Search results for: Two-Higgs Doublet Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16889

Search results for: Two-Higgs Doublet Model

5729 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China

Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang

Abstract:

Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.

Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle

Procedia PDF Downloads 285
5728 The Effect of Diet Intervention for Breast Cancer: A Meta-Analysis

Authors: Bok Yae Chung, Eun Hee Oh

Abstract:

Breast cancer patients require more nutritional interventions than others. However, a few studies have attempted to assess the overall nutritional status, to reduce body weight and BMI by improving diet, and to improve the prognosis of cancer for breast cancer patients. The purpose of this study was to evaluate the effect of diet intervention in the breast cancer patients through meta-analysis. For the study purpose, 16 studies were selected by using PubMed, ScienceDirect, ProQuest and CINAHL. Meta-analysis was performed using a random-effects model, and the effect size on outcome variables in breast cancer was calculated. The effect size for outcome variables of diet intervention was a large effect size. For heterogeneity, moderator analysis was performed using intervention type and intervention duration. All moderators did not significant difference. Diet intervention has significant positive effects on outcome variables in breast cancer. As a result, it is suggested that the timing of the intervention should be no more than six months, but a strategy for sustaining long-term intervention effects should be added if nutritional intervention is to be administered for breast cancer patients in the future.

Keywords: breast cancer, diet, mete-analysis, intervention

Procedia PDF Downloads 437
5727 The Hyundai Model: A Self-Sufficient State like Entity Masquerading as a Company

Authors: Nikita Koradia

Abstract:

Hyundai Motor Company, which started off as a small fish in a big sea, paved its way out successfully and established itself as an independent group from the conglomerate. Hyundai, with its officious power across the globe and particularly in South Korea in the automobile industry, has one the most complex yet fascinating governance structure. Being the second largest contributor to the Gross Domestic Product of South Korea after Samsung and having a market share of 51.3% domestically in automobile industry, Hyundai has faced its part of criticism owing to its anti-labor union approach and owing to its internalization of supply chain management. The censure has been coming from across jurisdictions like China, India, Canada, the EU, etc. The paper focuses on the growth of Hyundai and its inward and outward investment structure. The paper questions the ability of Hyundai to become a mini-state in itself by focusing on its governance structure. The paper further elaborates on its compliance and disclosure regime in the field of Corporate social responsibility and explores how far the business structure adopted by Hyundai works in its favor to become one of the leading automobile contenders in the market.

Keywords: compliance regime, disclosure regime, Hyundai motor company, supply-chain management

Procedia PDF Downloads 124
5726 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 137
5725 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 225
5724 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 246
5723 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Keywords: 3D modelling, UAS, cultural heritage, preservation

Procedia PDF Downloads 127
5722 The Golden Ratio as a Common ‘Topos’ of Architectural, Musical and Stochastic Research of Iannis Xenakis

Authors: Nikolaos Mamalis

Abstract:

The work of the eminent architect and composer has undoubtedly been influenced both by his architecture and collaboration with Le Corbusier and by the conquests of the musical avant-garde of the 20th century (Schoenberg, Messian, Bartock, electroacoustic music). It is known that the golden mean and the Fibonacci sequence played a momentous role in the Architectural Avant-garde (Modulor) and expanded on musical pursuits. Especially in the 50s (serialism), it was a structural tool for composition. Xenakis' architectural and musical work (Sacrifice, Metastasis, Rebonds, etc.) received the influence of the Golden Section, as has been repeatedly demonstrated. However, the idea of this retrospective sequence and the reflection raised by the search for new proportions, both in the architectural and the musical work of Xenakis, was not limited to constituting a step, a workable formula that acted unifyingly with regard to the other parameters of the musical work, or as an aesthetic model that makes sense - philosophically and poetically - an anthropocentric dimension as in other composers (see Luigi Nono) ̇ triggered a qualitative leap, an opening of the composer to the assimilation of mathematical concepts and scientific types in music and the consolidation of new sound horizons of stochastic music.

Keywords: golden ratio, music, space, stochastic music

Procedia PDF Downloads 54
5721 Optimizing Machine Learning Through Python Based Image Processing Techniques

Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash

Abstract:

This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.

Keywords: image processing, machine learning applications, template matching, emotion detection

Procedia PDF Downloads 24
5720 Multimodal Convolutional Neural Network for Musical Instrument Recognition

Authors: Yagya Raj Pandeya, Joonwhoan Lee

Abstract:

The dynamic behavior of music and video makes it difficult to evaluate musical instrument playing in a video by computer system. Any television or film video clip with music information are rich sources for analyzing musical instruments using modern machine learning technologies. In this research, we integrate the audio and video information sources using convolutional neural network (CNN) and pass network learned features through recurrent neural network (RNN) to preserve the dynamic behaviors of audio and video. We use different pre-trained CNN for music and video feature extraction and then fine tune each model. The music network use 2D convolutional network and video network use 3D convolution (C3D). Finally, we concatenate each music and video feature by preserving the time varying features. The long short term memory (LSTM) network is used for long-term dynamic feature characterization and then use late fusion with generalized mean. The proposed network performs better performance to recognize the musical instrument using audio-video multimodal neural network.

Keywords: multimodal, 3D convolution, music-video feature extraction, generalized mean

Procedia PDF Downloads 218
5719 Charge Transport in Biological Molecules

Authors: E. L. Albuquerque, U. L. Fulco, G. S. Ourique

Abstract:

The focus of this work is on the numerical investigation of the charge transport properties of the de novo-designed alpha3 polypeptide, as well as in its variants, all of them probed by gene engineering. The theoretical framework makes use of a tight-binding model Hamiltonian, together with ab-initio calculations within quantum chemistry simulation. The alpha3 polypeptide is a 21-residue with three repeats of the seven-residue amino acid sequence Leu-Glu-Thr-Leu-Ala-Lys-Ala, forming an alpha–helical bundle structure. Its variants are obtained by Ala→Gln substitution at the e (5th) and g (7th) position, respectively, of the alpha3 polypeptide amino acid sequence. Using transmission electron microscopy and atomic force microscopy, it was observed that the alpha3 polypeptide and one of its variant do have the ability to form fibrous assemblies, while the other does not. Our main aim is to investigate whether or not the biased alpha3 polypeptide and its variants can be also identified by quantum charge transport measurements through current-voltage (IxV) curves as a pattern to characterize their fibrous assemblies. It was observed that each peptide has a characteristic current pattern, which may be distinguished by charge transport measurements, suggesting that it might be a useful tool for the development of biosensors.

Keywords: charge transport properties, electronic transmittance, current-voltage characteristics, biological sensor

Procedia PDF Downloads 666
5718 The 5-HT1A Receptor Biased Agonists, NLX-101 and NLX-204, Elicit Rapid-Acting Antidepressant Activity in Rat Similar to Ketamine and via GABAergic Mechanisms

Authors: A. Newman-Tancredi, R. Depoortère, P. Gruca, E. Litwa, M. Lason, M. Papp

Abstract:

The N-methyl-D-aspartic acid (NMDA) receptor antagonist, ketamine, can elicit rapid-acting antidepressant (RAAD) effects in treatment-resistant patients, but it requires parenteral co-administration with a classical antidepressant under medical supervision. In addition, ketamine can also produce serious side effects that limit its long-term use, and there is much interest in identifying RAADs based on ketamine’s mechanism of action but with safer profiles. Ketamine elicits GABAergic interneuron inhibition, glutamatergic neuron stimulation, and, notably, activation of serotonin 5-HT1A receptors in the prefrontal cortex (PFC). Direct activation of the latter receptor subpopulation with selective ‘biased agonists’ may therefore be a promising strategy to identify novel RAADs and, consistent with this hypothesis, the prototypical cortical biased agonist, NLX-101, exhibited robust RAAD-like activity in the chronic mild stress model of depression (CMS). The present study compared the effects of a novel, selective 5-HT1A receptor-biased agonist, NLX-204, with those of ketamine and NLX-101. Materials and methods: CMS procedure was conducted on Wistar rats; drugs were administered either intraperitoneally (i.p.) or by bilateral intracortical microinjection. Ketamine: 10 mg/kg i.p. or 10 µg/side in PFC; NLX-204 and NLX-101: 0.08 and 0.16 mg/kg i.p. or 16 µg/side in PFC. In addition, interaction studies were carried out with systemic NLX-204 or NLX-101 (each at 0.16 mg/kg i.p.) in combination with intracortical WAY-100635 (selective 5-HT1A receptor antagonist; 2 µg/side) or muscimol (GABA-A receptor agonist, 12.5 ng/side). Anhedonia was assessed by CMS-induced decrease in sucrose solution consumption; anxiety-like behavior was assessed using the Elevated Plus Maze (EPM), and cognitive impairment was assessed by the Novel Object Recognition (NOR) test. Results: A single administration of NLX-204 was sufficient to reverse the CMS-induced deficit in sucrose consumption, similarly to ketamine and NLX-101. NLX-204 also reduced CMS-induced anxiety in the EPM and abolished CMS-induced NOR deficits. These effects were maintained (EPM and NOR) or enhanced (sucrose consumption) over a subsequent 2-week period of treatment. The anti-anhedonic response of the drugs was also maintained for several weeks Following treatment discontinuation, suggesting that they had sustained effects on neuronal networks. A single PFC administration of NLX-204 reversed deficient sucrose consumption, similarly to ketamine and NLX-101. Moreover, the anti-anhedonic activities of systemic NLX-204 and NLX 101 were abolished by coadministration with intracortical WAY-100635 or muscimol. Conclusions: (i) The antidepressant-like activity of NLX-204 in the rat CMS model was as rapid as that of ketamine or NLX-101, supporting targeting cortical 5-HT1A receptors with selective, biased agonists to achieve RAAD effects. (ii)The anti-anhedonic activity of systemic NLX-204 was mimicked by local administration of the compound in the PFC, confirming the involvement of cortical circuits in its RAAD-like effects. (iii) Notably, the effects of systemic NLX-204 and NLX-101 were abolished by PFC administration of muscimol, indicating that they act by (indirectly) eliciting a reduction in cortical GABAergic neurotransmission. This is consistent with ketamine’s mechanism of action and suggests that there are converging NMDA and 5-HT1A receptor signaling cascades in PFC underlying the RAAD-like activities of ketamine and NLX-204. Acknowledgements: The study was financially supported by NCN grant no. 2019/35/B/NZ7/00787.

Keywords: depression, ketamine, serotonin, 5-HT1A receptor, chronic mild stress

Procedia PDF Downloads 119
5717 Reconsidering Taylor’s Law with Chaotic Population Dynamical Systems

Authors: Yuzuru Mitsui, Takashi Ikegami

Abstract:

The exponents of Taylor’s law in deterministic chaotic systems are computed, and their meanings are intensively discussed. Taylor’s law is the scaling relationship between the mean and variance (in both space and time) of population abundance, and this law is known to hold in a variety of ecological time series. The exponents found in the temporal Taylor’s law are different from those of the spatial Taylor’s law. The temporal Taylor’s law is calculated on the time series from the same locations (or the same initial states) of different temporal phases. However, with the spatial Taylor’s law, the mean and variance are calculated from the same temporal phase sampled from different places. Most previous studies were done with stochastic models, but we computed the temporal and spatial Taylor’s law in deterministic systems. The temporal Taylor’s law evaluated using the same initial state, and the spatial Taylor’s law was evaluated using the ensemble average and variance. There were two main discoveries from this work. First, it is often stated that deterministic systems tend to have the value two for Taylor’s exponent. However, most of the calculated exponents here were not two. Second, we investigated the relationships between chaotic features measured by the Lyapunov exponent, the correlation dimension, and other indexes with Taylor’s exponents. No strong correlations were found; however, there is some relationship in the same model, but with different parameter values, and we will discuss the meaning of those results at the end of this paper.

Keywords: chaos, density effect, population dynamics, Taylor’s law

Procedia PDF Downloads 177
5716 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 515
5715 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H. Lin, Y. M. Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: horizontal axis wind turbine, turbulence model, noise, fluid dynamics

Procedia PDF Downloads 269
5714 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 484
5713 Effects of X and + Tail-Body Configurations on Hydrodynamic Performance and Stability of an Underwater Vehicle

Authors: Kadri Koçer, Sezer Kefeli

Abstract:

This paper proposes a comparison of hydrodynamic performance and stability characteristic for an underwater vehicle which has two type of tail design, namely X and +tail-body configurations. The effects of these configurations on the underwater vehicle’s hydrodynamic performance and maneuvering characteristic will be investigated comprehensively. Hydrodynamic damping coefficients for modeling the motion of the underwater vehicles will be predicted. Additionally, forces and moments due to control surfaces will be compared using computational fluid dynamics methods. In the aviation, the X tail-body configuration is widely used for high maneuverability requirements. However, in the underwater, the + tail-body configuration is more commonly used than the X tail-body configuration for its stability characteristics. Thus it is important to see the effect and differences of the tail designs in the underwater world. For CFD analysis, the incompressible, three-dimensional, and steady Navier-Stokes equations will be used to simulate the flows. Also, k-ε Realizable turbulence model with enhanced wall treatment will be taken. Numerical results is verified with experimental results for verification. The overall goal of this study is to present the advantages and disadvantages of hydrodynamic performance and stability characteristic for X and + tail-body configurations of the underwater vehicle.

Keywords: maneuverability, stability, CFD, tail configuration, hydrodynamic design

Procedia PDF Downloads 193
5712 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis

Authors: Alyona Gencheva

Abstract:

The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.

Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk

Procedia PDF Downloads 117
5711 Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation

Authors: M. Rahimi, F. Corman

Abstract:

This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents.

Keywords: agent-based simulation, disruption management, passengers’ behavior simulation, public transport

Procedia PDF Downloads 157
5710 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis

Authors: Cyril Ekuaze

Abstract:

This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.

Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries

Procedia PDF Downloads 331
5709 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 105
5708 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 107
5707 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis

Authors: Hamad Rafique

Abstract:

The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.

Keywords: oat protein, active peptide, neuroprotective, gut-brain axis

Procedia PDF Downloads 35
5706 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks

Procedia PDF Downloads 146
5705 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model

Authors: Swarn Singh, Suruchi Singh

Abstract:

In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.

Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability

Procedia PDF Downloads 474
5704 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides

Procedia PDF Downloads 158
5703 Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%.

Keywords: biodiesel production, factorial design, membrane reactor, soybean oil

Procedia PDF Downloads 379
5702 Structure-Based Virtual Screening to Identify CLDN4 Inhibitors

Authors: Jayanthi Sivaraman

Abstract:

Claudins are the important components of the tight junctions that play a key role in paracellular permeability. Among various members of Claudin family, Claudin 4 (CLDN4) is found to be overexpressed in ovarian, pancreatic carcinomas and other epithelial malignancies. Therefore, in this study, an attempt has been made to identify potent inhibitors for CLDN4 from the ZINC database using virtual screening, molecular docking and molecular dynamics simulations. A well refined molecular model of CLDN4 was built using Prime of Schrodinger v10.2(Template- PDB ID: 4P79). Approximately, 6 million compounds from ZINC database are subjected to high-throughput virtual screening (HTVS) against the active site of CLDN4. Molecular docking using GLIDE predicted ARG31, ASN142, ASP146 and ARG158 as critically important residues. Furthermore, three compounds from ZINC database (ZINC96331839, ZINC36533519 and ZINC75819394) showed highly promising ADME properties and binding affinity with stable conformation. The therapeutic efficiency of these lead compounds is evaluated and confirmed by in-vitro and in-vivo studies which leads to the development of novel anti-cancer drugs.

Keywords: ADME property, inhibitors, molecular docking, virtual screening

Procedia PDF Downloads 335
5701 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis

Authors: Andres Frederic

Abstract:

We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.

Keywords: occupational stress, stress management, physiological measurement, accident prevention

Procedia PDF Downloads 437
5700 Face Recognition Using Eigen Faces Algorithm

Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale

Abstract:

Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.

Keywords: face detection, face recognition, eigen faces, algorithm

Procedia PDF Downloads 364