Search results for: secure data aggregation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25898

Search results for: secure data aggregation

24818 Electrophoretic Light Scattering Based on Total Internal Reflection as a Promising Diagnostic Method

Authors: Ekaterina A. Savchenko, Elena N. Velichko, Evgenii T. Aksenov

Abstract:

The development of pathological processes, such as cardiovascular and oncological diseases, are accompanied by changes in molecular parameters in cells, tissues, and serum. The study of the behavior of protein molecules in solutions is of primarily importance for diagnosis of such diseases. Various physical and chemical methods are used to study molecular systems. With the advent of the laser and advances in electronics, optical methods, such as scanning electron microscopy, sedimentation analysis, nephelometry, static and dynamic light scattering, have become the most universal, informative and accurate tools for estimating the parameters of nanoscale objects. The electrophoretic light scattering is the most effective technique. It has a high potential in the study of biological solutions and their properties. This technique allows one to investigate the processes of aggregation and dissociation of different macromolecules and obtain information on their shapes, sizes and molecular weights. Electrophoretic light scattering is an analytical method for registration of the motion of microscopic particles under the influence of an electric field by means of quasi-elastic light scattering in a homogeneous solution with a subsequent registration of the spectral or correlation characteristics of the light scattered from a moving object. We modified the technique by using the regime of total internal reflection with the aim of increasing its sensitivity and reducing the volume of the sample to be investigated, which opens the prospects of automating simultaneous multiparameter measurements. In addition, the method of total internal reflection allows one to study biological fluids on the level of single molecules, which also makes it possible to increase the sensitivity and the informativeness of the results because the data obtained from an individual molecule is not averaged over an ensemble, which is important in the study of bimolecular fluids. To our best knowledge the study of electrophoretic light scattering in the regime of total internal reflection is proposed for the first time, latex microspheres 1 μm in size were used as test objects. In this study, the total internal reflection regime was realized on a quartz prism where the free electrophoresis regime was set. A semiconductor laser with a wavelength of 655 nm was used as a radiation source, and the light scattering signal was registered by a pin-diode. Then the signal from a photodetector was transmitted to a digital oscilloscope and to a computer. The autocorrelation functions and the fast Fourier transform in the regime of Brownian motion and under the action of the field were calculated to obtain the parameters of the object investigated. The main result of the study was the dependence of the autocorrelation function on the concentration of microspheres and the applied field magnitude. The effect of heating became more pronounced with increasing sample concentrations and electric field. The results obtained in our study demonstrated the applicability of the method for the examination of liquid solutions, including biological fluids.

Keywords: light scattering, electrophoretic light scattering, electrophoresis, total internal reflection

Procedia PDF Downloads 216
24817 Sourcing and Compiling a Maltese Traffic Dataset MalTra

Authors: Gabriele Borg, Alexei De Bono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.

Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns

Procedia PDF Downloads 110
24816 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 508
24815 The Phenomenon of Biofilm Formation and the Subsequent Management of Foodborne Pathogenic Bacteria

Authors: Raana Babadi Fathipour

Abstract:

Biofilms, those intricate structures of microbial aggregation that emerge as microorganisms adhere to animate or inanimate surfaces, possess an innate capacity to shield their inhabitants from adversities within the environment whilst fortifying their endurance against antimicrobial agents. This remarkable aspect facilitates the persistence and virulence of said microorganisms, establishing biofilm formation as an integral component of bacterial survival mechanisms. However, should foodborne pathogens adopt this mode of existence, the potentiality for foodborne disease infections becomes alarmingly intensified—an alarming prospect that harbors significant public health hazards and engenders deleterious economic ramifications. Thus, due to these consequences lurking on the horizon, extensive research concentrating upon comprehending biofilms and devising efficacious removal strategies assumes a position imbued with paramount importance within the realm of the food industry. The problem of food waste resulting from spoilage in the food industry continues to present a widespread challenge to both environmental sustainability and the security of our food supplies. In this comprehensive analysis, we delve into the formation of bacterial biofilms, highlighting the specific issues they pose within the realm of food production. Additionally, we provide an overview of various types of common foodborne pathogens that tend to thrive in these biofilms. Furthermore, we summarize existing strategies aimed at tackling or managing detrimental bacterial biofilm growth. We also introduce contemporary approaches that show promise in terms of controlling this issue and highlight their potential for further advancement. Ultimately, our focus lies on outlining prospects for future development as they pertain specifically to combatting bacterial biofilms within the field.

Keywords: foodborne pathogens, food safety, biofilm, resistance, quorum-sensing

Procedia PDF Downloads 59
24814 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 169
24813 Database Management System for Orphanages to Help Track of Orphans

Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta

Abstract:

Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.

Keywords: database, orphans, programming, C⁺⁺

Procedia PDF Downloads 157
24812 Economic Important of Manta Ray Watching Tourism in Dampier Strait, Raja Ampat, West Papua, Indonesia

Authors: Maulita Sari Hani, Abraham B. Sianipar, Jamaluddin Jompa, Natsir Nessa, Alan T. White

Abstract:

Manta ray is an icon for tourism in Raja Ampat. The tourist volume has been increased for the past ten years which up to approximately 23,000 tourists in 2017. Since 2013, Conservation International Indonesia deployed satellite and acoustic tags on manta ray in Dampier strait to track the species and identify the aggregation areas. These findings encourage the government and the local community to boost conservation through the management of marine protected areas for tourism purposes. Community in Dampier strait including the village of Arborek, Kurkapa, Kapisawar, and Sawingray involved in variety of small scale tourism business including homestay, dive shop, tour operator, and crafts. Working groups of related local businesses were established to support the local community and to ensure the sustainability of the economic viability and environmental sustainability. In order to analyze the economic benefits of manta ray tourism, this study was conducted to identify the number of local business in Dampier Strait and the economic impacts in terms of local finance security, social, humanity, individual, and physical assets. The results of this study identify 30 homestays, 2 dive shops, 10 tour operators, 30 women involved in crafts, and about 50 villagers worked for dive resorts. In addition to community assets, we confirmed the welfare of community has been improved in terms of food security, households, education for children, savings, and health insurance.

Keywords: marine wildlife tourism, elasmobranch, conservation, ecotourism, co-management, economic viability, environmental sustainability

Procedia PDF Downloads 218
24811 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join

Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel

Abstract:

Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.

Keywords: map reduce, hadoop, semi join, two way join

Procedia PDF Downloads 514
24810 Using Implicit Data to Improve E-Learning Systems

Authors: Slah Alsaleh

Abstract:

In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.

Keywords: e-learning, implicit data, user behavior, data mining

Procedia PDF Downloads 310
24809 Enabling Quantitative Urban Sustainability Assessment with Big Data

Authors: Changfeng Fu

Abstract:

Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.

Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data

Procedia PDF Downloads 359
24808 IAM Smart – A Sustainable Way to Reduce Plastics in Organizations

Authors: Krithika Kumaragurubaran, Mannu Thareja

Abstract:

Saving our planet Earth is the responsibility of every human being. Global warming and carbon emissions are killing our planet. We must adopt sustainable practices to give our future generations an equal opportunity to enjoy this planet Earth, our home. One of the most used unsustainable materials is plastic. Plastics are used everywhere. They are cheap, durable, strong, waterproof, non-corrosive with a long life. So longthat it makes plastic unsustainable. With this paper, we want to bring awareness on the usage of plastic in the organizations and how to reduce it by adopting sustainable practices powered by technology. We have taken a case study on the usage of photo ID cards, which are commonly used for authentication and authorization. These ID cards are used by employees or visitors to get access to the restricted areas inside the office buildings. The scale of these plastic cards can be in thousands for a bigger organization. This paper proposes smart alternatives to Identity and Access Management (IAM) which could replace the traditional method of using plastic ID cards. Further, the proposed solution is secure with multi-factor authentication (MFA), cost effective as there is no need to manage the supply chain of ID cards, provides instant IAM with self-service, and has the convenience of smart phone. Smart IAM is not only user friendly however also environment friendly.

Keywords: sustainability, reduce plastic, IAM (Identity and Access Management), multi-factor authentication

Procedia PDF Downloads 110
24807 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin

Authors: A. Ishag Mohamed, A. A. Rabah

Abstract:

The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.

Keywords: N-Alkanes, N-Alkenes, nonparametric, regression

Procedia PDF Downloads 654
24806 Survey on Arabic Sentiment Analysis in Twitter

Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb

Abstract:

Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.

Keywords: big data, social networks, sentiment analysis, twitter

Procedia PDF Downloads 580
24805 Estimating Current Suicide Rates Using Google Trends

Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis

Abstract:

Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.

Keywords: nowcasting, search data, Google Trends, official statistics

Procedia PDF Downloads 360
24804 On the Network Packet Loss Tolerance of SVM Based Activity Recognition

Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir

Abstract:

In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.

Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss

Procedia PDF Downloads 477
24803 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company

Authors: Rahma Saleh Hussein Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, CMMS

Procedia PDF Downloads 125
24802 Efects of Data Corelation in a Sparse-View Compresive Sensing Based Image Reconstruction

Authors: Sajid Abas, Jon Pyo Hong, Jung-Ryun Le, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: computed tomography, computed laminography, compressive sending, low-dose

Procedia PDF Downloads 464
24801 European Drug Serialization: Securing the Pharmaceutical Drug Supply Chain from Counterfeiters

Authors: Vikram Chowdhary, Marek Vins

Abstract:

The profitability of the pharmaceutical drug business has attracted considerable interest, but it also faces significant challenges. Counterfeiters take advantage of the industry's vulnerabilities, which are further exacerbated by the globalization of the market, online trading, and complex supply chains. Governments and organizations worldwide are dedicated to creating a secure environment that ensures a consistent and genuine supply of pharmaceutical products. In 2019, the European authorities implemented regulation EU 2016/161 to strengthen traceability and transparency throughout the entire drug supply chain. This regulation requires the addition of enhanced security features, such as serializing items to the saleable unit level or individual packs. Despite these efforts, the incidents of pharmaceutical counterfeiting continue to rise globally, with regulated territories being particularly affected. This paper examines the effectiveness of the drug serialization system implemented by European authorities. By conducting a systematic literature review, we assess the implementation of drug serialization and explore the potential benefits of integrating emerging digital technologies, such as RFID and Blockchain, to improve traceability and management. The objective is to fortify pharmaceutical supply chains against counterfeiters and manipulators and ensure their security.

Keywords: blockchain, counterfeit drugs, EU drug serialization, pharmaceutical industry, RFID

Procedia PDF Downloads 112
24800 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD

Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik

Abstract:

The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.

Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet

Procedia PDF Downloads 574
24799 Humanising Digital Healthcare to Build Capacity by Harnessing the Power of Patient Data

Authors: Durhane Wong-Rieger, Kawaldip Sehmi, Nicola Bedlington, Nicole Boice, Tamás Bereczky

Abstract:

Patient-generated health data should be seen as the expression of the experience of patients, including the outcomes reflecting the impact a treatment or service had on their physical health and wellness. We discuss how the healthcare system can reach a place where digital is a determinant of health - where data is generated by patients and is respected and which acknowledges their contribution to science. We explore the biggest barriers facing this. The International Experience Exchange with Patient Organisation’s Position Paper is based on a global patient survey conducted in Q3 2021 that received 304 responses. Results were discussed and validated by the 15 patient experts and supplemented with literature research. Results are a subset of this. Our research showed patient communities want to influence how their data is generated, shared, and used. Our study concludes that a reasonable framework is needed to protect the integrity of patient data and minimise abuse, and build trust. Results also demonstrated a need for patient communities to have more influence and control over how health data is generated, shared, and used. The results clearly highlight that the community feels there is a lack of clear policies on sharing data.

Keywords: digital health, equitable access, humanise healthcare, patient data

Procedia PDF Downloads 84
24798 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 150
24797 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 153
24796 Nuclear Decay Data Evaluation for 217Po

Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation

Procedia PDF Downloads 433
24795 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information

Authors: I. Nyoman Mahayasa Adiputra

Abstract:

Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.

Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city

Procedia PDF Downloads 132
24794 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 68
24793 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 346
24792 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System

Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal

Abstract:

Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.

Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks

Procedia PDF Downloads 396
24791 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card

Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi

Abstract:

In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.

Keywords: blockchain, decentralized system, fingerprint impression, identity management, iris scan

Procedia PDF Downloads 129
24790 Culture Dimensions of Information Systems Security in Saudi Arabia National Health Services

Authors: Saleh Alumaran, Giampaolo Bella, Feng Chen

Abstract:

The study of organisations’ information security cultures has attracted scholars as well as healthcare services industry to research the topic and find appropriate tools and approaches to develop a positive culture. The vast majority of studies in Saudi national health services are on the use of technology to protect and secure health services information. On the other hand, there is a lack of research on the role and impact of an organisation’s cultural dimensions on information security. This research investigated and analysed the role and impact of cultural dimensions on information security in Saudi Arabia health service. Hypotheses were tested and two surveys were carried out in order to collect data and information from three major hospitals in Saudi Arabia (SA). The first survey identified the main cultural-dimension problems in SA health services and developed an initial information security culture framework model. The second survey evaluated and tested the developed framework model to test its usefulness, reliability and applicability. The model is based on human behaviour theory, where the individual’s attitude is the key element of the individual’s intention to behave as well as of his or her actual behaviour. The research identified six cultural dimensions: Saudi national culture, Saudi health service leadership, employees’ trust, technology, multicultural interactions and employees’ job roles. The research also identified a set of cultural sub-dimensions. These include working values and norms, tribe values and norms, attitudes towards women, power sharing, vision, social interaction, respect and understanding, hospital intra-net, hospital employees’ language(s) used, multi-national culture, communication system, employees’ job satisfaction and job security. The research identified that (a) the human behaviour towards medical information in SA is one of the main threats to information security and one of the main challenges to SA health authority, (b) The current situation of SA hospitals’ IS cultures is falling short in protecting medical information due to the current value and norms towards information security, (c) Saudi national culture and employees’ job role are the main dimensions playing major roles in the employees’ attitude, and technology is the least important dimension playing a role in the employees’ attitudes.

Keywords: cultural dimension, electronic health record, information security, privacy

Procedia PDF Downloads 352
24789 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 316