Search results for: panel data method
37468 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes
Authors: J. J. Vargas, N. Prieto, L. A. Toro
Abstract:
Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method
Procedia PDF Downloads 37337467 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 10237466 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8637465 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods
Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan
Abstract:
Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.Keywords: forensic odontology, age estimation, North India, teeth
Procedia PDF Downloads 24237464 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 8637463 A Human Activity Recognition System Based on Sensory Data Related to Object Usage
Authors: M. Abdullah, Al-Wadud
Abstract:
Sensor-based activity recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.Keywords: Naïve Bayesian, based classification, activity recognition, sensor data, object-usage model
Procedia PDF Downloads 32237462 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 33337461 Human Development Strengthening against Terrorism in ASEAN East Asia and Pacific: An Econometric Analysis
Authors: Tismazammi Mustafa, Jaharudin Padli
Abstract:
The frequency of terrorism is increasing throughout years that is resulting in loss of life, damaging people’s property, and destructing the environment. The incident of terrorism is not stationed in one particular country but has spread and scattered in other countries hence causing an increase in the number of terrorism cases. Thus, this paper aims to investigate the factors of human development upon the terrorism in East Asia and Pacific countries. This study used a panel ARDL model, in which it enables to capture the long run and the short run relationship among the variables of interest. Logit Model for Binary data is also used, in which to representing an attributes of dependent variables. This study focuses on several human development variables namely GDP per capita, population, human capital, land area, and technologies. The empirical finding revealed that the GDP per capita, population, human capital, land area, and technologies are positively and statistically significant in influencing the terrorism. Thus, the finding in this study will present as grounds to preserve human rights and develop public awareness and will offer guidelines to policy makers, emergency managers, first responders, public health workers, physicians, and other researchers.Keywords: terrorism, East Asia and Pacific, human development, econometric analysis
Procedia PDF Downloads 41437460 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10137459 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method
Authors: Mei-Jie Xu, Yang Zhong
Abstract:
Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system
Procedia PDF Downloads 30537458 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis
Authors: I Dewa Gede Arya Putra
Abstract:
Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².Keywords: PCA, cluster, Ward's method, wind speed
Procedia PDF Downloads 19537457 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 3937456 The Study on How Outward Direct Investment of Chinese MNEs to European Union Area Affect the Domestic Industrial Structure
Authors: Nana Weng
Abstract:
From 2008, Chinese Foreign Direct Investment flows to the European Union continued its rapid rise. Currently, the industrial structure adjustment in developing countries has also been placed on the international movement of factors of production. Now China economy is in an important period of transformation on industrial structure adjustment. Under the international transfer of industry background, the adjustment of industrial structure upgrading and sophistication are the key elements of a successful economic transformation. In order to achieve a virtuous cycle of foreign investment patterns and optimize the industrial structure of foreign direct investment as well, the research on the positive the role of the EU direct investment and how it impact China’s industrial structure optimization and upgrading is of great significance. In this paper, the author explained how the EU as an investment destination is different with the United States and ASEAN. Then, based on the theory of FDI and industrial structure and combining the four kinds of motives of China’s ODI in EU, this paper explained the impact mechanism which has influenced China domestic industrial structure primarily through the Transfer effect, Correlation effect and Competitive effect. On the premise that FDI activities do affect the home country’s domestic industrial structure, this paper made empirical analysis with industrial panel data. With the help of Gray Correlation Method and Limited Distributed Lags, this paper found that China/s ODI in the EU impacted the tertiary industry strongly and had a significant positive impact, particularly the manufacturing industry and the financial industry. This paper also pointed out that Chinese MNEs should realize several issues, such as pay more attention to high-tech industries so that they can make the best use of reverse technology spillover. When Chinese enterprises ‘go out,' they ought to keep in mind that domestic research and development capital contribution can make greater economic growth. Finally, based on theoretical and empirical analysis results, this paper presents the industry choice recommendations in the future of the EU direct investment, particularly through the development of the proper rational industrial policy and industrial development strategic to guide the industrial restructuring and upgrading.Keywords: china ODI in european union, industrial structure optimization, impact mechanism, empirical analysis
Procedia PDF Downloads 31937455 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application
Authors: S. Abdourraziq, M. A. Abdourraziq
Abstract:
One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.Keywords: PV cell, converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 15837454 Building Biodiversity Conservation Plans Robust to Human Land Use Uncertainty
Authors: Yingxiao Ye, Christopher Doehring, Angelos Georghiou, Hugh Robinson, Phebe Vayanos
Abstract:
Human development is a threat to biodiversity, and conservation organizations (COs) are purchasing land to protect areas for biodiversity preservation. However, COs have limited budgets and thus face hard prioritization decisions that are confounded by uncertainty in future human land use. This research proposes a data-driven sequential planning model to help COs choose land parcels that minimize the uncertain human impact on biodiversity. The proposed model is robust to uncertain development, and the sequential decision-making process is adaptive, allowing land purchase decisions to adapt to human land use as it unfolds. The cellular automata model is leveraged to simulate land use development based on climate data, land characteristics, and development threat index from NASA Socioeconomic Data and Applications Center. This simulation is used to model uncertainty in the problem. This research leverages state-of-the-art techniques in the robust optimization literature to propose a computationally tractable reformulation of the model, which can be solved routinely by off-the-shelf solvers like Gurobi or CPLEX. Numerical results based on real data from the Jaguar in Central and South America show that the proposed method reduces conservation loss by 19.46% on average compared to standard approaches such as MARXAN used in practice for biodiversity conservation. Our method may better help guide the decision process in land acquisition and thereby allow conservation organizations to maximize the impact of limited resources.Keywords: data-driven robust optimization, biodiversity conservation, uncertainty simulation, adaptive sequential planning
Procedia PDF Downloads 20837453 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.Keywords: Parkinson's disease, step method, delay differential equation, two delays
Procedia PDF Downloads 20537452 Video-Observation: A Phenomenological Research Tool for International Relation?
Authors: Andreas Aagaard Nohr
Abstract:
International Relations is an academic discipline which is rarely in direct contact with its field. However, there has in recent years been a growing interest in the different agents within and beyond the state and their associated practices; yet some of the research tools with which to study them are not widely used. This paper introduces video-observation as a method for the study of IR and argues that it offers a unique way of studying the complexity of the everyday context of actors. The paper is divided into two main parts: First, the philosophical and methodological underpinnings of the kind of data that video-observation produces are discussed; primarily through a discussion of the phenomenology of Husserl, Heidegger, and Merleau-Ponty. Second, taking simulation of a WTO negotiation round as an example, the paper discusses how the data created can be analysed: in particular with regard to the structure of events, the temporal and spatial organization of activities, rhythm and periodicity, and the concrete role of artefacts and documents. The paper concludes with a discussion of the ontological, epistemological, and practical challenges and limitations that ought to be considered if video-observation is chosen as a method within the field of IR.Keywords: video-observation, phenomenology, international relations
Procedia PDF Downloads 44737451 The Flypaper Effect and the Municipal Participation Fund in the Brazilian Public Sector
Authors: Lucas Oliveira Gomes Ferreira, André Luiz Marques Serrano
Abstract:
The fiscal decentralization driven by the 1988 Constitution was responsible for granting greater autonomy to Brazilian subnational entities, as states and municipalities were entrusted with greater responsibilities to provide local public goods and services. However, the revenues necessary to implement the new attributions are largely received through intergovernmental transfers and not by local tax collection. The literature points out that public spending increases more by receiving unconditional and nonmatching (lump sum) intergovernmental grants than by an increase in taxpayers' income. This effect, called the flypaper effect, happens because the funds received could be used to reduce local taxes, meaning an increase in the citizen's private income. However, they are applied in the public sector in the form of expenses. The present work investigates the existence of the flypaper effect in Brazilian municipalities during the first two decades of the 21st century. The research uses the Municipal Participation Fund (FPM) as a grant proxy from 2000 to 2019 through econometrics of cross-section and panel data for all 5,568 municipalities. The results indicate the flypaper effect in Brazilian municipalities, as well as the proportional relationship between the receipt of constitutional transfers and the increase in public expenditure.Keywords: flypaper effect, intergovernmental transfers, municipal participation fund, fiscal federalism
Procedia PDF Downloads 14537450 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 9137449 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 13937448 A Superposition Method in Analyses of Clamped Thick Plates
Authors: Alexander Matrosov, Guriy Shirunov
Abstract:
A superposition method based on Lame's idea is used to get a general analytical solution to analyze a stress and strain state of a rectangular isotropjc elastic thick plate. The solution is built by using three solutions of the method of initial functions in the form of double trigonometric series. The results of bending of a thick plate under normal stress on its top face with two opposite sides clamped while others free of load are presented and compared with FEM modelling.Keywords: general solution, method of initial functions, superposition method, thick isotropic plates
Procedia PDF Downloads 59737447 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 37837446 Solution of Hybrid Fuzzy Differential Equations
Authors: Mahmood Otadi, Maryam Mosleh
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: fuzzy number, fuzzy ODE, HAM, approximate method
Procedia PDF Downloads 51137445 Optimal Control of Volterra Integro-Differential Systems Based on Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet accompany with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.Keywords: collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation
Procedia PDF Downloads 38837444 New Segmentation of Piecewise Linear Regression Models Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise linear regression models are very flexible models for modeling the data. If the piecewise linear regression models are matched against the data, then the parameters are generally not known. This paper studies the problem of parameter estimation of piecewise linear regression models. The method used to estimate the parameters of picewise linear regression models is Bayesian method. But the Bayes estimator can not be found analytically. To overcome these problems, the reversible jump MCMC algorithm is proposed. Reversible jump MCMC algorithm generates the Markov chain converges to the limit distribution of the posterior distribution of the parameters of picewise linear regression models. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of picewise linear regression models.Keywords: regression, piecewise, Bayesian, reversible Jump MCMC
Procedia PDF Downloads 52137443 A Class of Third Derivative Four-Step Exponential Fitting Numerical Integrator for Stiff Differential Equations
Authors: Cletus Abhulimen, L. A. Ukpebor
Abstract:
In this paper, we construct a class of four-step third derivative exponential fitting integrator of order six for the numerical integration of stiff initial-value problems of the type: y’= f(x,y); y(x₀) =y₀. The implicit method has free parameters which allow it to be fitted automatically to exponential functions. For the purpose of effective implementation of the proposed method, we adopted the techniques of splitting the method into predictor and corrector schemes. The numerical analysis of the stability of the new method was discussed; the results show that the method is A-stable. Finally, numerical examples are presented, to show the efficiency and accuracy of the new method.Keywords: third derivative four-step, exponentially fitted, a-stable, stiff differential equations
Procedia PDF Downloads 26537442 Global Optimization: The Alienor Method Mixed with Piyavskii-Shubert Technique
Authors: Guettal Djaouida, Ziadi Abdelkader
Abstract:
In this paper, we study a coupling of the Alienor method with the algorithm of Piyavskii-Shubert. The classical multidimensional global optimization methods involves great difficulties for their implementation to high dimensions. The Alienor method allows to transform a multivariable function into a function of a single variable for which it is possible to use efficient and rapid method for calculating the the global optimum. This simplification is based on the using of a reducing transformation called Alienor.Keywords: global optimization, reducing transformation, α-dense curves, Alienor method, Piyavskii-Shubert algorithm
Procedia PDF Downloads 50237441 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 14037440 Optimize Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, though, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate people. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease this advancement. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent data, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which testing split and technique would lead to the most optimal results.Keywords: data science, fraud detection, machine learning, supervised learning
Procedia PDF Downloads 19537439 Product Form Bionic Design Based on Eye Tracking Data: A Case Study of Desk Lamp
Authors: Huan Lin, Liwen Pang
Abstract:
In order to reduce the ambiguity and uncertainty of product form bionic design, a product form bionic design method based on eye tracking is proposed. The eye-tracking experiment is designed to calculate the average time ranking of the specific parts of the bionic shape that the subjects are looking at. Key bionic shape is explored through the experiment and then applied to a desk lamp bionic design. During the design case, FAHP (Fuzzy Analytic Hierachy Process) and SD (Semantic Differential) method are firstly used to identify consumer emotional perception model toward desk lamp before product design. Through investigating different desk lamp design elements and consumer views, the form design factors on the desk lamp product are reflected and all design schemes are sequenced after caculation. Desk lamp form bionic design method is combined the key bionic shape extracted from eye-tracking experiment and priority of desk lamp design schemes. This study provides an objective and rational method to product form bionic design.Keywords: Bionic design; Form; Eye tracking; FAHP; Desk lamp
Procedia PDF Downloads 224