Search results for: models synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8833

Search results for: models synthesis

7753 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 70
7752 Mathematical Models for GMAW and FCAW Welding Processes for Structural Steels Used in the Oil Industry

Authors: Carlos Alberto Carvalho Castro, Nancy Del Ducca Barbedo, Edmilsom Otoni Côrrea

Abstract:

With increase the production oil and lines transmission gases that are in ample expansion, the industries medium and great transport they had to adapt itself to supply the demand manufacture in this fabrication segment. In this context, two welding processes have been more extensively used: the GMAW (Gas Metal Arc Welding) and the FCAW (Flux Cored Arc Welding). In this work, welds using these processes were carried out in flat position on ASTM A-36 carbon steel plates in order to make a comparative evaluation between them concerning to mechanical and metallurgical properties. A statistical tool based on technical analysis and design of experiments, DOE, from the Minitab software was adopted. For these analyses, the voltage, current, and welding speed, in both processes, were varied. As a result, it was observed that the welds in both processes have different characteristics in relation to the metallurgical properties and performance, but they present good weldability, satisfactory mechanical strength e developed mathematical models.

Keywords: Flux Cored Arc Welding (FCAW), Gas Metal Arc Welding (GMAW), Design of Experiments (DOE), mathematical models

Procedia PDF Downloads 560
7751 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 97
7750 ID + PD: Training Instructional Designers to Foster and Facilitate Learning Communities in Digital Spaces

Authors: Belkis L. Cabrera

Abstract:

Contemporary technological innovations have reshaped possibility, interaction, communication, engagement, education, and training. Indeed, today, a high-quality technology enhanced learning experience can be transformative as much for the learner as for the educator-trainer. As innovative technologies continue to facilitate, support, foster, and enhance collaboration, problem-solving, creativity, adaptiveness, multidisciplinarity, and communication, the field of instructional design (ID) also continues to develop and expand. Shifting its focus from media to the systematic design of instruction, or rather from the gadgets and devices themselves to the theories, models, and impact of implementing educational technology, the evolution of ID marks a restructuring of the teaching, learning, and training paradigms. However, with all of its promise, this latter component of ID remains underdeveloped. The majority of ID models are crafted and guided by learning theories and, therefore, most models are constructed around student and educator roles rather than trainer roles. Thus, when these models or systems are employed for training purposes, they usually have to be re-fitted, tweaked, and stretched to meet the training needs. This paper is concerned with the training or professional development (PD) facet of instructional design and how ID models built on teacher-to-teacher interaction and dialogue can support the creation of professional learning communities (PLCs) or communities of practice (CoPs), which can augment learning and PD experiences for all. Just as technology is changing the face of education, so too can it change the face of PD within the educational realm. This paper not only provides a new ID model but using innovative technologies such as Padlet and Thinkbinder, this paper presents a concrete example of how a traditional body-to-body, brick, and mortar learning community can be transferred and transformed into the online context.

Keywords: communities of practice, e-learning, educational reform, instructional design, professional development, professional learning communities, technology, training

Procedia PDF Downloads 340
7749 Adding a Degree of Freedom to Opinion Dynamics Models

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Within agent-based modeling, opinion dynamics is the field that focuses on modeling people's opinions. In this prolific field, most of the literature is dedicated to the exploration of the two 'degrees of freedom' and how they impact the model’s properties (e.g., the average final opinion, the number of final clusters, etc.). These degrees of freedom are (1) the interaction rule, which determines how agents update their own opinion, and (2) the network topology, which defines the possible interaction among agents. In this work, we show that the third degree of freedom exists. This can be used to change a model's output up to 100% of its initial value or to transform two models (both from the literature) into each other. Since opinion dynamics models are representations of the real world, it is fundamental to understand how people’s opinions can be measured. Even for abstract models (i.e., not intended for the fitting of real-world data), it is important to understand if the way of numerically representing opinions is unique; and, if this is not the case, how the model dynamics would change by using different representations. The process of measuring opinions is non-trivial as it requires transforming real-world opinion (e.g., supporting most of the liberal ideals) to a number. Such a process is usually not discussed in opinion dynamics literature, but it has been intensively studied in a subfield of psychology called psychometrics. In psychometrics, opinion scales can be converted into each other, similarly to how meters can be converted to feet. Indeed, psychometrics routinely uses both linear and non-linear transformations of opinion scales. Here, we analyze how this transformation affects opinion dynamics models. We analyze this effect by using mathematical modeling and then validating our analysis with agent-based simulations. Firstly, we study the case of perfect scales. In this way, we show that scale transformations affect the model’s dynamics up to a qualitative level. This means that if two researchers use the same opinion dynamics model and even the same dataset, they could make totally different predictions just because they followed different renormalization processes. A similar situation appears if two different scales are used to measure opinions even on the same population. This effect may be as strong as providing an uncertainty of 100% on the simulation’s output (i.e., all results are possible). Still, by using perfect scales, we show that scales transformations can be used to perfectly transform one model to another. We test this using two models from the standard literature. Finally, we test the effect of scale transformation in the case of finite precision using a 7-points Likert scale. In this way, we show how a relatively small-scale transformation introduces both changes at the qualitative level (i.e., the most shared opinion at the end of the simulation) and in the number of opinion clusters. Thus, scale transformation appears to be a third degree of freedom of opinion dynamics models. This result deeply impacts both theoretical research on models' properties and on the application of models on real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 119
7748 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces

Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha

Abstract:

The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.

Keywords: visualization, 3D models, servo motors, C# programming language

Procedia PDF Downloads 342
7747 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 370
7746 Supplier Relationship Management and Selection Strategies: A Literature Review

Authors: Priyesh Kumar Singh, S. K. Sharma, Sanjay Verma, C. Samuel

Abstract:

Supplier Relationship Management (SRM), is strategic planning and managing of all interactions with suppliers to maximize its value. Its application varies from construction industries to healthcare system and investment banks to aviation industries. Several buyer-supplier relationship models, as well as supplier selection and evaluation strategies, have been documented by many academicians and researchers. In this paper, through a comprehensive literature review of over 30 published papers, different theoretical models, empirical data and conclusions were analysed relating to SRM to find its role in establishing better supplier relationships. These journal articles were searched by using the keyword “supplier relationship management,” in databases of Mendeley Library, ProQuest, EBSCO and Google Scholar. This paper reviews the academic literature on different relationship models, supplier evaluation, and selection strategies to discuss its implications in different situations. It also describes the dominant factors responsible for buyer-supplier relationships such trust and power. Finally, conclusions have been drawn which can be validated by various researchers and can help practitioners in industries.

Keywords: supplier relationship management, supplier performance, supplier evaluation, supplier selection strategies

Procedia PDF Downloads 280
7745 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications

Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique

Abstract:

Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.

Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis

Procedia PDF Downloads 129
7744 Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy

Authors: Malgorzata J. Rybak-Smith, Benedicte Thiebaut, Simon Johnson, Peter Bishop, Helen E. Townley

Abstract:

Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy.

Keywords: cancer, gadolinium, ROS, titania nanoparticles, X-ray

Procedia PDF Downloads 431
7743 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting

Authors: Kourosh Modarresi

Abstract:

The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.

Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation

Procedia PDF Downloads 455
7742 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 70
7741 Experiences and Perceptions of the Barriers and Facilitators of Continence Care Provision in Residential and Nursing Homes for Older Adults: A Systematic Evidence Synthesis and Qualitative Exploration

Authors: Jennifer Wheeldon, Nick de Viggiani, Nikki Cotterill

Abstract:

Background: Urinary and fecal incontinence affect a significant proportion of older adults aged 65 and over who permanently reside in residential and nursing home facilities. Incontinence symptoms have been linked to comorbidities, an increased risk of infection and reduced quality of life and mental wellbeing of residents. However, continence care provision can often be poor, further compromising the health and wellbeing of this vulnerable population. Objectives: To identify experiences and perceptions of continence care provision in older adult residential care settings and to identify factors that help or hinder good continence care provision. Settings included both residential care homes and nursing homes for older adults. Methods: A qualitative evidence synthesis using systematic review methodology established the current evidence-base. Data from 20 qualitative and mixed-method studies was appraised and synthesized. Following the review process, 10* qualitative interviews with staff working in older adult residential care settings were conducted across six* sites, which included registered managers, registered nurses and nursing/care assistants/aides. Purposive sampling recruited individuals from across England. Both evidence synthesis and interview data was analyzed thematically, both manually and with NVivo software. Results: The evidence synthesis revealed complex barriers and facilitators for continence care provision at three influencing levels: macro (structural and societal external influences), meso (organizational and institutional influences) and micro (day-to-day actions of individuals impacting service delivery). Macro-level barriers included negative stigmas relating to incontinence, aging and working in the older adult social care sector, restriction of continence care resources such as containment products (i.e. pads), short staffing in care facilities, shortfalls in the professional education and training of care home staff and the complex health and social care needs of older adult residents. Meso-level barriers included task-centered organizational cultures, ageist institutional perspectives regarding old age and incontinence symptoms, inadequate care home management and poor communication and teamwork among care staff. Micro-level barriers included poor knowledge and negative attitudes of care home staff and residents regarding incontinence symptoms and symptom management and treatment. Facilitators at the micro-level included proactive and inclusive leadership skills of individuals in management roles. Conclusions: The findings of the evidence synthesis study help to outline the complexities of continence care provision in older adult care homes facilities. Macro, meso and micro level influences demonstrate problematic and interrelated barriers across international contexts, indicating that improving continence care in this setting is extremely challenging due to the multiple levels at which care provision and services are impacted. Both international and national older adult social care policy-makers, researchers and service providers must recognize this complexity, and any intervention seeking to improve continence care in older adult care home settings must be planned accordingly and appreciatively of the complex and interrelated influences. It is anticipated that the findings of the qualitative interviews will shed further light on the national context of continence care provision specific to England; data collection is ongoing*. * Sample size is envisaged to be between 20-30 participants from multiple sites by Spring 2023.

Keywords: continence care, residential and nursing homes, evidence synthesis, qualitative

Procedia PDF Downloads 87
7740 Transition Economies, Typology, and Models: The Case of Libya

Authors: Abderahman Efhialelbum

Abstract:

The period since the fall of the Berlin Wall on November 9, 1989, and the collapse of the former Soviet Union in December 1985 has seen a major change in the economies and labour markets of Eastern Europe. The events also had reverberating effects across Asia and South America and parts of Africa, including Libya. This article examines the typologies and the models of transition economies. Also, it sheds light on the Libyan transition in particular and the impact of Qadhafi’s regime on the transition process. Finally, it illustrates how the Libyan transition process followed the trajectory of other countries using economic indicators such as free trade, property rights, and inflation.

Keywords: transition, economy, typology, model, Libya

Procedia PDF Downloads 156
7739 Factors Associated with Hand Functional Disability in People with Rheumatoid Arthritis: A Systematic Review and Best-Evidence Synthesis

Authors: Hisham Arab Alkabeya, A. M. Hughes, J. Adams

Abstract:

Background: People with Rheumatoid Arthritis (RA) continue to experience problems with hand function despite new drug advances and targeted medical treatment. Consequently, it is important to identify the factors that influence the impact of RA disease on hand function. This systematic review identified observational studies that reported factors that influenced the impact of RA on hand function. Methods: MEDLINE, EMBASE, CINAL, AMED, PsychINFO, and Web of Science database were searched from January 1990 up to March 2017. Full-text articles published in English that described factors related to hand functional disability in people with RA were selected following predetermined inclusion and exclusion criteria. Pertinent data were thoroughly extracted and documented using a pre-designed data extraction form by the lead author, and cross-checked by the review team for completion and accuracy. Factors related to hand function were classified under the domains of the International Classification of Functioning, Disability, and Health (ICF) framework and health-related factors. Three reviewers independently assessed the methodological quality of the included articles using the quality of cross-sectional studies (AXIS) tool. Factors related to hand function that was investigated in two or more studies were explored using a best-evidence synthesis. Results: Twenty articles form 19 studies met the inclusion criteria from 1,271 citations; all presented cross-sectional data (five high quality and 15 low quality studies), resulting in at best limited evidence in the best-evidence synthesis. For the factors classified under the ICF domains, the best-evidence synthesis indicates that there was a range of body structure and function factors that were related with hand functional disability. However, key factors were hand strength, disease activity, and pain intensity. Low functional status (physical, emotional and social) level was found to be related with limited hand function. For personal factors, there is limited evidence that gender is not related with hand function; whereas, conflicting evidence was found regarding the relationship between age and hand function. In the domain of environmental factors, there was limited evidence that work activity was not related with hand function. Regarding health-related factors, there was limited evidence that the level of the rheumatoid factor (RF) was not related to hand function. Finally, conflicting evidence was found regarding the relationship between hand function and disease duration and general health status. Conclusion: Studies focused on body structure and function factors, highlighting a lack of investigation into personal and environmental factors when considering the impact of RA on hand function. The level of evidence which exists was limited, but identified that modifiable factors such as grip or pinch strength, disease activity and pain are the most influential factors on hand function in people with RA. The review findings suggest that important personal and environmental factors that impact on hand function in people with RA are not yet considered or reported in clinical research. Well-designed longitudinal, preferably cohort, studies are now needed to better understand the causality between personal and environmental factors and hand functional disability in people with RA.

Keywords: factors, hand function, rheumatoid arthritis, systematic review

Procedia PDF Downloads 147
7738 Teaching Physics: History, Models, and Transformation of Physics Education Research

Authors: N. Didiş Körhasan, D. Kaltakçı Gürel

Abstract:

Many students have difficulty in learning physics from elementary to university level. In addition, students' expectancy, attitude, and motivation may be influenced negatively with their experience (failure) and prejudice about physics learning. For this reason, physics educators, who are also physics teachers, search for the best ways to make students' learning of physics easier by considering cognitive, affective, and psychomotor issues in learning. This research critically discusses the history of physics education, fundamental pedagogical approaches, and models to teach physics, and transformation of physics education with recent research.

Keywords: pedagogy, physics, physics education, science education

Procedia PDF Downloads 264
7737 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles

Authors: Siamack A. Shirazi, Farzin Darihaki

Abstract:

Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.

Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid

Procedia PDF Downloads 169
7736 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 456
7735 Photoinduced Energy and Charge Transfer in InP Quantum Dots-Polymer/Metal Composites for Optoelectronic Devices

Authors: Akanksha Singh, Mahesh Kumar, Shailesh N. Sharma

Abstract:

Semiconductor quantum dots (QDs) such as CdSe, CdS, InP, etc. have gained significant interest in the recent years due to its application in various fields such as LEDs, solar cells, lasers, biological markers, etc. The interesting feature of the QDs is their tunable band gap. The size of the QDs can be easily varied by varying the synthesis parameters which change the band gap. One of the limitations with II-VI semiconductor QDs is their biological application. The use of cadmium makes them unsuitable for biological applications. III-V QD such as InP overcomes this problem as they are structurally robust because of the covalent bonds which do not allow the ions to leak. Also, InP QDs has large Bohr radii which increase the window for the quantum confinement effect. The synthesis of InP QDs is difficult and time consuming. Authors have synthesized InP using a novel, quick synthesis method which utilizes trioctylphosphine as a source of phosphorus. In this work, authors have made InP composites with P3HT(Poly(3-hexylthiophene-2,5-diyl))polymer(organic-inorganic hybrid material) and gold nanoparticles(metal-semiconductor composites). InP-P3HT shows FRET phenomenon whereas InP-Au shows charge transfer mechanism. The synthesized InP QDs has an absorption band at 397 nm and PL peak position at 491 nm. The band gap of the InP QDs is 2.46 eV as compared to the bulk band gap of InP i.e. 1.35 eV. The average size of the QDs is around 3-4 nm. In order to protect the InP core, a shell of wide band gap material i.e. ZnS is coated on the top of InP core. InP-P3HT composites were made in order to study the charge transfer/energy transfer phenomenon between them. On adding aliquots of P3HT to InP QDs solution, the P3HT PL increases which can be attributed to the dominance of Förster energy transfer between InP QDs (donor) P3HT polymer (acceptor). There is a significant spectral overlap between the PL spectra of InP QDs and absorbance spectra of P3HT. But in the case of InP-Au nanocomposites, significant charge transfer was seen from InP QDs to Au NPs. When aliquots of Au NPs were added to InP QDs, a decrease in the PL of the InP QDs was observed. This is due to the charge transfer from the InP QDs to the Au NPs. In the case of metal semiconductor composites, the enhancement and quenching of QDs depend on the size of the QD and the distance between the QD and the metal NP. These two composites have different phenomenon between donor and acceptor and hence can be utilized for two different applications. The InP-P3HT composite can be utilized for LED devices due to enhancement in the PL emission (FRET). The InP-Au can be utilized efficiently for photovoltaic application owing to the successful charge transfer between InP-Au NPs.

Keywords: charge transfer, FRET, gold nanoparticles, InP quantum dots

Procedia PDF Downloads 148
7734 Design, Synthesis and Anti-Inflammatory Activity of Some Coumarin and Flavone Derivatives Containing 1,4 Dioxane Ring System

Authors: Asif Husain, Shah Alam Khan

Abstract:

Coumarins and flavones are oxygen containing heterocyclic compounds which are present in various biologically active compounds. Both the heterocyclic rings are associated with diverse biological actions, therefore considered as an important scaffold for the design of molecules of pharmaceutical interest. Aim: To synthesize and evaluate the in vivo anti-inflammatory activity of few coumrain and flavone derivatives containing 1,4 dioxane ring system. Materials and methods: Coumarin derivatives (3a-d) were synthesized by reacting 7,8 dihydroxy coumarin (2a) and its 4-methyl derivative (2b) with epichlorohydrin/ethylene dibromide. The flavone derivatives (10a-d) were prepared by using quercetin and 3,4 dihydroxy flavones. Compounds of both the series were also evaluated for their anti-inflammatory, analgesic activity and ulcerogenicity in animal models by reported methods. Results and Discussion: The structures of all newly synthesized compounds were confirmed with the help of IR, 1H NMR, 13C NMR and Mass spectral studies. Elemental analyses data for each element analyzed (C, H, N) was found to be within acceptable range of ±0.4 %. Flavone derivatives, but in particular quercetin containing 1,4 dioxane ring system (10d) showed better anti-inflammatory and analgesic activity along with reduced gastrointestinal toxicity as compared to other synthesized compounds. The results of anti-inflammatory and analgesic activities of both the series are comparable with the positive control, diclofenac. Conclusion: Compound 10d, a quercetin derivative, emerged as a lead molecule which exhibited potent anti-inflammatory and analgesic activity with significant reduced gastric toxicity.

Keywords: analgesic, anti-inflammatory, 1, 4 dioxane, coumarin, flavone

Procedia PDF Downloads 327
7733 Real Estate Trend Prediction with Artificial Intelligence Techniques

Authors: Sophia Liang Zhou

Abstract:

For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.

Keywords: linear regression, random forest, artificial neural network, real estate price prediction

Procedia PDF Downloads 103
7732 Disaster Management and Resilience: A Conceptual Synthesis of Local

Authors: Oshienemen Albert, Dilanthi Amaratunga, Richard Haigh

Abstract:

Globally, disasters of any form can affect the environment, built environment, the waterways, societies, nations and communities in diverse areas. The such impacts could cut across, economic loss, social setting, cultural and livelihood structures of affected population. Thus, the raise of disaster impacts across developing nations are alarming with decades impact due to the lack of hard and soft infrastructural development across communities, inconsistency in the governmental policy and implementation, making it difficult for disaster affected communities to bounce back when necessary, especially in Nigeria. The Nigeria disasters, especially oil spillages have affected diverse communities across the Niger Delta region for decades with little or nothing as external support for the broken livelihood structure, cultural and economic damages of the people. Though, in the spirit of contribution to the communities affected by oil spill and negative consequence of petroleum production, the federal government at different times established some impressionistic bodies and agencies to oversee the affairs of the region as with regards to oil spillages and development. Thus, the agencies contributions are yet to manifest in practice. This amplifies the quest for the structural clarities of the management systems and the resilience’s of the communities, to better equip the communities for any such disaster. Therefore, the study sets to explore the Nigerian disaster management systems and resilience concept at local community level. Thus, desk-based approach and interviews are employed for the synthesis while, drawing conclusion and recommendations.

Keywords: disaster, community, management, resilience

Procedia PDF Downloads 185
7731 Simulation to Detect Virtual Fractional Flow Reserve in Coronary Artery Idealized Models

Authors: Nabila Jaman, K. E. Hoque, S. Sawall, M. Ferdows

Abstract:

Coronary artery disease (CAD) is one of the most lethal diseases of the cardiovascular diseases. Coronary arteries stenosis and bifurcation angles closely interact for myocardial infarction. We want to use computer-aided design model coupled with computational hemodynamics (CHD) simulation for detecting several types of coronary artery stenosis with different locations in an idealized model for identifying virtual fractional flow reserve (vFFR). The vFFR provides us the information about the severity of stenosis in the computational models. Another goal is that we want to imitate patient-specific computed tomography coronary artery angiography model for constructing our idealized models with different left anterior descending (LAD) and left circumflex (LCx) bifurcation angles. Further, we want to analyze whether the bifurcation angles has an impact on the creation of narrowness in coronary arteries or not. The numerical simulation provides the CHD parameters such as wall shear stress (WSS), velocity magnitude and pressure gradient (PGD) that allow us the information of stenosis condition in the computational domain.

Keywords: CAD, CHD, vFFR, bifurcation angles, coronary stenosis

Procedia PDF Downloads 157
7730 ‘Non-Legitimate’ Voices as L2 Models: Towards Becoming a Legitimate L2 Speaker

Authors: M. Rilliard

Abstract:

Based on a Multiliteracies-inspired and sociolinguistically-informed advanced French composition class, this study employed autobiographical narratives from speakers traditionally considered non-legitimate models for L2 teaching purposes of inspiring students to develop an authentic L2 voice and to see themselves as legitimate L2 speakers. Students explored their L2 identities in French through a self-inspired fictional character. Two autobiographical narratives of identity quest by non-traditional French speakers provided them guidance through this process: the novel Le Bleu des Abeilles (2013) and the film Qu’Allah Bénisse la France (2014). Written and French oral productions for different genres, as well as metalinguistic reflections in English, were collected and analyzed. Results indicate that ideas and materials that were relatable to students, namely relatable experiences and relatable language, were most useful to them in developing their L2 voices and achieving authentic and legitimate L2 speakership. These results point towards the benefits of using non-traditional speakers as pedagogical models, as they serve to legitimize students’ sense of their own L2-speakership, which ultimately leads them towards a better, more informed, mastery of the language.

Keywords: foreign language classroom, L2 identity, L2 learning and teaching, L2 writing, sociolinguistics

Procedia PDF Downloads 133
7729 Comparative Appraisal of Polymeric Matrices Synthesis and Characterization Based on Maleic versus Itaconic Anhydride and 3,9-Divinyl-2,4,8,10-Tetraoxaspiro[5.5]-Undecane

Authors: Iordana Neamtu, Aurica P. Chiriac, Loredana E. Nita, Mihai Asandulesa, Elena Butnaru, Nita Tudorachi, Alina Diaconu

Abstract:

In the last decade, the attention of many researchers is focused on the synthesis of innovative “intelligent” copolymer structures with great potential for different uses. This considerable scientific interest is stimulated by possibility of the significant improvements in physical, mechanical, thermal and other important specific properties of these materials. Functionalization of polymer in synthesis by designing a suitable composition with the desired properties and applications is recognized as a valuable tool. In this work is presented a comparative study of the properties of the new copolymers poly(maleic anhydride maleic-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) and poly(itaconic-anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane) obtained by radical polymerization in dioxane, using 2,2′-azobis(2-methylpropionitrile) as free-radical initiator. The comonomers are able for generating special effects as for example network formation, biodegradability and biocompatibility, gel formation capacity, binding properties, amphiphilicity, good oxidative and thermal stability, good film formers, and temperature and pH sensitivity. Maleic anhydride (MA) and also the isostructural analog itaconic anhydride (ITA) as polyfunctional monomers are widely used in the synthesis of reactive macromolecules with linear, hyperbranched and self & assembled structures to prepare high performance engineering, bioengineering and nano engineering materials. The incorporation of spiroacetal groups in polymer structures improves the solubility and the adhesive properties, induce good oxidative and thermal stability, are formers of good fiber or films with good flexibility and tensile strength. Also, the spiroacetal rings induce interactions on ether oxygen such as hydrogen bonds or coordinate bonds with other functional groups determining bulkiness and stiffness. The synthesized copolymers are analyzed by DSC, oscillatory and rotational rheological measurements and dielectric spectroscopy with the aim of underlying the heating behavior, solution viscosity as a function of shear rate and temperature and to investigate the relaxation processes and the motion of functional groups present in side chain around the main chain or bonds of the side chain. Acknowledgments This work was financially supported by the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-132/2014 “Magnetic biomimetic supports as alternative strategy for bone tissue engineering and repair’’ (MAGBIOTISS).

Keywords: Poly(maleic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); Poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5)undecane); DSC; oscillatory and rotational rheological analysis; dielectric spectroscopy

Procedia PDF Downloads 227
7728 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 75
7727 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia PDF Downloads 180
7726 On Hyperbolic Gompertz Growth Model (HGGM)

Authors: S. O. Oyamakin, A. U. Chukwu,

Abstract:

We proposed a Hyperbolic Gompertz Growth Model (HGGM), which was developed by introducing a stabilizing parameter called θ using hyperbolic sine function into the classical gompertz growth equation. The resulting integral solution obtained deterministically was reprogrammed into a statistical model and used in modeling the height and diameter of Pines (Pinus caribaea). Its ability in model prediction was compared with the classical gompertz growth model, an approach which mimicked the natural variability of height/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using goodness of fit tests and model selection criteria. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the compliance of the error term to normality assumptions while using testing the independence of the error term using the runs test. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic gompertz growth models better than the source model (classical gompertz growth model) while the results of R2, Adj. R2, MSE, and AIC confirmed the predictive power of the Hyperbolic Monomolecular growth models over its source model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, gompertz

Procedia PDF Downloads 441
7725 Modelling Volatility of Cryptocurrencies: Evidence from GARCH Family of Models with Skewed Error Innovation Distributions

Authors: Timothy Kayode Samson, Adedoyin Isola Lawal

Abstract:

The past five years have shown a sharp increase in public interest in the crypto market, with its market capitalization growing from $100 billion in June 2017 to $2158.42 billion on April 5, 2022. Despite the outrageous nature of the volatility of cryptocurrencies, the use of skewed error innovation distributions in modelling the volatility behaviour of these digital currencies has not been given much research attention. Hence, this study models the volatility of 5 largest cryptocurrencies by market capitalization (Bitcoin, Ethereum, Tether, Binance coin, and USD Coin) using four variants of GARCH models (GJR-GARCH, sGARCH, EGARCH, and APARCH) estimated using three skewed error innovation distributions (skewed normal, skewed student- t and skewed generalized error innovation distributions). Daily closing prices of these currencies were obtained from Yahoo Finance website. Finding reveals that the Binance coin reported higher mean returns compared to other digital currencies, while the skewness indicates that the Binance coin, Tether, and USD coin increased more than they decreased in values within the period of study. For both Bitcoin and Ethereum, negative skewness was obtained, meaning that within the period of study, the returns of these currencies decreased more than they increased in value. Returns from these cryptocurrencies were found to be stationary but not normality distributed with evidence of the ARCH effect. The skewness parameters in all best forecasting models were all significant (p<.05), justifying of use of skewed error innovation distributions with a fatter tail than normal, Student-t, and generalized error innovation distributions. For Binance coin, EGARCH-sstd outperformed other volatility models, while for Bitcoin, Ethereum, Tether, and USD coin, the best forecasting models were EGARCH-sstd, APARCH-sstd, EGARCH-sged, and GJR-GARCH-sstd, respectively. This suggests the superiority of skewed Student t- distribution and skewed generalized error distribution over the skewed normal distribution.

Keywords: skewed generalized error distribution, skewed normal distribution, skewed student t- distribution, APARCH, EGARCH, sGARCH, GJR-GARCH

Procedia PDF Downloads 119
7724 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90