Search results for: mechanical treatments
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5392

Search results for: mechanical treatments

4312 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties

Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag

Abstract:

nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.

Keywords: nano silica, dispersion, sonication, carbon nano tubes

Procedia PDF Downloads 142
4311 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 520
4310 Design and Optimization of an Electromagnetic Vibration Energy Converter

Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun

Abstract:

Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.

Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil

Procedia PDF Downloads 292
4309 The Mechanical Response of a Composite Propellant under Harsh Conditions

Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng

Abstract:

The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.

Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle

Procedia PDF Downloads 288
4308 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 84
4307 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use

Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat

Abstract:

The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.

Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields

Procedia PDF Downloads 130
4306 Improving Carbon Fiber Structural Battery Performance with Polymer Interface

Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint

Abstract:

This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.

Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries

Procedia PDF Downloads 102
4305 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites

Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina

Abstract:

Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.

Keywords: dispersion, mechanical performance, multi wall carbon nanotubes, sonication conditions

Procedia PDF Downloads 318
4304 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis

Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie

Abstract:

Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.

Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension

Procedia PDF Downloads 210
4303 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia PDF Downloads 317
4302 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes

Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah

Abstract:

The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.

Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential

Procedia PDF Downloads 82
4301 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete

Procedia PDF Downloads 289
4300 Experimental Characterization of Fatigue Crack Initiation of AA320 Alloy under Combined Thermal Cycling (CTC) and Mechanical Loading (ML) during Four Point Rotating and Bending Fatigue Testing Machine

Authors: Rana Atta Ur Rahman, Daniel Juhre

Abstract:

Initiation of crack during fatigue of casting alloys are noticed mainly on the basis of experimental results. Crack initiation and strength of fatigue of AA320 are summarized here. Load sequence effect is applied to notify initiation phase life. Crack initiation at notch root and fatigue life is calculated under single & two-step mechanical loading (ML) with and without combined thermal cycling (CTC). An Experimental setup is proposed to create the working temperature as per alloy applications. S-N curves are plotted, and a comparison is made between crack initiation leading to failure under different ML with & without thermal loading (TL).

Keywords: fatigue, initiation, SN curve, alloy

Procedia PDF Downloads 401
4299 Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Keywords: composite, epoxy, polyester, relining, sewage

Procedia PDF Downloads 338
4298 Combining Experiments and Surveys to Understand the Pinterest User Experience

Authors: Jolie M. Martin

Abstract:

Running experiments while logging detailed user actions has become the standard way of testing product features at Pinterest, as at many other Internet companies. While this technique offers plenty of statistical power to assess the effects of product changes on behavioral metrics, it does not often give us much insight into why users respond the way they do. By combining at-scale experiments with smaller surveys of users in each experimental condition, we have developed a unique approach for measuring the impact of our product and communication treatments on user sentiment, attitudes, and comprehension.

Keywords: experiments, methodology, surveys, user experience

Procedia PDF Downloads 309
4297 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 437
4296 Defense Priming from Egg to Larvae in Litopenaeus vannamei with Non-Pathogenic and Pathogenic Bacteria Strains

Authors: Angelica Alvarez-Lee, Sergio Martinez-Diaz, Jose Luis Garcia-Corona, Humberto Lanz-Mendoza

Abstract:

World aquaculture is always looking for improvements to achieve productions with high yields avoiding the infection by pathogenic agents. The best way to achieve this is to know the biological model to create alternative treatments that could be applied in the hatcheries, which results in greater economic gains and improvements in human public health. In the last decade, immunomodulation in shrimp culture with probiotics, organic acids and different carbon sources has gained great interest, mainly in larval and juvenile stages. Immune priming is associated with a strong protective effect against a later pathogen challenge. This work provides another perspective about immunostimulation from spawning until hatching. The stimulation happens during development embryos and generates resistance to infection by pathogenic bacteria. Massive spawnings of white shrimp L. vannamei were obtained and placed in experimental units with 700 mL of sterile seawater at 30 °C, salinity of 28 ppm and continuous aeration at a density of 8 embryos.mL⁻¹. The immunostimulating effect of three death strains of non-pathogenic bacterial (Escherichia coli, Staphylococcus aureus and Bacillus subtilis) and a pathogenic strain for white shrimp (Vibrio parahaemolyticus) was evaluated. The strains killed by heat were adjusted to O.D. 0.5, at A 600 nm, and directly added to the seawater of each unit at a ratio of 1/100 (v/v). A control group of embryos without inoculum of dead bacteria was kept under the same physicochemical conditions as the rest of the treatments throughout the experiment and used as reference. The duration of the stimulus was 12 hours, then, the larvae that hatched were collected, counted and transferred to a new experimental unit (same physicochemical conditions but at a salinity of 28 ppm) to carry out a challenge of infection against the pathogen V. parahaemolyticus, adding directly to seawater an amount 1/100 (v/v) of the live strain adjusted to an OD 0.5; at A 600 nm. Subsequently, 24 hrs after infection, nauplii survival was evaluated. The results of this work shows that, after 24 hrs, the hatching rates of immunostimulated shrimp embryos with the dead strains of B. subtillis and V. parahaemolyticus are significantly higher compared to the rest of the treatments and the control. Furthermore, survival of L. vanammei after a challenge of infection of 24 hrs against the live strain of V. parahaemolyticus is greater (P < 0.05) in the larvae immunostimulated during the embryonic development with the dead strains B. subtillis and V. parahaemolyticus, followed by those that were treated with E. coli. In summary superficial antigens can stimulate the development cells to promote hatching and can have normal development in agreeing with the optical observations, plus exist a differential response effect between each treatment post-infection. This research provides evidence of the immunostimulant effect of death pathogenic and non-pathogenic bacterial strains in the rate of hatching and oversight of shrimp L. vannamei during embryonic and larval development. This research continues evaluating the effect of these death strains on the expression of genes related to the defense priming in larvae of L. vannamei that come from massive spawning in hatcheries before and after the infection challenge against V. parahaemolyticus.

Keywords: immunostimulation, L. vannamei, hatching, survival

Procedia PDF Downloads 137
4295 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing

Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto

Abstract:

In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.

Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration

Procedia PDF Downloads 240
4294 Production Performance, Gut Microbial Count, Antibody Titer and Selected Welfare Indices of Broiler Birds Fed Higher Level of Animal Protein Concentrate With or Without Organic Acids Blend and Microencapsulated Phyto-Essential Oil

Authors: Ziaul Islam, Asad Sultan, Sarzamin Khan

Abstract:

Organic acids and micro encapsulated phyto essential oils have revealed great potential as an antibiotic replacement and as an additive to work tremendously for the health maintenance of broiler chicken. To explore more about organic acids, a total of 600 day-old broiler chicks (Cobb-500) were procured from a local hatchery and distributed into 5 treatment groups having 6 replicates of 20 birds each; the duration of the biological trial was of 35 days. Group T1 served as a control group that were fed on corn soy-based diet only. T2 were fed with a diet having 6% poultry by-product meal (PBM) diet, T3, T4, and T5 were served as the same diet as T2 but supplemented with an organic acid, phyto essential oils alone, and a combination, respectively. The findings declared significant improvement (p<0.05) in body weight gain and FCR in groups T3, T4, and T5 while feed intake was not affected. European broiler performance indicators like production efficiency factor (EPEF) and broiler index (EBI) were improved significantly (p<0.05) by the treatments T3, T4, and T5 compared with T1 and T2. Carcass evaluation depicted significantly better (p<0.05) dressed and eviscerated weight along with carcass yield (T3, T4, T5). Broilers fed organic acid and phyto essential oils supplemented diet had significantly lower (p<0.05) Clostridium perfringens, Escherichia coliand Salmonella and increased Lactobacillus counts. Likewise, antibody titer against ND, IB, and IBD were also significantly (p<0.05) improved by the treatments T3, T4 and T5compared with the T1and T2. Litter moisture content was significantly (p<0.05) reduced by treatmentsT3, T4, and T5 on day 28 and 35 compared with the T1 and T2. These findings of the present study revealed that supplementation of organic acids blend and phyto-essential oils as an as an substitute to improve the performance of broilers without the use of feed antibiotics in broilers fed with 6% poultry by-product meal based diet.

Keywords: organic acid, phyto essential oils, growth performance, PBM, gut health, microbiota, immunity

Procedia PDF Downloads 124
4293 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 276
4292 Saccharification and Bioethanol Production from Banana Pseudostem

Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza

Abstract:

Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).

Keywords: biofuels, biomass, saccharification, bioethanol

Procedia PDF Downloads 341
4291 Tensile Properties of 3D Printed PLA under Unidirectional and Bidirectional Raster Angle: A Comparative Study

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Fused deposition modeling (FDM) gains popularity in recent times, due to its capability to create prototype as well as functional end use product directly from CAD file. Parts fabricated using FDM process have mechanical properties comparable with those of injection-molded parts. However, performance of the FDM part is severally affected by the poor mechanical properties of the part due to nature of layered structure of printed part. Mechanical properties of the part can be improved by proper selection of process variables. In the present study, a comparative study between unidirectional and bidirectional raster angle has been carried out at a combination of different layer height and raster width. Unidirectional raster angle varied at five different levels, and bidirectional raster angle has been varied at three different levels. Fabrication of tensile specimen and tensile testing of specimen has been conducted according to ASTM D638 standard. From the results, it can be observed that higher tensile strength has been obtained at 0° raster angle followed by 45°/45° raster angle, while lower tensile strength has been obtained at 90° raster angle. Analysis of fractured surface revealed that failure takes place along with raster deposition direction for unidirectional and zigzag failure can be observed for bidirectional raster angle.

Keywords: additive manufacturing, fused deposition modeling, unidirectional, bidirectional, raster angle, tensile strength

Procedia PDF Downloads 178
4290 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate

Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin

Abstract:

This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.

Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness

Procedia PDF Downloads 321
4289 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics

Authors: Fares Alsewailem

Abstract:

Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.

Keywords: Recycling, PET, PS, HDPE, mechanical

Procedia PDF Downloads 280
4288 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress

Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor

Abstract:

Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.

Keywords: fungal infection, jasmonic acid defence, tomato, spermidine

Procedia PDF Downloads 124
4287 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 307
4286 Evaluation of Mechanical Properties of Welds Fabricated at a Close Proximity on Offshore Structures

Authors: T. Nakkeran, C. Dhamodharan, Win Myint Soe , Ramasamy Deverajan, M. Ganesh Babu

Abstract:

This manuscript presents the results of an experimental investigation performed to study the material and mechanical properties of two weld joints fabricated within close proximity. The experiment was designed using welded S355 D Z35 with distances between two parallel adjacent weld toes at 8 mm. These distances were less than the distance that has normally been recommended in standards, codes, and specifications. The main idea of the analysis is to determine any significant effects when welding the joints with the close proximity of 8mm using the SAW welding process of the one joint with high heat put and one joint welded with the FCAW welding process and evaluating the destructing and nondestructive testing between the welded joints. Further, we have evaluated the joints with Mechanical Testing for evaluating by performing Tensile test, bend testing, Macrostructure, Microstructure, Hardness test, and Impact testing. After evaluating the final outcome of the result, no significant changes were observed for welding the close proximity of weld of 8mm distance between the joints as compared to the specification minimum distance between the weldments of any design should be 50mm.

Keywords: S355 carbon steel, weld proximity, SAW process, FCAW process, heat input, bend test, tensile test, hardness test, impact test, macro and microscopic examinations

Procedia PDF Downloads 95
4285 A Brief Trauma Treatment Program for Survivors of Trauma: A Single-Case Design

Authors: Duane Booysen, Ashraf Kagee

Abstract:

There is a high prevalence of violent crime and trauma exposure in South African society. Considering the prevalence of continuous violent crimes and traumatization in South Africa, the public mental health sector is required to combat the burgeoning effect of traumatic stress in South Africa. Trauma counselors, especially, provide important mental health services at primary health care to persons affected by traumatic events. Therefore, the evaluation and implementation of evidence-based trauma therapies is essential at a primary health care level in treating traumatic stress. A single-case design was used to evaluate the treatment effect of a Brief Trauma Treatment Programme treating persons who present with symptoms of posttraumatic stress disorder at a primary care trauma centre in Cape Town, South Africa. The sample consisted of six adult participants who presented with symptoms of posttraumatic stress and were assessed at baseline, during treatment, post-intervention and at 3-month follow. All participants received six sessions of trauma therapy. Assessment measures included the posttraumatic stress disorder symptom scale interviews for Diagnostic and Statistical Manual fifth edition (DSM5), the posttraumatic disorder checklist for DSM5, Beck Depression Inventory and Beck Anxiety Inventory. Results demonstrate that participants had noticeable reduced symptoms for traumatic stress, anxiety and depression despite living in contexts of violent crime and trauma. In conclusion, the article critically reflects on the need to evaluate and implement evidence-based treatments for the South African context, and how evidence-based treatments are used in developing socio-economic and cultural diverse contexts with continuous levels of violence and traumatization.

Keywords: psychological interventions, public mental health, traumatic stress, single-case design

Procedia PDF Downloads 153
4284 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field

Authors: Yi Zheng

Abstract:

Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.

Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase

Procedia PDF Downloads 76
4283 Comparative Analysis of Real and Virtual Garment Fit

Authors: Kristina Ancutiene

Abstract:

The goal of this research is to perform comparative analysis between the virtual fit of the woman's dress and the fit on a real person. The dress fitting was done using mechanical and structural parameters of the 100 % linen fabric and using Modaris_3D_Fit software (CAD Lectra). The dress was also sawn after which garment fit differences of real and virtual dress was researched. Four respondents whose figures were similar were used to evaluate the ease and strain deformations of the real and virtual dress. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software. The main result was that respondents feel similar to the virtual stretch deformations but their ease feeling is not always matching the virtual ones. The results may be influenced by psychological factors and different understanding about purpose of garment.

Keywords: virtual garment, 3D CAD, garment fit, mechanical properties

Procedia PDF Downloads 330