Search results for: e-commerce supply chain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3565

Search results for: e-commerce supply chain

2485 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 113
2484 Energy Security and Sustainable Development: Challenges and Prospects

Authors: Abhimanyu Behera

Abstract:

Over the past few years, energy security and sustainable development have moved rapidly into the global agenda. There are two main reasons: first, the impact of high and often volatile energy prices; second, concerns over environmental sustainability particularly about the global climate. Both issues are critically important in which impressive economic growth has boosted the demand for energy and put corresponding strains on the environment. Energy security is a broad concept that focuses on energy availability and pricing. Specifically, it refers to the ability of the energy supply system i.e. suppliers, transporters, distributors and regulatory, financial and R&D institutions to deliver the amount of competitively priced energy that customers demand, within accepted standards of reliability, timeliness, quality, safety. Traditionally, energy security has been defined in the context of the geopolitical risks to external oil supplies but today it is encompassing all energy forms, all the external and internal links bringing the energy to the final consumer, and all the many ways energy supplies can be disrupted including equipment malfunctions, system design flaws, operator errors, malicious computer activities, deficient market and regulatory frameworks, corporate financial problems, labour actions, severe weather and natural events, aggressive acts (e.g. war, terrorism and sabotage), and geopolitical disruptions. In practice, the most challenging disruptions are those linked to: 1) extreme weather events; 2) mismatched electricity supply and demand; 3) regulatory failures; and 4) concentration of oil and gas resources in certain regions of the world. However, insecure energy supplies inhibit development by raising energy costs and imposing expensive cuts in services when disruptions actually occur. The energy supply sector can best advance sustainable development by producing and delivering secure and environmentally-friendly sources of energy and by increasing the efficiency of energy use. With this objective, this paper seeks to highlight the significance of energy security and sustainable development in today’s world. Moreover, it critically overhauls the major challenges towards sustainability of energy security and what are the major policies are taken to overcome these challenges by Government is lucidly explicated in this paper.

Keywords: energy, policies, security, sustainability

Procedia PDF Downloads 371
2483 Unveiling the Self-Assembly Behavior and Salt-Induced Morphological Transition of Double PEG-Tailed Unconventional Amphiphiles

Authors: Rita Ghosh, Joykrishna Dey

Abstract:

PEG-based amphiphiles are of tremendous importance for its widespread applications in pharmaceutics, household purposes, and drug delivery. Previously, a number of single PEG-tailed amphiphiles having significant applications have been reported from our group. Therefore, it was of immense interest to explore the properties and application potential of PEG-based double tailed amphiphiles. Herein, for the first time, two novel double PEG-tailed amphiphiles having different PEG chain lengths have been developed. The self-assembly behavior of the newly developed amphiphiles in aqueous buffer (pH 7.0) was thoroughly investigated at 25 oC by a number of techniques including, 1H-NMR, and steady-state and time-dependent fluorescence spectroscopy, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and isothermal titration calorimetry. Despite having two polar PEG chains both molecules were found to have strong tendency to self-assemble in aqueous buffered solution above a very low concentration. Surprisingly, the amphiphiles were shown to form stable vesicles spontaneously at room temperature without any external stimuli. The results of calorimetric measurements showed that the vesicle formation is driven by the hydrophobic effect (positive entropy change) of the system, which is associated with the helix-to-random coil transition of the PEG chain. The spectroscopic data confirmed that the bilayer membrane of the vesicles is constituted by the PEG chains of the amphiphilic molecule. Interestingly, the vesicles were also found to exhibit structural transitions upon addition of salts in solution. These properties of the vesicles enable them as potential candidate for drug delivery.

Keywords: double-tailed amphiphiles, fluorescence, microscopy, PEG, vesicles

Procedia PDF Downloads 108
2482 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 619
2481 The Effects of Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang, Yi-Wen Chen

Abstract:

Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.

Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis

Procedia PDF Downloads 131
2480 Treatment of Greywater at Household by Using Ceramic Tablet Membranes

Authors: Abdelkader T. Ahmed

Abstract:

Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network.

Keywords: ceramic membranes, filtration, greywater, wastewater treatment

Procedia PDF Downloads 317
2479 Thermal Comfort in Office Rooms in a Historic Building with Modernized Heating, Ventilation and Air Conditioning Systems

Authors: Hossein Bakhtiari, Mathias Cehlin, Jan Akander

Abstract:

Envelopes with low thermal performance is a common characteristic in many European historic buildings which leads to higher energy demand for heating and cooling as well as insufficient thermal comfort for the occupants. This paper presents the results of a study on the thermal comfort in the City Hall (Rådhuset) in Gävle, Sweden. This historic building is currently used as an office building. It is equipped with two relatively modern mechanical heat recovery ventilation systems with displacement ventilation supply devices in the offices. The district heating network heats the building via pre-heat supply air and radiators. Summer cooling comes from an electric heat pump that rejects heat into the exhaust ventilation air. A building management system controls HVAC equipment (heating, ventilation and air conditioning). The methodology is based on on-site measurements, data logging on the management system and evaluating the occupants’ perception of a summer and a winter period indoor environment using a standardized questionnaire. The main aim of the study is to investigate whether or not it is enough to have modernized HVAC systems to get adequate thermal comfort in a historic building with poor envelope performance used as an office building in Nordic climate conditions.

Keywords: historic buildings, on-site measurements, standardized questionnaire, thermal comfort

Procedia PDF Downloads 357
2478 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 64
2477 Land, History and Housing: Colonial Legacies and Land Tenure in Kuala Lumpur

Authors: Nur Fareza Mustapha

Abstract:

Solutions to policy problems need to be curated to the local context, taking into account the trajectory of the local development path to ensure its efficacy. For Kuala Lumpur, rapid urbanization and migration into the city for the past few decades have increased the demand for housing to accommodate a growing urban population. As a critical factor affecting housing affordability, land supply constraints have been attributed to intensifying market pressures, which grew in tandem with the demands of urban development, along with existing institutional constraints in the governance of land. While demand-side pressures are inevitable given the fixed supply of land, supply-side constraints in regulations distort markets and if addressed inappropriately, may lead to mistargeted policy interventions. Given Malaysia’s historical development, regulatory barriers for land may originate from the British colonial period, when many aspects of the current laws governing tenure were introduced and formalized, and henceforth, became engrained in the system. This research undertakes a postcolonial institutional analysis approach to uncover the causal mechanism driving the evolution of land tenure systems in post-colonial Kuala Lumpur. It seeks to determine the sources of these shifts, focusing on the incentives and bargaining positions of actors during periods of institutional flux/change. It aims to construct a conceptual framework to further this understanding and to elucidate how this historical trajectory affects current access to urban land markets for housing. Archival analysis is used to outline and analyse the evolution of land tenure systems in Kuala Lumpur while stakeholder interviews are used to analyse its impact on the current urban land market, with a particular focus on the provision of and access to affordable housing in the city. Preliminary findings indicate that many aspects of the laws governing tenure that were introduced and formalized during the British colonial period have endured until the present day. Customary rules of tenure were displaced by rules following a European tradition, which found legitimacy through a misguided interpretation of local laws regarding the ownership of land. Colonial notions of race and its binary view of native vs. non-natives have also persisted in the construction and implementation of current legislation regarding land tenure. More concrete findings from this study will generate a more nuanced understanding of the regulatory land supply constraints in Kuala Lumpur, taking into account both the long and short term spatial and temporal processes that affect how these rules are created, implemented and enforced.

Keywords: colonial discourse, historical institutionalism, housing, land policy, post-colonial city

Procedia PDF Downloads 114
2476 Publishing Formats of Scientific Journals in the XXI Century: the Case of Small Publishing Market

Authors: Arūnas Gudinavičius, Andrius Šuminas

Abstract:

The analysis of scholarly journals formats is fragmented and needs to be studied from a point of view of scientific communication. While PDF is to the author’s best knowledge probably the most popular digital format of XXI century, but there are more formats available: HTML, EPUB, etc. Our aim is to analyze how these formats important to the readers and what is their contribution to scientific communication. We want to investigate how printed journals are still popular between scholars and does different formats are preferred between fields of science . In most cases, publishing of scientific journals are examined from a narrow perspective of a particular university science affair administrators or research funding institution. We believe that more data o n formats used in scholarly periodicals currently published in Lithuania as well as in Eastern Europe are needed. Science communication is often analyzed as a directed chain of information in the author-publisher-reader cycle. The paper is focusing on the publishing part of this chain. A distinction is made between formal and informal forms of scientific communication, which is relevant in today's context, when both forms of communication intertwine and complement each other. In our research, we will analyze formal documentary (formats of publication of scientific articles) communication - scientific information recorded in a certain medium and formatted in certain format (printed, PDF, HTML, EPUB, etc.). In our research, we will analyze the stage of publication of research results in scientific journals and their dissemination through specific publication formats. The paper is to systematize and analyze the various types of formats of scientific journal published in XXI century in Lithuania (small publishing market). The research analyses the case of small European country and presents publishing formats characteristics of the publication of scientific periodicals.

Keywords: scientific communication, scientific journals, publishing formats, reading

Procedia PDF Downloads 80
2475 Energy Efficient Microgrid Design with Hybrid Power Systems

Authors: Pedro Esteban

Abstract:

Today’s electrical networks, including microgrids, are evolving into smart grids. The smart grid concept brings the idea that the power comes from various sources (continuous or intermittent), in various forms (AC or DC, high, medium or low voltage, etc.), and it must be integrated into the electric power system in a smart way to guarantee a continuous and reliable supply that complies with power quality and energy efficiency standards and grid code requirements. This idea brings questions for the different players like how the required power will be generated, what kind of power will be more suitable, how to store exceeding levels for short or long-term usage, and how to combine and distribute all the different generation power sources in an efficient way. To address these issues, there has been lots of development in recent years on the field of on-grid and off-grid hybrid power systems (HPS). These systems usually combine one or more modes of electricity generation together with energy storage to ensure optimal supply reliability and high level of energy security. Hybrid power systems combine power generation and energy storage technologies together with real-time energy management and innovative power quality and energy efficiency improvement functionalities. These systems help customers achieve targets for clean energy generation, they add flexibility to the electrical grid, and they optimize the installation by improving its power quality and energy efficiency.

Keywords: microgrids, hybrid power systems, energy storage, power quality improvement

Procedia PDF Downloads 121
2474 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 118
2473 Recycling Service Strategy by Considering Demand-Supply Interaction

Authors: Hui-Chieh Li

Abstract:

Circular economy promotes greater resource productivity and avoids pollution through greater recycling and re-use which bring benefits for both the environment and the economy. The concept is contrast to a linear economy which is ‘take, make, dispose’ model of production. A well-design reverse logistics service strategy could enhance the willingness of recycling of the users and reduce the related logistics cost as well as carbon emissions. Moreover, the recycle brings the manufacturers most advantages as it targets components for closed-loop reuse, essentially converting materials and components from worn-out product into inputs for new ones at right time and right place. This study considers demand-supply interaction, time-dependent recycle demand, time-dependent surplus value of recycled product and constructs models on recycle service strategy for the recyclable waste collector. A crucial factor in optimizing a recycle service strategy is consumer demand. The study considers the relationships between consumer demand towards recycle and product characteristics, surplus value and user behavior. The study proposes a recycle service strategy which differs significantly from the conventional and typical uniform service strategy. Periods with considerable demand and large surplus product value suggest frequent and short service cycle. The study explores how to determine a recycle service strategy for recyclable waste collector in terms of service cycle frequency and duration and vehicle type for all service cycles by considering surplus value of recycled product, time-dependent demand, transportation economies and demand-supply interaction. The recyclable waste collector is responsible for the collection of waste product for the manufacturer. The study also examines the impacts of utilization rate on the cost and profit in the context of different sizes of vehicles. The model applies mathematical programming methods and attempts to maximize the total profit of the distributor during the study period. This study applies the binary logit model, analytical model and mathematical programming methods to the problem. The model specifically explores how to determine a recycle service strategy for the recycler by considering product surplus value, time-dependent recycle demand, transportation economies and demand-supply interaction. The model applies mathematical programming methods and attempts to minimize the total logistics cost of the recycler and maximize the recycle benefits of the manufacturer during the study period. The study relaxes the constant demand assumption and examines how service strategy affects consumer demand towards waste recycling. Results of the study not only help understanding how the user demand for recycle service and product surplus value affects the logistics cost and manufacturer’s benefits, but also provide guidance such as award bonus and carbon emission regulations for the government.

Keywords: circular economy, consumer demand, product surplus value, recycle service strategy

Procedia PDF Downloads 379
2472 Loan Supply and Asset Price Volatility: An Experimental Study

Authors: Gabriele Iannotta

Abstract:

This paper investigates credit cycles by means of an experiment based on a Kiyotaki & Moore (1997) model with heterogeneous expectations. The aim is to examine how a credit squeeze caused by high lender-level risk perceptions affects the real prices of a collateralised asset, with a special focus on the macroeconomic implications of rising price volatility in terms of total welfare and the number of bankruptcies that occur. To do that, a learning-to-forecast experiment (LtFE) has been run where participants are asked to predict the future price of land and then rewarded based on the accuracy of their forecasts. The setting includes one lender and five borrowers in each of the twelve sessions split between six control groups (G1) and six treatment groups (G2). The only difference is that while in G1 the lender always satisfies borrowers’ loan demand (bankruptcies permitting), in G2 he/she closes the entire credit market in case three or more bankruptcies occur in the previous round. Experimental results show that negative risk-driven supply shocks amplify the volatility of collateral prices. This uncertainty worsens the agents’ ability to predict the future value of land and, as a consequence, the number of defaults increases and the total welfare deteriorates.

Keywords: Behavioural Macroeconomics, Credit Cycle, Experimental Economics, Heterogeneous Expectations, Learning-to-Forecast Experiment

Procedia PDF Downloads 115
2471 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 127
2470 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 400
2469 A PHREEQC Reactive Transport Simulation for Simply Determining Scaling during Desalination

Authors: Andrew Freiburger, Sergi Molins

Abstract:

Freshwater is a vital resource; yet, the supply of clean freshwater is diminishing as the consequence of melting snow and ice from global warming, pollution from industry, and an increasing demand from human population growth. The unsustainable trajectory of diminishing water resources is projected to jeopardize water security for billions of people in the 21st century. Membrane desalination technologies may resolve the growing discrepancy between supply and demand by filtering arbitrary feed water into a fraction of renewable, clean water and a fraction of highly concentrated brine. The leading hindrance of membrane desalination is fouling, whereby the highly concentrated brine solution encourages micro-organismal colonization and/or the precipitation of occlusive minerals (i.e. scale) upon the membrane surface. Thus, an understanding of brine formation is necessary to mitigate membrane fouling and to develop efficacious desalination technologies that can bolster the supply of available freshwater. This study presents a reactive transport simulation of brine formation and scale deposition during reverse osmosis (RO) desalination. The simulation conceptually represents the RO module as a one-dimensional domain, where feed water directionally enters the domain with a prescribed fluid velocity and is iteratively concentrated in the immobile layer of a dual porosity model. Geochemical PHREEQC code numerically evaluated the conceptual model with parameters for the BW30-400 RO module and for real water feed sources – e.g. the Red and Mediterranean seas, and produced waters from American oil-wells, based upon peer-review data. The presented simulation is computationally simpler, and hence less resource intensive, than the existent and more rigorous simulations of desalination phenomena, like TOUGHREACT. The end-user may readily prepare input files and execute simulations on a personal computer with open source software. The graphical results of fouling-potential and brine characteristics may therefore be particularly useful as the initial tool for screening candidate feed water sources and/or informing the selection of an RO module.

Keywords: desalination, PHREEQC, reactive transport, scaling

Procedia PDF Downloads 118
2468 System Dynamics Projections of Environmental Issues for Domestic Water and Wastewater Scenarios in Urban Area of India

Authors: Isha Sharawat, R. P. Dahiya, T. R. Sreekrishnan

Abstract:

One of the environmental challenges in India is urban wastewater management as regulations and infrastructural development has not kept pace with the urbanization and growing population. The quality of life of people is also improving with the rapid growth of the gross domestic product. This has contributed to the enhancement in the per capita water requirement and consumption. More domestic water consumption generates more wastewater. The scarcity of potable water is making the situation quite serious, and water supply has to be regulated in most parts of the country during summer. This requires elaborate and concerted efforts to efficiently manage the water resources and supply systems. In this article, a system dynamics modelling approach is used for estimating the water demand and wastewater generation in a district headquarter city of North India. Projections are made till the year 2035. System dynamics is a software tool used for formulation of policies. On the basis of the estimates, policy scenarios are developed for sustainable development of water resources in conformity with the growing population. Mitigation option curtailing the water demand and wastewater generation include population stabilization, water reuse and recycle and water pricing. The model is validated quantitatively, and sensitivity analysis tests are carried out to examine the robustness of the model.

Keywords: system dynamics, wastewater, water pricing, water recycle

Procedia PDF Downloads 247
2467 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 gr. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan

Procedia PDF Downloads 61
2466 Determinants of Aggregate Electricity Consumption in Ghana: A Multivariate Time Series Analysis

Authors: Renata Konadu

Abstract:

In Ghana, electricity has become the main form of energy which all sectors of the economy rely on for their businesses. Therefore, as the economy grows, the demand and consumption of electricity also grow alongside due to the heavy dependence on it. However, since the supply of electricity has not increased to match the demand, there has been frequent power outages and load shedding affecting business performances. To solve this problem and advance policies to secure electricity in Ghana, it is imperative that those factors that cause consumption to increase be analysed by considering the three classes of consumers; residential, industrial and non-residential. The main argument, however, is that, export of electricity to other neighbouring countries should be included in the electricity consumption model and considered as one of the significant factors which can decrease or increase consumption. The author made use of multivariate time series data from 1980-2010 and econometric models such as Ordinary Least Squares (OLS) and Vector Error Correction Model. Findings show that GDP growth, urban population growth, electricity exports and industry value added to GDP were cointegrated. The results also showed that there is unidirectional causality from electricity export and GDP growth and Industry value added to GDP to electricity consumption in the long run. However, in the short run, there was found to be a directional causality among all the variables and electricity consumption. The results have useful implication for energy policy makers especially with regards to electricity consumption, demand, and supply.

Keywords: electricity consumption, energy policy, GDP growth, vector error correction model

Procedia PDF Downloads 421
2465 When Digital Innovation Augments Cultural Heritage: An Innovation from Tradition Story

Authors: Danilo Pesce, Emilio Paolucci, Mariolina Affatato

Abstract:

Looking at the future and at the post-digital era, innovations commonly tend to dismiss the old and replace it with the new. The aim of this research is to study the role that digital innovation can play alongside the information chain within the traditional sectors and the subsequent value creation opportunities that actors and stakeholders can exploit. By drawing on a wide body of literature on innovation and strategic management and by conducting a case study on the cultural heritage industry, namely Google Arts & Culture, this study shows that technology augments complements, and amplifies the way people experience their cultural interests and experience. Furthermore, the study shows a process of democratization of art since museums can exploit new digital and virtual ways to distribute art globally. Moreover, new needs arose from the 2020 pandemic that hit and forced the world to a state of cultural fasting and caused a radical transformation of the paradigm online vs. onsite. Finally, the study highlights the capabilities that are emerging at different stages of the value chain, owing to the technological innovation available in the market. In essence, this research underlines the role of Google in allowing museums to reach users worldwide, thus unlocking new mechanisms of value creation in the cultural heritage industry. Likewise, this study points out how Google provides value to users by means of increasing the provision of artworks, improving the audience engagement and virtual experience, and providing new ways to access the online contents. The paper ends with a discussion of managerial and policy-making implications.

Keywords: big data, digital platforms, digital transformation, digitization, Google Arts and Culture, stakeholders’ interests

Procedia PDF Downloads 142
2464 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus

Authors: Mrinmoy Majumder, Apu Kumar Saha

Abstract:

The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.

Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering

Procedia PDF Downloads 460
2463 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food

Authors: Aiman Zehra, Sajad Mohd Wani

Abstract:

Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.

Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers

Procedia PDF Downloads 82
2462 Attitudinal Change: A Major Therapy for Non–Technical Losses in the Nigerian Power Sector

Authors: Fina O. Faithpraise, Effiong O. Obisung, Azele E. Peter, Chris R. Chatwin

Abstract:

This study investigates and identifies consumer attitude as a major influence that results in non-technical losses in the Nigerian electricity supply sector. This discovery is revealed by the combination of quantitative and qualitative research to complete a survey. The dataset employed is a simple random sampling of households using electricity (public power supply), and the number of units chosen is based on statistical power analysis. The units were subdivided into two categories (household with and without electrical meters). The hypothesis formulated was tested and analyzed using a chi-square statistical method. The results obtained shows that the critical value for the household with electrical prepared meter (EPM) was (9.488 < 427.4) and those without electrical prepared meter (EPMn) was (9.488 < 436.1) with a p-value of 0.01%. The analysis demonstrated so far established the real-time position, which shows that the wrong attitude towards handling the electricity supplied (not turning off light bulbs and electrical appliances when not in use within the rooms and outdoors within 12 hours of the day) characterized the non-technical losses in the power sector. Therefore the adoption of efficient lighting attitudes in individual households as recommended by the researcher is greatly encouraged. The results from this study should serve as a model for energy efficiency and use for the improvement of electricity consumption as well as a stable economy.

Keywords: attitudinal change, household, non-technical losses, prepared meter

Procedia PDF Downloads 165
2461 Appearance of Ciguatoxin Fish in Atlantic Europe Waters

Authors: J. Bravo, F. Cabrera Suárez, B. Vega, L. Román, M. Martel, F. Acosta

Abstract:

Ciguatera fish poisoning (CFP) is the most common non-bacterial intoxication in the world caused by ingestion of fish with bio-accumulated ciguatoxins (CTXs). It is typical in tropical and subtropical areas, mainly affecting the Caribbean Sea, Polynesia and other areas in the Pacific and Indian Oceans. Interest in Europe by the CFP is increasing in recent years as more and more cases in European hospitals are appearing, usually by people who have consumed ciguatoxin imported fish or have travelled to areas of risk for this poisoning. Since 2004 a series of poisonings raised the question of a possible occurrence of ciguatoxin in Europe, especially in the area of Macaronesia in the East Atlantic temperate zone. Furthermore, some studies have identified the presence of Gambierdiscus spp. in waters surrounding the Canary Islands and Madeira, a toxic dinoflagellate related to this poisoning. The toxin accumulates and concentrates through the food chain and affects to the end of the chain, the human consumer. Fish were collected from the Canary Islands waters and the toxin has been extracted and purified by using acetone and liquid/liquid partition in order to eliminate the excess of fatty acids that may interfere with the detection of the toxin. The fish extracts were inoculated in Neuroblastoma (neuro-2a) cells. After 24-h cell viability was used as an endpoint for cytotoxic effects measurement. Since 2011 our laboratory is collecting data for species such Seriola spp., Epinephelus spp., Makaira spp., Pomatomus spp., Xiphias spp., and Acantocybium spp., from all islands and including the sports fishing and professional activities, we obtained a 8% of fish that have ciguatoxin in their muscle. With these results, we conclude that the island where fishing and fish size affects the probability of catching a fish with the ciguatoxin.

Keywords: Canary Islands, ciguatera fish poisoning, ciguatoxin, Europe

Procedia PDF Downloads 330
2460 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 208
2459 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 112
2458 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone

Authors: Junichi Hosoi

Abstract:

Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.

Keywords: Langerhans cell, stress, CD39, chemokine

Procedia PDF Downloads 167
2457 Combined Power Supply at Well Drilling in Extreme Climate Conditions

Authors: V. Morenov, E. Leusheva

Abstract:

Power supplying of well drilling on oil and gas fields at ambient air low temperatures is characterized by increased requirements of electric and heat energy. Power costs for heating of production facilities, technological and living objects may several times exceed drilling equipment electric power consumption. Power supplying of prospecting and exploitation drilling objects is usually done by means of local electric power structures based on diesel power stations. In the meantime, exploitation of oil fields is accompanied by vast quantities of extracted associated petroleum gas, and while developing gas fields there are considerable amounts of natural gas and gas condensate. In this regard implementation of gas-powered self-sufficient power units functioning on produced crude products for power supplying is seen as most potential. For these purposes gas turbines (GT) or gas reciprocating engines (GRE) may be used. In addition gas-powered units are most efficiently used in cogeneration mode - combined heat and power production. Conducted research revealed that GT generate more heat than GRE while producing electricity. One of the latest GT design are microturbines (MT) - devices that may be efficiently exploited in combined heat and power mode. In conditions of ambient air low temperatures and high velocity wind sufficient heat supplying is required for both technological process, specifically for drilling mud heating, and for maintaining comfortable working conditions at the rig. One of the main heat regime parameters are the heat losses. Due to structural peculiarities of the rig most of the heat losses occur at cold air infiltration through the technological apertures and hatchways and heat transition of isolation constructions. Also significant amount of heat is required for working temperature sustaining of the drilling mud. Violation of circulation thermal regime may lead to ice build-up on well surfaces and ice blockages in armature elements. That is why it is important to ensure heating of the drilling mud chamber according to ambient air temperature. Needed heat power will be defined by heat losses of the chamber. Noting heat power required for drilling structure functioning, it is possible to create combined heat and power complex based on MT for satisfying consumer power needs and at the same time lowering power generation costs. As a result, combined power supplying scheme for multiple well drilling utilizing heat of MT flue gases was developed.

Keywords: combined heat, combined power, drilling, electric supply, gas-powered units, heat supply

Procedia PDF Downloads 567
2456 Mercury Contamination of Wetland Caused by Wastewater from Chlor-Alkali Industry

Authors: Mitsuo Yoshida

Abstract:

A significant mercury contamination of soil/sediment was unveiled by an environmental monitoring program in a wetland along La Plata River, west to Montevideo City, Uruguay. The mercury contamination was caused by industrial wastewater discharged from a chlor-alkali plant using a mercury-cell process. The contamination level is above 60 mg/kg in soil/sediment. Most of mercury (Hg) in the environment is inorganic, but some fractions are converted by bacteria to methylmercury (MeHg), a toxic organic compound. MeHg biologically accumulates through a food-chain and become serious public health risk. In order to clarify the contaminated part for countermeasure operation, an intervention value of mercury contamination of sediment/soil was defined as 15 mg/kg (total Hg) by the authority. According to the intervention value, mercury contaminated area in the La Plata site is approximately 48,280 m² and estimated total volume of contaminated sediments/soils was around 18,750 m³. The countermeasures to contaminated zone were proposed in two stages; (i) mitigation of risks for public health and (ii) site remediation. The first stage is an installation of fens and net around the contamination zone, for mitigating risks of exposure, inhalation, and intake. The food chain among wetland-river ecosystem was also interrupted by the installation of net and fens. The state of mercury contamination in La Plata site and plan of countermeasure was disclosed to local people and the public, and consensus on setting off-limit area was successfully achieved. Mass media also contribute to share the information on the contamination site. The cost for countermeasures was borne by the industry under the polluter-pay-principle.

Keywords: chlor-alkali plant, mercury contamination, polluter pay principle, Uruguay, wetland

Procedia PDF Downloads 118