmetry discussion, and its relationship with the BIS. Furthermore, with the present task focusing on a very particular type of motivational approach-avoidance conflict, it would open the door to further variations of the paradigm to introduce different kinds of conflicts involved in AD. Even though its application as a potential biomarker sounds difficult, because of the individual reliability of both the task and peak frequency in the alpha range, we hope to open the discussion for task robustness for neuromodulation and neurofeedback future applications.

Keywords: anxiety, approach-avoidance conflict, behavioral inhibition system, EEG

Procedia PDF Downloads 38
410 A Survey of Digital Health Companies: Opportunities and Business Model Challenges

Authors: Iris Xiaohong Quan

Abstract:

The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.

Keywords: digital health, business models, entrepreneurship opportunities, healthcare

Procedia PDF Downloads 183
409 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 326
408 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 250
407 Recent Advances in Research on Carotenoids: From Agrofood Production to Health Outcomes

Authors: Antonio J. Melendez-Martinez

Abstract:

Beyond their role as natural colorants, some carotenoids are provitamins A and may be involved in health-promoting biological actions and contribute to reducing the risk of developing non-communicable diseases, including several types of cancer, cardiovascular disease, eye conditions, skin disorders or metabolic disorders. Given the versatility of carotenoids, the COST-funded European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN) is aimed at promoting health through the diet and increasing well-being by means. Stakeholders from 38 countries participate in this network, and one of its main objectives is to promote research on little-studied carotenoids. In this contribution, recent advances of our research group and collaborators in the study of two such understudied carotenoids, namely phytoene and phytofluene, the colorless carotenoids, are outlined. The study of these carotenoids is important as they have been largely neglected despite they are present in our diets, fluids, and tissues, and evidence is accumulating that they may be involved in health-promoting actions. More specifically, studies on their levels in diverse tomato and orange varieties were carried out as well as on their potential bioavailability from different dietary sources. Furthermore, the potential effect of these carotenoids on an animal model subjected to oxidative stress was evaluated. The tomatoes were grown in research greenhouses, and some of them were subjected to regulated deficit irrigation, a sustainable agronomic practice. The citrus samples were obtained from an experimental field. The levels of carotenoids were assessed using HPLC according to routine methodologies followed in our lab. Regarding the potential bioavailability (bioaccessibility) studies, different products containing colorless carotenoids, like fruits, juices, were subjected to simulated in vitro digestions, and their incorporation into mixed micelles was assessed. The effect of the carotenoids on oxidative stress was evaluated on the Caenorhabditis elegans model. For that purpose, the worms were subjected to oxidative stress by means of a hydrogen peroxide challenge. In relation to the presence of colorless carotenoids in tomatoes and orange varieties, it was observed that they are widespread in such products and that there are mutants with very high quantities of them, for instance, the Cara Cara or Pinalate mutant oranges. The studies on their bioaccessibility revealed that, in general, phytoene and phytofluene are more bioaccessible than other common dietary carotenoids, probably due to their distinctive chemical structure. About the in vivo antioxidant capacity of phytoene and phytofluene, it was observed that they both exerted antioxidant effects at certain doses. In conclusion, evidence on the importance of phytoene and phytofluene as dietary easily bioavailable and antioxidant carotenoids has been obtained in recent studies from our group, which can be important shortly to innovate in health-promotion through the development of functional foods and related products.

Keywords: carotenoids, health, functional foods, nutrition, phytoene, phytofluene

Procedia PDF Downloads 103
406 Urban Open Source: Synthesis of a Citizen-Centric Framework to Design Densifying Cities

Authors: Shaurya Chauhan, Sagar Gupta

Abstract:

Prominent urbanizing centres across the globe like Delhi, Dhaka, or Manila have exhibited that development often faces a challenge in bridging the gap among the top-down collective requirements of the city and the bottom-up individual aspirations of the ever-diversifying population. When this exclusion is intertwined with rapid urbanization and diversifying urban demography: unplanned sprawl, poor planning, and low-density development emerge as automated responses. In parallel, new ideas and methods of densification and public participation are being widely adopted as sustainable alternatives for the future of urban development. This research advocates a collaborative design method for future development: one that allows rapid application with its prototypical nature and an inclusive approach with mediation between the 'user' and the 'urban', purely with the use of empirical tools. Building upon the concepts and principles of 'open-sourcing' in design, the research establishes a design framework that serves the current user requirements while allowing for future citizen-driven modifications. This is synthesized as a 3-tiered model: user needs – design ideology – adaptive details. The research culminates into a context-responsive 'open source project development framework' (hereinafter, referred to as OSPDF) that can be used for on-ground field applications. To bring forward specifics, the research looks at a 300-acre redevelopment in the core of a rapidly urbanizing city as a case encompassing extreme physical, demographic, and economic diversity. The suggestive measures also integrate the region’s cultural identity and social character with the diverse citizen aspirations, using architecture and urban design tools, and references from recognized literature. This framework, based on a vision – feedback – execution loop, is used for hypothetical development at the five prevalent scales in design: master planning, urban design, architecture, tectonics, and modularity, in a chronological manner. At each of these scales, the possible approaches and avenues for open- sourcing are identified and validated, through hit-and-trial, and subsequently recorded. The research attempts to re-calibrate the architectural design process and make it more responsive and people-centric. Analytical tools such as Space, Event, and Movement by Bernard Tschumi and Five-Point Mental Map by Kevin Lynch, among others, are deep rooted in the research process. Over the five-part OSPDF, a two-part subsidiary process is also suggested after each cycle of application, for a continued appraisal and refinement of the framework and urban fabric with time. The research is an exploration – of the possibilities for an architect – to adopt the new role of a 'mediator' in development of the contemporary urbanity.

Keywords: open source, public participation, urbanization, urban development

Procedia PDF Downloads 149
405 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data

Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder

Abstract:

Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.

Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods

Procedia PDF Downloads 253