Search results for: ultrasonic solvent extraction (USE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2788

Search results for: ultrasonic solvent extraction (USE)

1708 Metropolitan Governance in Statutory Plan Making Process

Authors: Vibhore Bakshi

Abstract:

This research paper is a step towards understanding the role of governance in the plan preparation process. It addresses the complexities of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks. The paper reflects on the Delhi NCT as one of the classical cases that have happened to witness different structural changes in the master plan around 1981, 2001, 2021, and Proposed Draft 2041. The Delhi Landsat imageries for 1989 and 2018 show an increase in the built-up areas around the periphery of NCT. The peri-urbanization has been a result of increasing in-migration to peri–urban areas of Delhi. The built-up extraction for years 1981, 1991, 2001, 2011, and 2018 highlights the growing peri-urbanization on scarce land therefore, it becomes equally important to research the history of the land and its legislative measures. It is interesting to understand the streaks of changes that have occurred in the land of Delhi in accordance with the different master plans and land legislative policies. The process of masterplan process in Delhi has experienced a lot of complexities in juxtaposition to other metropolitan regions of the world. The paper identifies the shortcomings in the current master planning process approach in regard to the stage of the planning process, traditional planning approach, and lagging ICT-based interventions. The metropolitan governance systems across the globe and India depict diversity in the organizational setup and varied dissemination of functions. It addresses the complexity of the peri-urban, historical constructions, politics and policies of sustainability, and legislative frameworks.

Keywords: governance, land provisions, built-up areas, in migration, built up extraction, master planning process, legislative policies, metropolitan governance systems

Procedia PDF Downloads 171
1707 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 325
1706 Extraction of Dye from Coconut Husk and Its Application on Wool and Silk

Authors: Deepali Rastogi

Abstract:

Natural dyes are considered to be eco-friendly as they cause no pollution and are safe to use. With the growing interest in natural dyes, new sources of natural dyes are being explored. Coconut (Cocos nucifera) is native to tropical eastern region. It is abundantly available in Asia, Africa and South America. While coconut has tremendous commercial value in food, oil, pharmaceutical and cosmetic industry, the most important use of coconut husk has been as coir which is used for making mats, ropes, etc. In the present study an attempt has been made to extract dye from the coconut husk and study its application on wool and silk. Dye was extracted from coconut husk in an aqueous medium at three different pH. The coconut husk fibres were boiled in water at different pH of 4, 7 and 9 for one hour. On visual inspection of the extracted dye solution, maximum colour was found to be extracted at pH 9. The solution was obtained in neutral medium whereas, no dye was extracted in acidic medium. Therefore, alkaline medium at pH 9 was selected for the extraction of dye from coconut husk. The extracted dye was applied on wool and silk at three different pH, viz., 4, 7 and 9. The effect of pre- and post- mordanting with alum and ferrous sulphate on the colour value of coconut husk dye was also studied. The L*a*b*/L*c*h* values were measured to see the effect of the mordants on the colour values of all the dyed and mordanted samples. Bright golden brown to dark brown colours were obtained at pH 4 on both wool and silk. The colour yield was not very good at pH 7 and 9. Mordanting with alum resulted in darker and brighter shades of brown, whereas mordanting with ferrous sulphate resulted in darker and duller shades. All the samples were tested for colourfastness to light, rubbing, washing and perspiration. Both wool and silk dyed with dye extracted from coconut husk exhibited good to excellent wash, rub and perspiration fastness. Fastness to light was moderate to good.

Keywords: coconut husk, wool, silk, natural dye, mordants

Procedia PDF Downloads 427
1705 Experimental Investigation of Physical Properties of Bambusa Oldhamii and Yushania Alpina on the Influence of Age and Harvesting Season

Authors: Tigist Girma Kedane

Abstract:

The purpose of the current research work is to measure the physical properties of bamboo species in Ethiopia on the impact of age, harvesting seasons and culm height. Three representatives of bamboo plants are harvested in three groups of ages, 2 harvesting months, and 3 regions of Ethiopia. Research has not been done on the physical properties of bamboo species in Ethiopia so far. Moisture content and shrinkage of bamboo culm increase when the culm ages younger and moves from top to bottom position. The harvesting month of November has a higher moisture content and shrinkage compared to February. One year old of Injibara, Kombolcha, and Mekaneselam bamboo culm has 40%, 30%, and 33% higher moisture content, 29%, 24%, and 28% higher radial shrinkage, 32%, 37%, and 32% higher tangential shrinkage compared to 3 years old respectively. The bottom position of Injibara, Kombolcha, and Mekaneselam in November have 45%, 28%, and 25% higher moisture content, 41%, 29%, and 34% radial shrinkage, 29%, 28%, and 42% tangential shrinkage than the top position, respectively. The basic density increases as the age of the bamboo becomes older and moves from the bottom to the top position. November has the lowest basic density compared to February. 3 years old of Injibara, Kombolcha, and Mekaneselam at the age of 3 years have 32%, 50%, and 24% higher basic density compared to 1 year, whereas the top position has 35%, 26%, and 22% higher than the bottom position in February, respectively. The current research proposed that 3 years and February are suited for structural purposes and furniture making, but 1 year and November are suited for fiber extraction in the composite industry. The existence of water in the culm improves an easy extraction of the fibers without damage from the culm.

Keywords: bamboo age, bamboo height, harvesting seasons, physical properties

Procedia PDF Downloads 59
1704 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 123
1703 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: nanoparticle, nanotube, oximes, precursor, supercritical CO2

Procedia PDF Downloads 353
1702 Method Development and Validation for Quantification of Active Content and Impurities of Clodinafop Propargyl and Its Enantiomeric Separation by High-Performance Liquid Chromatography

Authors: Kamlesh Vishwakarma, Bipul Behari Saha, Sunilkumar Sing, Abhishek Mishra, Sreenivas Rao

Abstract:

A rapid, sensitive and inexpensive method has been developed for complete analysis of Clodinafop Propargyl. Clodinafop Propargyl enantiomers were separated on chiral column, Chiral Pak AS-H (250 mm. 4.6mm x 5µm) with mobile phase n-hexane: IPA (96:4) at flow rate 1.5 ml/min. The effluent was monitored by UV detector at 230 nm. Clodinafop Propagyl content and impurity quantification was done with reverse phase HPLC. The present study describes a HPLC method using simple mobile phase for the quantification of Clodinafop Propargyl and its impurities. The method was validated and found to be accurate, precise, convenient and effective. Moreover, the lower solvent consumption along with short analytical run time led to a cost effective analytical method.

Keywords: Clodinafop Propargyl, method, validation, HPLC-UV

Procedia PDF Downloads 369
1701 The Influence of High Temperatures on HVFA Concrete Columns by NDT Methods

Authors: D. Jagath Kumari, K. Srinivasa Rao

Abstract:

Quality assurance of the structures subjected to high temperatures is now enforcing measure for the Structural Engineers. The existing relations between strength and nondestructive measurements have been established under normal conditions are not suitable to concretes that have been exposed to high temperatures. The scope of the work is to investigate the influence of high temperatures of short durations on the residual properties of reinforced HVFA concrete columns that affect the strength by non-destructive tests (NDT). Fly ash concrete is increasingly used in the design of normal strength, high strength and high performance concretes. In this paper, the authors revealed the influence of high temperatures on HVFA concrete columns. These columns are heated from 100oC to 800oC with increments of 100oC and allowed to cool to room temperature by two methods one is air cooling method and the other immediate water quenching method. All the specimens were tested identically, before heating and after heating for compressive strength and material integrity by rebound hammer and ultrasonic pulse velocity (UPV) meter respectively. HVFA concrete retained more residual strength by water quenching method than air-cooling method.

Keywords: HVFA concrete, NDT methods, residual strength, non-destructive tests

Procedia PDF Downloads 455
1700 Recent Advancement in Fetal Electrocardiogram Extraction

Authors: Savita, Anurag Sharma, Harsukhpreet Singh

Abstract:

Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal.

Keywords: aECG, ACF, fECG, mECG

Procedia PDF Downloads 406
1699 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique

Authors: Shagufta Tabassum, V. P. Pawar

Abstract:

The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε) and relaxation time (τ).

Keywords: shagufta shaikhexcess parameters, relaxation time, static dielectric constant, time domain reflectometry

Procedia PDF Downloads 240
1698 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: apparent porosity, beneficiation, low-grade chromite, refractory, spinel compounds, slag resistance

Procedia PDF Downloads 387
1697 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal

Authors: M. Feliciano, F. Maia, A. Gonçalves

Abstract:

Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.

Keywords: carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil

Procedia PDF Downloads 286
1696 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.

Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis

Abstract:

Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.

Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress

Procedia PDF Downloads 255
1695 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 245
1694 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 186
1693 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 289
1692 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 374
1691 Solid Phase Micro-Extraction/Gas Chromatography-Mass Spectrometry Study of Volatile Compounds from Strawberry Tree and Autumn Heather Honeys

Authors: Marinos Xagoraris, Elisavet Lazarou, Eleftherios Alissandrakis, Christos S. Pappas, Petros A. Tarantilis

Abstract:

Strawberry tree (Arbutus unedo L.) and autumn heather (Erica manipuliflora Salisb.) are important beekeeping plants of Greece. Six monofloral honeys (four strawberry tree, two autumn heather) were analyzed by means of Solid Phase Micro-Extraction (SPME, 60 min, 60 oC) followed by Gas Chromatography coupled to Mass Spectrometry (GC-MS) for the purpose of assessing the botanical origin. A Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fiber was employed, and benzophenone was used as internal standard. The volatile compounds with higher concentration (μg/ g of honey expressed as benzophenone) from strawberry tree honey samples, were α-isophorone (2.50-8.12); 3,4,5-trimethyl-phenol (0.20-4.62); 2-hydroxy-isophorone (0.06-0.53); 4-oxoisophorone (0.38-0.46); and β-isophorone (0.02-0.43). Regarding heather honey samples, the most abundant compounds were 1-methoxy-4-propyl-benzene (1.22-1.40); p-anisaldehyde (0.97-1.28); p-anisic acid (0.35-0.58); 2-furaldehyde (0.52-0.57); and benzaldehyde (0.41-0.56). Norisoprenoids are potent floral markers for strawberry-tree honey. β-isophorone is found exclusively in the volatile fraction of this type of honey, while also α-isophorone, 4-oxoisophorone and 2-hydroxy-isophorone could be considered as additional marker compounds. The analysis of autumn heather honey revealed that phenolic compounds are the most abundant and p-anisaldehyde; 1-methoxy-4-propyl-benzene; and p-anisic acid could serve as potent marker compounds. In conclusion, marker compounds for the determination of the botanical origin for these honeys could be identified as several norisoprenoids and phenolic components were found exclusively or in higher concentrations compared to common Greek honey varieties.

Keywords: SPME/GC-MS, volatile compounds, heather honey, strawberry tree honey

Procedia PDF Downloads 199
1690 A Q-Methodology Approach for the Evaluation of Land Administration Mergers

Authors: Tsitsi Nyukurayi Muparari, Walter Timo De Vries, Jaap Zevenbergen

Abstract:

The nature of Land administration accommodates diversity in terms of both spatial data handling activities and the expertise involved, which supposedly aims to satisfy the unpredictable demands of land data and the diverse demands of the customers arising from the land. However, it is known that strategic decisions of restructuring are in most cases repelled in favour of complex structures that strive to accommodate professional diversity and diverse roles in the field of Land administration. Yet despite of this widely accepted knowledge, there is scanty theoretical knowledge concerning the psychological methodologies that can extract the deeper perceptions from the diverse spatial expertise in order to explain the invisible control arm of the polarised reception of the ideas of change. This paper evaluates Q methodology in the context of a cadastre and land registry merger (under one agency) using the Swedish cadastral system as a case study. Precisely, the aim of this paper is to evaluate the effectiveness of Q methodology towards modelling the diverse psychological perceptions of spatial professionals who are in a widely contested decision of merging the cadastre and land registry components of Land administration using the Swedish cadastral system as a case study. An empirical approach that is prescribed by Q methodology starts with the concourse development, followed by the design of statements and q sort instrument, selection of the participants, the q-sorting exercise, factor extraction by PQMethod and finally narrative development by logic of abduction. The paper uses 36 statements developed from a dominant competing value theory that stands out on its reliability and validity, purposively selects 19 participants to do the Qsorting exercise, proceeds with factor extraction from the diversity using varimax rotation and judgemental rotation provided by PQMethod and effect the narrative construction using the logic abduction. The findings from the diverse perceptions from cadastral professionals in the merger decision of land registry and cadastre components in Sweden’s mapping agency (Lantmäteriet) shows that focus is rather inclined on the perfection of the relationship between the legal expertise and technical spatial expertise. There is much emphasis on tradition, loyalty and communication attributes which concern the organisation’s internal environment rather than innovation and market attributes that reveals customer behavior and needs arising from the changing humankind-land needs. It can be concluded that Q methodology offers effective tools that pursues a psychological approach for the evaluation and gradations of the decisions of strategic change through extracting the local perceptions of spatial expertise.

Keywords: cadastre, factor extraction, land administration merger, land registry, q-methodology, rotation

Procedia PDF Downloads 193
1689 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 99
1688 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 153
1687 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 85
1686 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 192
1685 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
1684 Elucidation of the Photoreactivity of 2-Hydroxychalcones and the Effect of Continuous Photoflow Method on the Photoreactivity

Authors: Sobiya George, Anna Dora Gudmundsdottir

Abstract:

The 2-hydroxychalcones form an important group of organic compounds not only because of their pharmacological properties but also because they are intermediates in the biosynthesis of flavanones. We studied the photoreactivity of 2-hydroxychalcone derivatives in aprotic solvent acetonitrile and found that their photochemistry is concentration-dependent. Irradiation of 2-hydroxychalcone derivatives with 365 nm light emitting diode (LED) in dilute concentration selectively forms flavanones, whereas, at higher concentrations, an additional photoproduct is observed. However, the application of the continuous photo-flow method resulted in the selective formation of flavanones even at higher concentrations. To understand the reaction mechanism and explain the concentration-dependent photoreactivity of 2-hydroxychalcones, we preformed trapping studies with tris(trimethylsilyl)silane, nanosecond laser flash photolysis, and time dependent-density functional theory (TD-DFT) calculations.

Keywords: flavanones, hydroxychalcones, laser flash photolysis, TD-DFT calculations

Procedia PDF Downloads 148
1683 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 81
1682 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 57
1681 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane

Authors: N. Hasbullah, K. A. Sekak

Abstract:

The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.

Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers

Procedia PDF Downloads 308
1680 Newly Developed Epoxy-Polyol and Epoxy- Polyurethane from Renewable Resources

Authors: Akintayo Emmanuel Temitope, Akintayo Cecilia Olufunke, Ziegler Thomas

Abstract:

Bio-polyols are important components in polyurethane industries. The preliminary studies into the synthesis of bio-polyol products (epoxy-polyol and epoxyl-polyurethanes) from Jatropha curcas were investigated. The reactions were followed by both infrared and nuclear magnetic resonance. Physico-chemical characterisation of the samples for iodine value (IV), acid value (AV), saponification value (SV) and hydroxyl value (HV) were carried out. Thermal transitions of the products were studied by heating 5 mg of the sample from 20ºC to 800ºC and then cooling down to -500ºC on a differential scanning calorimeter (DSC). The preparation of epoxylpolyol and polyurethane from Jatropha curcas oil was smooth and efficient. Results of film and solubility properties revealed that coatings of Jatropha curcas epoxy-polyurethanes performed better with increased loading of toluylene 2, 4-diisocyanate (TDI) up to 2 wt% while their solvent resistance decreased beyond a TDI loading of 1.2 wt%. DSC analysis shows the epoxy-polyurethane to be less stable compared to the epoxy-polyol.

Keywords: synthesis, epoxy-polyol, epoxy-polyurethane, jatropha curcas oil

Procedia PDF Downloads 418
1679 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 138