Search results for: RNG model
5679 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1015678 Effect of Oat-Protein Peptide in Cognitive Impairment Mice via Mediating Gut-Brain Axis
Authors: Hamad Rafique
Abstract:
The bioactive peptide RDFPITWPW (RW-9) identified from oat protein has been reported to be positive in memory deficits. However, no clarity on the mechanisms responsible for the neuroprotective effects of RW-9 peptide against AD-like symptoms. Herein, it found that RW-9 intervention showed various improving effects in cognitive-behavioral tests and alleviated oxidative stress and inflammation in the scopolamine-induced mice model. The hippocampus proteomics analysis revealed the upregulation of memory-related proteins, including Grin3a, Ppp2r1b, Stat6, Pik3cd, Slc5a7, Chrm2, mainly involved in cAMP signaling, PI3K-Akt signaling, and JAK-STAT signaling pathways. The administration of RW-9 significantly upregulated the neurotransmitters, including 5-HT, DA, and Arg, in mice brains. Moreover, it regulated the serum metabolic profile and increased the expression levels of ABC transporters, biosynthesis of amino acids, and Amino acyl-tRNA biosynthesis, among others. The 16s-rRNA results illustrated that the RW-9 restored the abundance of Muribaculaceae, Lachnospiraceae, Lactobacillus, Clostridia and Bactericides. Taken together, our results suggest that the RW-9 may prevent the AD-like symptoms via modulation of the gut-serum-brain axis.Keywords: oat protein, active peptide, neuroprotective, gut-brain axis
Procedia PDF Downloads 285677 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: over-parameterization, rectified linear units ReLU, convergence, gradient descent, neural networks
Procedia PDF Downloads 1425676 An Implicit High Order Difference Scheme for the Solution of 1D Pennes Bio-Heat Transfer Model
Authors: Swarn Singh, Suruchi Singh
Abstract:
In this paper, we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme. In this paper we present a fourth order two level implicit finite difference scheme for 1D Pennes bio-heat equation. Unconditional stability and convergence of the proposed scheme is discussed. Numerical results are obtained to demonstrate the efficiency of the scheme.Keywords: convergence, finite difference scheme, Pennes bio-heat equation, stability
Procedia PDF Downloads 4735675 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose
Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez
Abstract:
The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.Keywords: ANFIS, olive cake, polyols, saccharides
Procedia PDF Downloads 1545674 Evaluation of the Operating Parameters for Biodiesel Production Using a Membrane Reactor
Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato
Abstract:
Biodiesel production using membrane reactor has become increasingly studied, because this process minimizes some of the main problems encountered in the biodiesel purification. The membrane reactor tries to minimize post-treatment steps, resulting in cost savings and enabling the competitiveness of biodiesel produced by homogeneous alkaline catalysis. This is due to the reaction and product separation may occur simultaneously. In order to evaluate the production of biodiesel from soybean oils using a tubular membrane reactor, a factorial experimental design was conducted (2³) to evaluate the influence of following variables: temperature (45 to 60 °C), catalyst concentration (0.5 to 1% by weight) and molar ratio of oil/methanol (1/6 to 1/9). In addition, the parametric sensitivity was evaluated by the analysis of variance and model through the response surface. The results showed a tendency of influence of the variables in the reaction conversion. The significance effect was higher for the catalyst concentration followed by the molar ratio of oil/methanol and finally the temperature. The best result was obtained under the conditions of 1% catalyst (KOH), molar ratio oil/methanol of 1/9 and temperature of 60 °C, resulting in an ester content of 99.07%.Keywords: biodiesel production, factorial design, membrane reactor, soybean oil
Procedia PDF Downloads 3775673 Structure-Based Virtual Screening to Identify CLDN4 Inhibitors
Authors: Jayanthi Sivaraman
Abstract:
Claudins are the important components of the tight junctions that play a key role in paracellular permeability. Among various members of Claudin family, Claudin 4 (CLDN4) is found to be overexpressed in ovarian, pancreatic carcinomas and other epithelial malignancies. Therefore, in this study, an attempt has been made to identify potent inhibitors for CLDN4 from the ZINC database using virtual screening, molecular docking and molecular dynamics simulations. A well refined molecular model of CLDN4 was built using Prime of Schrodinger v10.2(Template- PDB ID: 4P79). Approximately, 6 million compounds from ZINC database are subjected to high-throughput virtual screening (HTVS) against the active site of CLDN4. Molecular docking using GLIDE predicted ARG31, ASN142, ASP146 and ARG158 as critically important residues. Furthermore, three compounds from ZINC database (ZINC96331839, ZINC36533519 and ZINC75819394) showed highly promising ADME properties and binding affinity with stable conformation. The therapeutic efficiency of these lead compounds is evaluated and confirmed by in-vitro and in-vivo studies which leads to the development of novel anti-cancer drugs.Keywords: ADME property, inhibitors, molecular docking, virtual screening
Procedia PDF Downloads 3335672 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis
Authors: Andres Frederic
Abstract:
We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.Keywords: occupational stress, stress management, physiological measurement, accident prevention
Procedia PDF Downloads 4305671 Face Recognition Using Eigen Faces Algorithm
Authors: Shweta Pinjarkar, Shrutika Yawale, Mayuri Patil, Reshma Adagale
Abstract:
Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this, demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application. Face recognition is the technique which can be applied to the wide variety of problems like image and film processing, human computer interaction, criminal identification etc. This has motivated researchers to develop computational models to identify the faces, which are easy and simple to implement. In this , demonstrates the face recognition system in android device using eigenface. The system can be used as the base for the development of the recognition of human identity. Test images and training images are taken directly with the camera in android device.The test results showed that the system produces high accuracy. The goal is to implement model for particular face and distinguish it with large number of stored faces. face recognition system detects the faces in picture taken by web camera or digital camera and these images then checked with training images dataset based on descriptive features. Further this algorithm can be extended to recognize the facial expressions of a person.recognition could be carried out under widely varying conditions like frontal view,scaled frontal view subjects with spectacles. The algorithm models the real time varying lightning conditions. The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions using android application.Keywords: face detection, face recognition, eigen faces, algorithm
Procedia PDF Downloads 3615670 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS
Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala
Abstract:
Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)
Procedia PDF Downloads 4105669 Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip
Authors: Tasawar Hayat, Madiha Rashid, Maria Imtiaz, Ahmed Alsaedi
Abstract:
This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid.Keywords: MHD nanofluid, porous medium, rotating disk, slip effect
Procedia PDF Downloads 2605668 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst
Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka
Abstract:
The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface
Procedia PDF Downloads 835667 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: incremental forming, numerical simulation, MPIF, multipoint forming
Procedia PDF Downloads 3565666 Social Anxiety, Parental Criticism and the Mediating Role of Early Maladaptive Schemas
Authors: Tahmeena Ali, Andrew Francis, Keong Yap, Sharynn Schuster
Abstract:
Social anxiety is a chronic and debilitating condition characterized by fear and avoidance of social situations. Several risk factors have emerged, which emphasize the role of early childhood experiences in the development of this condition. As such, the current study tested the hypothesis that early maladaptive schemas (EMSs) mediate the relationship between retrospectively reported parental criticism and social anxiety whilst controlling the effects of depression. Three hundred and thirty-four non-clinical participants completed an online questionnaire consisting of self-report measures of parental criticism, EMSs of disconnection and rejection, and symptoms of social anxiety and depression. The mediation analysis confirmed the hypothesized model, indicating that EMSs mediated the relationship between parental criticism and social anxiety symptoms when controlling for depression. Whilst the current study is limited due to its cross-sectional design, the findings lend support to the developmental formulations of social anxiety and have important therapeutic implications for treatment.Keywords: early maladaptive schema, parental criticism, schema, social anxiety
Procedia PDF Downloads 2705665 Mikhail Bakhtin's Standpoint of Neo-Marxism and beyond: Bildungsroman as a Critique
Authors: Hsiao-Yung Wang
Abstract:
This paper aims to elaborate the standpoint of neo-Marxism of Russian philosopher Mikhail Bakhtin by critical reading his concept of Bildungsroman; thereby, it aims to map the theoretical implication of spatial rhetoric and its time politics/emancipatory politics in late Bakhtin’s thought. First, it aims to outline the two revolving rings of spatiality in Bildungsroman, proceeding from 'recollecting the past' to 'foreseeing the future' on the basis of visuality and materialistic realism. Herein, Bakhtin has temporarily been leaving his previous research concern on polyphonic novel. Second, it aims to demonstrate that although Bakhtin has constantly emphasized the necessity of reconstructing opened future space, his insistence on 'emergence' has still generated a seemingly theoretical lacuna which needs to be filled. 'Doubled heterotopia,' as popularized by contemporary rhetorician Saindon, might be an adequate approach to articulate and present the rhetorical functions and dynamics of Bakhtin’s spatial rhetoric dialectically. Based on the research findings, this paper argues that Bakhtin indeed attempted to go beyond the deterministic model of Marxism and neo-Marxism strategically and reciprocally.Keywords: Bildungsroman, double heterotopia, emergence, Mikhail Bakhtin, neo-Marxism, spatial rhetoric, time-politics, visuality
Procedia PDF Downloads 2615664 Behavioral Intentions and Cognitive-Affective Effects of Exposure to YouTube Advertisements among College Students
Authors: Abd El-Basit Ahmed Hashem Mahmoud, Othman Fekry Abdelbaki
Abstract:
This study attempts to investigate the exposure to YouTube ads among Egyptian college students, their attitudes towards these ads, behavioral intentions to watch them, and the effects of this exposure and to examine the relationships among these variables as well. The current study is theoretically guided by the theory of reasoned action (TRA) and cognitive-affective behavioral model (CAB) through a questionnaire survey administered to a convenience sample of 390 college students who watch YouTube videos from Cairo University, Egypt from February to May 2019. The results showed that 98.7% of respondents exposed to YouTube ads, and both of their attitudes towards YouTube ads exposure and their intentions to this exposure were moderately positive. The findings also indicated that respondents' gender had a significant impact on their intention to expose these ads. One-way ANOVA indicated that their attitudes towards exposure to YouTube ads influenced their behavioral intentions to watch these ads, and it also demonstrated that their behavioral intentions to watch these ads had an impact on the exposure to such ads. Pearson correlation revealed that there was a significant positive relationship between respondents' attitudes towards YouTube ads exposure and the cognitive, affective, and behavioral effects of this exposure.Keywords: attitudes, behavioral intentions, theory of reasoned action, YouTube ads
Procedia PDF Downloads 1545663 Food Insecurity Determinants Amidst the Covid-19 Pandemic: An Insight from Huntsville, Texas
Authors: Peter Temitope Agboola
Abstract:
Food insecurity continues to affect a large number of U.S households during this coronavirus COVID-19 pandemic. The pandemic has threatened the livelihoods of people, making them vulnerable to severe hardship and has had an unanticipated impact on the U.S economy. This study attempts to identify the food insecurity status of households and the determinant factors driving household food insecurity. Additionally, it attempts to discover the mitigation measures adopted by households during the pandemic in the city of Huntsville, Texas. A structured online sample survey was used to collect data, with a household expenditures survey used in evaluating the food security status of the household. Most survey respondents disclosed that the COVID-19 pandemic had affected their life and source of income. Furthermore, the main analytical tool used for the study is descriptive statistics and logistic regression modeling. A logistic regression model was used to determine the factors responsible for food insecurity in the study area. The result revealed that most households in the study area are food secure, with the remainder being food insecure.Keywords: food insecurity, household expenditure survey, COVID-19, coping strategies, food pantry
Procedia PDF Downloads 2095662 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis
Authors: Yazid Alkraimeen
Abstract:
Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses
Procedia PDF Downloads 1395661 Coexistence of Superconductivity and Spin Density Wave in Ferropnictide Ba₁₋ₓKₓFe₂As₂
Authors: Tadesse Desta Gidey, Gebregziabher Kahsay, Pooran Singh
Abstract:
This work focuses on the theoretical investigation of the coexistence of superconductivity and Spin Density Wave (SDW)in Ferropnictide Ba₁₋ₓKₓFe₂As₂. By developing a model Hamiltonian for the system and by using quantum field theory Green’s function formalism, we have obtained mathematical expressions for superconducting transition temperature TC), spin density wave transition temperature (Tsdw), superconductivity order parameter (Sc), and spin density wave order parameter (sdw). By employing the experimental and theoretical values of the parameters in the obtained expressions, phase diagrams of superconducting transition temperature (TC) versus superconducting order parameter (Sc) and spin density wave transition temperature (Tsdw), versus spin density wave order parameter (sdw) have been plotted. By combining the two phase diagrams, we have demonstrated the possible coexistence of superconductivity and spin density wave (SDW) in ferropnictide Ba1−xKxFe2As2.Keywords: Superconductivity, Spin density wave, Coexistence, Green function, Pnictides, Ba₁₋ₓKₓFe₂As₂
Procedia PDF Downloads 1755660 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.Keywords: fake news detection, natural language processing, machine learning, classification techniques.
Procedia PDF Downloads 1675659 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs
Authors: M. K. Kim, C. H. Shin, W. G. Park
Abstract:
Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.Keywords: fractured zone, gas reservoir, permeability, CFD
Procedia PDF Downloads 2515658 Numerical Simulation of the Rotating Vertical Bridgman Growth
Authors: Nouri Sabrina
Abstract:
Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change
Procedia PDF Downloads 4315657 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1345656 Analysis of Human Mental and Behavioral Models for Development of an Electroencephalography-Based Human Performance Management System
Authors: John Gaber, Youssef Ahmed, Hossam A. Gabbar, Jing Ren
Abstract:
Accidents at Nuclear Power Plants (NPPs) occur due to various factors, notable among them being poor safety management and poor safety culture. During abnormal situations, the likelihood of human error is many-fold higher due to the higher cognitive workload. The most common cause of human error and high cognitive workload is mental fatigue. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue using an EEG system. This requires an analysis of the mental model of the NPP operator, changes in brain wave power in response to certain stimuli, and the risk factors on mental fatigue and attention that NPP operators face when performing their tasks. We analyzed these factors and developed an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention hinders their ability to maintain safety.Keywords: brain imaging, EEG, power plant operator, psychology
Procedia PDF Downloads 1025655 The Role and Position of Chinese Modern Martial Art in the School Physical Education (1912-1945)
Authors: Hsien-Wei Kuo
Abstract:
The thoughts of the military citizens, pragmatism, naturalism and nationalism related to physical education were developed during the warring period of the Republic of China. Moreover, the development of martial art formed by nationalism and political party was to utilize to save the nation, the people and the world. The martial art was also promoted in the system of school physical education gradually at the same time. The aim of this study is to explore the role, duty and position of the martial art education with the political color and advocacy in the system of school physical education. This study focuses on the practice, course hours, selective materials and competitive rules of physical education in the school system in modern China. Therefore, the methods of the historical research and content analysis were used to collect the historical materials and documents for going into them. The results will give a detailed account of the developed model of institutionalization, unification and regularization of martial art, and its growing, golden and stagnant periods in the school physical education system under the impact of western sport and physical education. It may sum up the meaning relationships among the politics, education practice and sport for all.Keywords: martial art education, national martial arts institution, sick man of East Asia, the may 4th movement
Procedia PDF Downloads 3785654 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption
Authors: Kenichiro Hida, Shin-Ichi Kuribayashi
Abstract:
In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.Keywords: NFV, resource allocation, virtual routing function, minimum power consumption
Procedia PDF Downloads 3425653 Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis
Authors: Heba M. Mohamed
Abstract:
Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors.Keywords: eco scale, green analysis, environmentally friendly, pharmaceuticals analysis
Procedia PDF Downloads 4385652 Detaching the ‘Criminal Justice Conveyor Belt’: Diversion as a Responsive Mechanism for Children in Kenya
Authors: Sarah Kinyanjui, Mahnaaz Mohamed
Abstract:
The child justice system in Kenya is organically departing from a managerial and retributive model to one that espouses restorative justice. Notably, the Children Act 2001, and the most recent, Children Act 2022, signalled an aspiration to facilitate meaningful interventions as opposed to ‘processing’ children through the justice system. In this vein, the Children Act 2022 formally recognises diversion and provides modalities for its implementation. This paper interrogates the diversion promise and reflects on the implementation of diversion as envisaged by the 2022 Act. Using restorative justice, labelling and differential association theories as well as the value of care lenses, the paper discusses diversion as a meaningful response to child offending. It further argues that while diversion presents a strong platform for the realisation of the restorative and rehabilitative ideals, in the absence of a well-planned, coordinated, and resourced framework, diversion may remain a mere alternative ‘conveyor belt’. Strategic multi-agency planning, capacity building and cooperation are highlighted as essential minimums for the realisation of the goals of diversion.Keywords: diversion for child offenders, restorative justice, responsive criminal justice system, children act 2022 kenya
Procedia PDF Downloads 695651 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 685650 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns
Abstract:
Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.Keywords: lateral-torsional buckling, stability, beam-column, monosymmetric section
Procedia PDF Downloads 324