Search results for: graph signals
357 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition
Authors: Damous Mohamed, Zeroudi Nasredine
Abstract:
High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams
Procedia PDF Downloads 26356 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 97355 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 207354 Budd-Chiari Syndrome: Common Presentation, Rare Disease
Authors: Aadil Khan, Yasser Chomayil, P. P. Venugopalan
Abstract:
Background: Budd-Chiari syndrome is caused by thrombosis of the hepatic veins and/or the thrombosis of the intrahepatic or suprahepatic IVC. The etiology remains idiopathic in 16% -35% of cases. Malignancy, rheumatological disorder, myeloproliferative disease, inheritable coagulopathy, infection or hyperestrogen state can be identified in many cases. Methodology: Review of case records of the patient presented to Aster Medcity, Emergency Department, Cochin. Introduction:17 years old female was presented to ED with fever, jaundice and abdominal distention since 1 week. O/E: Pallor+, icterus+. Abdomen- gross distension+, shifting dullness+, generalized anasarca+. USG abdomen showed hepatomegaly with mild coarse echotexture and moderate to gross ascites. CT abdomen and chest showed hepatomegaly with thrombosis of all three hepatic vein and moderate ascites suggestive of Budd-Chiari syndrome. Patient was taken for catheter vein thrombolysis. Venogram done the next day revealed almost > 50% opening of the right hepatic vein. Concurrent doppler showed colour and doppler signals in middle hepatic veins. She gradually improved and was discharged home on anticoagulant and adviced regular follow up. Conclusion: Being a rare disease in this young population, high suspicion is required when evaluating young patients with abdominal pain and jaundice.Keywords: Budd-Chiari syndrome, rare disease, abdominal pain, India
Procedia PDF Downloads 277353 Coding and Decoding versus Space Diversity for Rayleigh Fading Radio Frequency Channels
Authors: Ahmed Mahmoud Ahmed Abouelmagd
Abstract:
The diversity is the usual remedy of the transmitted signal level variations (Fading phenomena) in radio frequency channels. Diversity techniques utilize two or more copies of a signal and combine those signals to combat fading. The basic concept of diversity is to transmit the signal via several independent diversity branches to get independent signal replicas via time – frequency - space - and polarization diversity domains. Coding and decoding processes can be an alternative remedy for fading phenomena, it cannot increase the channel capacity, but it can improve the error performance. In this paper we propose the use of replication decoding with BCH code class, and Viterbi decoding algorithm with convolution coding; as examples of coding and decoding processes. The results are compared to those obtained from two optimized selection space diversity techniques. The performance of Rayleigh fading channel, as the model considered for radio frequency channels, is evaluated for each case. The evaluation results show that the coding and decoding approaches, especially the BCH coding approach with replication decoding scheme, give better performance compared to that of selection space diversity optimization approaches. Also, an approach for combining the coding and decoding diversity as well as the space diversity is considered, the main disadvantage of this approach is its complexity but it yields good performance results.Keywords: Rayleigh fading, diversity, BCH codes, Replication decoding, convolution coding, viterbi decoding, space diversity
Procedia PDF Downloads 442352 Environmental Impact Assessment in Mining Regions with Remote Sensing
Authors: Carla Palencia-Aguilar
Abstract:
Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.Keywords: carbon dioxide, NPP, MODIS, MINING
Procedia PDF Downloads 104351 A Fast Calculation Approach for Position Identification in a Distance Space
Authors: Dawei Cai, Yuya Tokuda
Abstract:
The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device
Procedia PDF Downloads 174350 Determination of Tide Height Using Global Navigation Satellite Systems (GNSS)
Authors: Faisal Alsaaq
Abstract:
Hydrographic surveys have traditionally relied on the availability of tide information for the reduction of sounding observations to a common datum. In most cases, tide information is obtained from tide gauge observations and/or tide predictions over space and time using local, regional or global tide models. While the latter often provides a rather crude approximation, the former relies on tide gauge stations that are spatially restricted, and often have sparse and limited distribution. A more recent method that is increasingly being used is Global Navigation Satellite System (GNSS) positioning which can be utilised to monitor height variations of a vessel or buoy, thus providing information on sea level variations during the time of a hydrographic survey. However, GNSS heights obtained under the dynamic environment of a survey vessel are affected by “non-tidal” processes such as wave activity and the attitude of the vessel (roll, pitch, heave and dynamic draft). This research seeks to examine techniques that separate the tide signal from other non-tidal signals that may be contained in GNSS heights. This requires an investigation of the processes involved and their temporal, spectral and stochastic properties in order to apply suitable recovery techniques of tide information. In addition, different post-mission and near real-time GNSS positioning techniques will be investigated with focus on estimation of height at ocean. Furthermore, the study will investigate the possibility to transfer the chart datums at the location of tide gauges.Keywords: hydrography, GNSS, datum, tide gauge
Procedia PDF Downloads 263349 Computer Network Applications, Practical Implementations and Structural Control System Representations
Authors: El Miloudi Djelloul
Abstract:
The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software
Procedia PDF Downloads 365348 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor
Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir
Abstract:
Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm
Procedia PDF Downloads 233347 Analysis of Ionosphere Anomaly Before Great Earthquake in Java on 2009 Using GPS Tec Data
Authors: Aldilla Damayanti Purnama Ratri, Hendri Subakti, Buldan Muslim
Abstract:
Ionosphere’s anomalies as an effect of earthquake activity is a phenomenon that is now being studied in seismo-ionospheric coupling. Generally, variation in the ionosphere caused by earthquake activity is weaker than the interference generated by different source, such as geomagnetic storms. However, disturbances of geomagnetic storms show a more global behavior, while the seismo-ionospheric anomalies occur only locally in the area which is largely determined by magnitude of the earthquake. It show that the earthquake activity is unique and because of its uniqueness it has been much research done thus expected to give clues as early warning before earthquake. One of the research that has been developed at this time is the approach of seismo-ionospheric-coupling. This study related the state in the lithosphere-atmosphere and ionosphere before and when earthquake occur. This paper choose the total electron content in a vertical (VTEC) in the ionosphere as a parameter. Total Electron Content (TEC) is defined as the amount of electron in vertical column (cylinder) with cross-section of 1m2 along GPS signal trajectory in ionosphere at around 350 km of height. Based on the analysis of data obtained from the LAPAN agency to identify abnormal signals by statistical methods, obtained that there are an anomaly in the ionosphere is characterized by decreasing of electron content of the ionosphere at 1 TECU before the earthquake occurred. Decreasing of VTEC is not associated with magnetic storm that is indicated as an earthquake precursor. This is supported by the Dst index showed no magnetic interference.Keywords: earthquake, DST Index, ionosphere, seismoionospheric coupling, VTEC
Procedia PDF Downloads 585346 Quinazoline Analogue as a Pet Tracer for Imaging PDE10A: Radiosynthesis and Biological Evaluation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The family of phosphodiesterases (PDEs) plays a critical role in control of the level, localization, and duration of intracellular 3’-5’-cyclic adenosine monophosphate (cAMP) and 3’-5’-cyclic guanosine monophosphate (cGMP) signals by specifically hydrolyzing these cyclic nucleotides. As the involvement of cyclic nucleotide second messengers in cell signaling and homeostasis is established, the regulation of these pathways in the brain by various PDE isoforms is an area of considerable interest, as they are involved in nearly all brain functions and in the etiology of neuropsychiatric diseases. The PDE10A isoform, isolated from different species and characterized regarding structure and function, has received much attention in recent years, particularly in the context of schizophrenia and Huntington’s disease, which are both related to a role of PDE10A in the regulation of striatal dopaminergic neurotransmission. Quinazoline analogue 1-(4-methoxyphenyl)-6,7-dimethoxyquinazoline, was evaluated as specific PET marker for phosphodiesterase (PDE) 10A. Here, we report the radiosynthesis of [11C]2 and the in vitro and in vivo evaluation of [11C]2 as a potential positron emission tomography (PET) radiotracer for imaging PDE10A in the central nervous system (CNS). The radiosynthesis of [11C]2 was achieved by O-methylation of the corresponding des-methyl precursor with [11C]methyl iodide. [11C]2 was obtained with ∼50% radiochemical yield. PET imaging studies in rat brain displayed initial specific uptake with very rapid clearance of [11C]2 from brain. Though [11C]2 is not an ideal radioligand for clinical imaging of PDE10A in the CNS. Modified analogue of quinazoline having a higher potency for inhibiting PDE10A and improved pharmacokinetic properties will be necessary for imaging this enzyme with PET.Keywords: PDE10A, PET, radiotracer, quinazoline
Procedia PDF Downloads 186345 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 180344 Denoising Transient Electromagnetic Data
Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen
Abstract:
Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform
Procedia PDF Downloads 84343 Relationship between Response of the Resistive Sensors on the Chosen Volatile Organic Compounds (VOCs) and Their Concentration
Authors: Marek Gancarz, Agnieszka Nawrocka, Robert Rusinek, Marcin Tadla
Abstract:
Volatile organic compounds (VOCs) are the fungi metabolites in the gaseous form produced during improper storage of agricultural commodities (e.g. grain, food). The spoilt commodities produce a wide range of VOCs including alcohols, esters, aldehydes, ketones, alkanes, alkenes, furans, phenols etc. The characteristic VOCs and odours can be determined by using electronic nose (e-Nose) which contains a matrix of different kinds of sensors e.g. resistive sensors. The aim of the present studies was to determine relationship between response of the resistive sensors on the chosen volatiles and their concentration. According to the literature, it was chosen volatiles characteristic for the cereals: ethanol, 3-methyl-1-butanol and hexanal. Analysis of the sensor signals shows that a signal shape is different for the different substances. Moreover, each VOC signal gives information about a maximum of the normalized sensor response (R/Rmax), an impregnation time (tIM) and a cleaning time at half maximum of R/Rmax (tCL). These three parameters can be regarded as a ‘VOC fingerprint’. Seven resistive sensors (TGS2600-B00, TGS2602-B00, TGS2610-C00, TGS2611-C00, TGS2611-E00, TGS2612-D00, TGS2620-C00) produced by Figaro USA Inc., and one (AS-MLV-P2) produced by AMS AG, Austria were used. Two out of seven sensors (TGS2611-E00, TGS2612-D00) did not react to the chosen VOCs. The most responsive sensor was AS-MLV-P2. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: agricultural commodities, organic compounds, resistive sensors, volatile
Procedia PDF Downloads 368342 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm
Authors: Sundara Subramanian Karuppasamy, Che Hua Yang
Abstract:
In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging
Procedia PDF Downloads 133341 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole
Authors: Basavaraj R. Endigeri, S. G. Sarganachari
Abstract:
Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 453340 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques
Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang
Abstract:
Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern
Procedia PDF Downloads 237339 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building
Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar
Abstract:
The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system
Procedia PDF Downloads 54338 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 121337 Legal Judgment Prediction through Indictments via Data Visualization in Chinese
Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun
Abstract:
Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization
Procedia PDF Downloads 121336 Power Transformers Insulation Material Investigations: Partial Discharge
Authors: Jalal M. Abdallah
Abstract:
There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.Keywords: transformers, insulation materials, voids, partial discharge
Procedia PDF Downloads 315335 Single Chip Controller Design for Piezoelectric Actuators with Mixed Signal FPGA
Authors: Han-Bin Park, Taesam Kang, SunKi Hong, Jeong Hoi Gu
Abstract:
The piezoelectric material is being used widely for actuators due to its large power density with simple structure. It can generate a larger force than the conventional actuators with the same size. Furthermore, the response time of piezoelectric actuators is very short, and thus, it can be used for very fast system applications with compact size. To control the piezoelectric actuator, we need analog signal conditioning circuits as well as digital microcontrollers. Conventional microcontrollers are not equipped with analog parts and thus the control system becomes bulky compared with the small size of the piezoelectric devices. To overcome these weaknesses, we are developing one-chip micro controller that can handle analog and digital signals simultaneously using mixed signal FPGA technology. We used the SmartFusion™ FPGA device that integrates ARM®Cortex-M3, analog interface and FPGA fabric in a single chip and offering full customization. It gives more flexibility than traditional fixed-function microcontrollers with the excessive cost of soft processor cores on traditional FPGAs. In this paper we introduce the design of single chip controller using mixed signal FPGA, SmartFusion™[1] device. To demonstrate its performance, we implemented a PI controller for power driving circuit and a 5th order H-infinity controller for the system with piezoelectric actuator in the FPGA fabric. We also demonstrated the regulation of a power output and the operation speed of a 5th order H-infinity controller.Keywords: mixed signal FPGA, PI control, piezoelectric actuator, SmartFusion™
Procedia PDF Downloads 520334 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies
Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro
Abstract:
Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm
Procedia PDF Downloads 118333 Design, Fabrication, and Study of Droplet Tube Based Triboelectric Nanogenerators
Authors: Yana Xiao
Abstract:
The invention of Triboelectric Nanogenerators (TENGs) provides an effective approach to the sustainable power of energy. Liquid-solid interfaces-based TENGs have been researched in virtue of less friction for harvesting energy from raindrops, rivers, and oceans in the form of water flows. However, TENGs based on droplets have rarely been investigated. In this study, we have proposed a new kind of droplet tube-based TENG (DT-TENG) with free-standing and reformative grating electrodes. Both straight and curved DT-TENGs were designed, fabricated, and evaluated, including straight tubes TENG with 27 electrodes and curved tubes TENG of 25cm radius curvature- at the inclination of 30°, 45° and 60° respectively. Different materials and hydrophobicity treatments for the tubes have also been studied, together with a discussion on the mechanism and applications of DT-TENGs. As different types of liquid discrepant energy performance, this kind of DT-TENG can be potentially used in laboratories to identify liquid or solvent. In addition, a smart fishing float is contrived, which can recognize different levels of movement speeds brought about by different weights and generate corresponding electric signals to remind the angler. The electric generation performance when using a PVC helix tube around a cylinder is similar in straight situations under the inclination of 45° in this experiment. This new structure changes the direction of a water drop or flows without losing kinetic energy, which makes utilizing Helix-Tube-TENG to harvest energy from different building morphologies possible.Keywords: triboelectric nanogenerator, energy harvest, liquid tribomaterial, structure innovation
Procedia PDF Downloads 88332 Human Gesture Recognition for Real-Time Control of Humanoid Robot
Authors: S. Aswath, Chinmaya Krishna Tilak, Amal Suresh, Ganesh Udupa
Abstract:
There are technologies to control a humanoid robot in many ways. But the use of Electromyogram (EMG) electrodes has its own importance in setting up the control system. The EMG based control system helps to control robotic devices with more fidelity and precision. In this paper, development of an electromyogram based interface for human gesture recognition for the control of a humanoid robot is presented. To recognize control signs in the gestures, a single channel EMG sensor is positioned on the muscles of the human body. Instead of using a remote control unit, the humanoid robot is controlled by various gestures performed by the human. The EMG electrodes attached to the muscles generates an analog signal due to the effect of nerve impulses generated on moving muscles of the human being. The analog signals taken up from the muscles are supplied to a differential muscle sensor that processes the given signal to generate a signal suitable for the microcontroller to get the control over a humanoid robot. The signal from the differential muscle sensor is converted to a digital form using the ADC of the microcontroller and outputs its decision to the CM-530 humanoid robot controller through a Zigbee wireless interface. The output decision of the CM-530 processor is sent to a motor driver in order to control the servo motors in required direction for human like actions. This method for gaining control of a humanoid robot could be used for performing actions with more accuracy and ease. In addition, a study has been conducted to investigate the controllability and ease of use of the interface and the employed gestures.Keywords: electromyogram, gesture, muscle sensor, humanoid robot, microcontroller, Zigbee
Procedia PDF Downloads 407331 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age
Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang
Abstract:
The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis
Procedia PDF Downloads 202330 Utilizing the RhlR/RhlI Quorum Sensing System to Express the ß-Galactosidase Reporter Gene by Using the N-Butanoyl Homoserine Lactone and N-Hexanoyl Homoserine Lactone
Authors: Ngoc Tu Truong, Nuong T. Bui, Ben Rao, Ya L. Shen
Abstract:
Quorum sensing is a phenomenon present in many gram-negative bacteria that allows bacterial communication and controlled expression of a large suite of genes through quorum sensing signals - N-acyl homoserine lactones (AHLs). In order to investigate the ability of the rhlR/rhlI quorum sensing system in Pseudomonas aeruginosa to express the ß-Galactosidase reporter gene, an engineered E. coli strain EpHL02, was genetically engineered. This engineered E. coli strain EpHL02 responded to the presence of the N-butanoyl homoserine lactone and N-hexanoyl homoserine lactone to express the ß-Galactosidase reporter gene at a concentration limit of 5x10⁻⁸ M. This was also found to be comparable to AHLs extraction from Serratia marcescens H31. Moreover, we examined this ability of this engineered E. coli strain for respond of AHLs from extractions of Pseudomonas aeruginosa ATCC9027. The results demonstrated that the rhlR/rhlI quorum sensing system can express the ß-Galactosidase reporter gene by using the N-butanoyl homoserine lactone, N-hexanoyl homoserine lactone and AHLs from extractions of Serratia marcescens H31 and Pseudomonas aeruginosa ATCC9027 in the engineered E. coli strain EpHL02.Keywords: N-butanoyl homoserine lactone, C4-HSL, N-hexanoyl homoserine lactone, C6-HSL, Pseudomonas aeruginosa, quorum sensing, Serratia marcescens, ß-galactosidase reporter gene
Procedia PDF Downloads 305329 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms
Authors: Cristian Pauna
Abstract:
With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies
Procedia PDF Downloads 194328 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit
Authors: Naheem Olakunle Adesina
Abstract:
The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator
Procedia PDF Downloads 186