Search results for: boundary shear stress
4814 Assessment of the Socio-Economic Impacts of Natural Hazards along the Mediterranean Coastal Zone of Egypt
Authors: Islam Abou El-Magd, Elham Ali, Ali Amasha
Abstract:
Earthquakes strike without warning and cause widespread damage to social and economic infrastructures and creating life losses. These can neither be predicted nor prevented in terms of their magnitude, place, and time of occurrence. It is a global phenomenon that creates nearly 18% of life losses and nearly 35% of economic damage. The coastal zone of Egypt is considered low to medium risk, however, there is a record of high magnitude earthquakes that created Tsunami in the past. The northern coastal zone of Egypt is under the force of tension shear zones of African and European plates that have considerable earthquakes with variable degrees. This research studied the earthquakes in the last 65 years in the Mediterranean Basin in relation to the geotectonic shear zones. 85% of these earthquakes are in the marine that might create Tsunami. Aegean and Anatolia shear zones are the highest contributors of the earthquakes with nearly 37% and 36% respectively. However the least one is the Arabia zone with 1%, and Africa is about 26%. The research proposed three scenarios for the socioeconomic hazards, earthquakes with Tsunami that will destroy one fifth of the economic infrastructures with unpredictable life losses. The estimated cost of recovery of such losses is nearly 400B USD. The second scenario is earthquake without Tsunami that will impact the major urban and infrastructures. The last scenario is tidal gauges events that threaten the low-lying areas particularly the eastern side which has major land subsidence.Keywords: natural hazards, earthquakes, tusnami, Nile delta, Egypt
Procedia PDF Downloads 1644813 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.Keywords: J-integral, levy method, third-order shell theory, state space solution
Procedia PDF Downloads 1334812 Failure Analysis of Khaliqabad Landslide along Mangla Reservoir Rim
Authors: Fatima Mehmood, Khalid Farooq
Abstract:
After the Mangla dam raising in 2010, the maximum reservoir impoundment level of 378.5 m SPD (Survey of Pakistan Datum) was achieved in September 2014. The reservoir drawdown was started on September 29, 2014 and a landslide occurred on Mirpur-Kotli Road near Khaliqabad on November 27, 2014. This landslide took place due to the failure of a slope along the reservoir rim. This study was undertaken to investigate the causative factors of Khaliqabad landslide. Site visits were carried out for recording the field observations and collection of the soil samples. The soil was subjected to different laboratory tests for the determination of index and engineering properties. The shear strength tests were performed at various levels of density and degrees of saturation. These soil parameters were used in an integrated SEEP-SLOPE/W analysis to obtain the drop in factor of safety with time and reservoir drawdown. The results showed the factor of safety dropped from 1.28 to 0.85 over a period of 60 days. The ultimate reduction in the shear strength of soil due to saturation with the simultaneous removal of the stabilizing effect of reservoir caused the disturbing forces to increase, and thus failure happened. The findings of this study can serve as a guideline for the modeling of the slopes experiencing rapid drawdown scenario with the consideration of more realistic distribution of soil moisture/ properties across the slopeKeywords: geotechnical investigation, landslide, reservoir drawdown, shear strength, slope stability
Procedia PDF Downloads 1634811 Development of 3D Particle Method for Calculating Large Deformation of Soils
Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee
Abstract:
In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.Keywords: particle method, large deformation, soil column, confined compressive stress
Procedia PDF Downloads 5734810 An Alteration of the Boltzmann Superposition Principle to Account for Environmental Degradation in Fiber Reinforced Plastics
Authors: Etienne K. Ngoy
Abstract:
This analysis suggests that the comprehensive degradation caused by any environmental factor on fiber reinforced plastics under mechanical stress can be measured as a change in viscoelastic properties of the material. The change in viscoelastic characteristics is experimentally determined as a time-dependent function expressing the amplification of the stress relaxation. The variation of this experimental function provides a measure of the environmental degradation rate. Where real service environment conditions can be reliably simulated in the laboratory, it is possible to generate master curves that include environmental degradation effect and hence predict the durability of the fiber reinforced plastics under environmental degradation.Keywords: environmental effects, fiber reinforced plastics durability, prediction, stress effect
Procedia PDF Downloads 1934809 Influence of Convective Boundary Condition on Chemically Reacting Micropolar Fluid Flow over a Truncated Cone Embedded in Porous Medium
Authors: Pradeepa Teegala, Ramreddy Chitteti
Abstract:
This article analyzes the mixed convection flow of chemically reacting micropolar fluid over a truncated cone embedded in non-Darcy porous medium with convective boundary condition. In addition, heat generation/absorption and Joule heating effects are taken into consideration. The similarity solution does not exist for this complex fluid flow problem, and hence non-similarity transformations are used to convert the governing fluid flow equations along with related boundary conditions into a set of nondimensional partial differential equations. Many authors have been applied the spectral quasi-linearization method to solve the ordinary differential equations, but here the resulting nonlinear partial differential equations are solved for non-similarity solution by using a recently developed method called the spectral quasi-linearization method (SQLM). Comparison with previously published work on special cases of the problem is performed and found to be in excellent agreement. The effect of pertinent parameters namely, Biot number, mixed convection parameter, heat generation/absorption, Joule heating, Forchheimer number, chemical reaction, micropolar and magnetic field on physical quantities of the flow are displayed through graphs and the salient features are explored in detail. Further, the results are analyzed by comparing with two special cases, namely, vertical plate and full cone wherever possible.Keywords: chemical reaction, convective boundary condition, joule heating, micropolar fluid, mixed convection, spectral quasi-linearization method
Procedia PDF Downloads 2774808 Seismic Behavior of Masonry Reinforced Concrete Composite Columns
Authors: Hassane Ousalem, Hideki Kimura, Akitoshi Hamada, Masuda Hiroyuki
Abstract:
To provide tall unreinforced brick masonry walls of a century-old existing building with sufficient resistance against earthquake loading actions, additional reinforced concrete columns were integrated into the building at some designated locations and jointed to the existing masonry walls through dowel shear steel bars, resulting in composite structural elements. As conditions at the interface between the existing masonry and newly added reinforced concrete parts were not well grasped and the behavior of such composite elements would be complex, the experimental investigation was carried out. Three relatively large specimens were tested to investigate the overall behavior of brick masonry-reinforced concrete composite elements under lateral cyclic loadings. Confining the brick walls on only one side or on two opposite sides, as well as providing different amounts of dowel shear steel bars at the interface were the main parameters of the investigation. Test results showed that such strengthening provide a good seismic performance even at very large lateral drifts and the investigated amount of shear dowel lead to a good performance level that would result in a considerable cost reduction of the strengthening.Keywords: unreinforced masonry, reinforced concrete, composite column, seismic strengthening, structural testing
Procedia PDF Downloads 2204807 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System
Authors: B. Noruziaan, A. Shvarzman, R. Leahy
Abstract:
An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond
Procedia PDF Downloads 4204806 Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method
Authors: Ali Shubbar, Hasanain Alwan, Ee Yu Phur, John McLoughlin, Ameer Al-khaykan
Abstract:
This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.Keywords: ultimate failure load, maximum deflection, shear zone and flexural zone
Procedia PDF Downloads 2754805 Spline Solution of Singularly Perturbed Boundary Value Problems
Authors: Reza Mohammadi
Abstract:
Using quartic spline, we develop a method for numerical solution of singularly perturbed two-point boundary-value problems. The purposed method is fourth-order accurate and applicable to problems both in singular and non-singular cases. The convergence analysis of the method is given. The resulting linear system of equations has been solved by using a tri-diagonal solver. We applied the presented method to test problems which have been solved by other existing methods in references, for comparison of presented method with the existing methods. Numerical results are given to illustrate the efficiency of our methods.Keywords: second-order ordinary differential equation, singularly-perturbed, quartic spline, convergence analysis
Procedia PDF Downloads 2964804 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 4754803 Evaluation of Thermal Barrier Coating According to Temperature and Curvature
Authors: Hyunwoo Song, Jeong-Min Lee, Yongseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
To avoid the damage of gas turbine blade from high-temperature, thermal barrier coating (TBC) is applied on the blade. However, it is damaged by thermal fatigue during the operation of gas turbine, and this damage lead to delamination of TBC between top coat and bond coat. The blade can be damaged after the failure of TBC, so durability evaluation of TBC should be performed. The durability of thermal barrier coating was decreased according to the increase of temperature, because thermal stress according to increase of temperature. Also, the curvature can be affect to durability of TBC, because the stress is determined by the shape of the TBC. Therefore, the effect of temperature and curvature on the stress should be evaluated. In this study, finite element analysis according to temperature and curvature were performed in the same condition of Kim et al. Finally, the stress was evaluated from the finite element analysis results according to temperature and curvature.Keywords: curvature, finite element analysis, thermal barrier coating, thermal fatigue, temperature
Procedia PDF Downloads 5674802 Effect of Synthetic Jet on Wind Turbine Noise
Authors: Reda Mankbadi
Abstract:
The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream.Keywords: simulations, aeroacoustics, wind turbine noise, synthetic jet actuators (SJAs)
Procedia PDF Downloads 3554801 Fighting Competition Stress by Focusing the Psychological Training on the Vigor-Activity Mood States
Authors: Majid Al-Busafi, Alexe Cristina Ioana, Alexe Dan Iulian
Abstract:
The specific competition and pre-competition stress in professional track and field determined an increasing engagement, from a biological and psychological point of view, of the middle distance and long distance runners, to obtain the top performances that would get them to win in a competition. Under these conditions, if the psychological stress is not properly managed, the negative effects can lead to a total drop in self-confidence, and can affect the value, the talent, and the self-trust, which generates an even higher stress. One of the means at our disposal is the psychological training, specially adapted to the athlete's individual characteristics, to the characteristics of the athletic event, or of the competition. This paper aims to highlight certain original aspects regarding the effects of a specific psychological training program on the mood states characterized by psychological activation, vigor, vitality. The subjects were represented by 12 professional middle distance and long distance runners, subjected to an applicative intervention to which they have participated voluntarily, over the course of 6 months (a competition season). The results indicated that The application of a psychological training program, adapted to the track and field competition system, over a period of time characterized by high competition stress, can determine an increase in the states of vigor and psychological activation, at the same time diminishing those moods that have negative effects on the performance, in the middle distance and long distance running events. This conclusion confirms the hypothesis of this research.Keywords: competition stress, psychological training, track and field, vigor-activity
Procedia PDF Downloads 4614800 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle
Authors: Ching-Shoei Chiang
Abstract:
The Malfatti’s Problem solves the problem of fitting 3 circles into a right triangle such that these 3 circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s Problem). Furthermore, the problem has been extended to have 1+2+…+n circles inside the triangle with special tangency properties among circles and triangle sides; we call it extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving Tri(Tn) problem, n>2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary Carc. We call these problems the Carc(Tn) problems. The CPU time it takes for Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties, is less than one second.Keywords: circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem
Procedia PDF Downloads 1104799 Exponential Spline Solution for Singularly Perturbed Boundary Value Problems with an Uncertain-But-Bounded Parameter
Authors: Waheed Zahra, Mohamed El-Beltagy, Ashraf El Mhlawy, Reda Elkhadrawy
Abstract:
In this paper, we consider singular perturbation reaction-diffusion boundary value problems, which contain a small uncertain perturbation parameter. To solve these problems, we propose a numerical method which is based on an exponential spline and Shishkin mesh discretization. While interval analysis principle is used to deal with the uncertain parameter, sensitivity analysis has been conducted using different methods. Numerical results are provided to show the applicability and efficiency of our method, which is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, shishkin mesh, two small parameters, exponential spline, interval analysis, sensitivity analysis
Procedia PDF Downloads 2754798 Some Basic Problems for the Elastic Material with Voids in the Case of Approximation N=1 of Vekua's Theory
Authors: Bakur Gulua
Abstract:
In this work, we consider some boundary value problems for the plate. The plate is the elastic material with voids. The state of plate equilibrium is described by the system of differential equations that is derived from three-dimensional equations of equilibrium of an elastic material with voids (Cowin-Nunziato model) by Vekua's reduction method. Its general solution is represented by means of analytic functions of a complex variable and solutions of Helmholtz equations. The problem is solved analytically by the method of the theory of functions of a complex variable.Keywords: the elastic material with voids, boundary value problems, Vekua's reduction method, a complex variable
Procedia PDF Downloads 1294797 Lamb Waves Propagation in Elastic-Viscoelastic Three-Layer Adhesive Joints
Authors: Pezhman Taghipour Birgani, Mehdi Shekarzadeh
Abstract:
In this paper, the propagation of lamb waves in three-layer joints is investigated using global matrix method. Theoretical boundary value problem in three-layer adhesive joints with perfect bond and traction free boundary conditions on their outer surfaces is solved to find a combination of frequencies and modes with the lowest attenuation. The characteristic equation is derived by applying continuity and boundary conditions in three-layer joints using global matrix method. Attenuation and phase velocity dispersion curves are obtained with numerical solution of this equation by a computer code for a three-layer joint, including an aluminum repair patch bonded to the aircraft aluminum skin by a layer of viscoelastic epoxy adhesive. To validate the numerical solution results of the characteristic equation, wave structure curves are plotted for a special mode in two different frequencies in the adhesive joint. The purpose of present paper is to find a combination of frequencies and modes with minimum attenuation in high and low frequencies. These frequencies and modes are recognizable by transducers in inspections with Lamb waves because of low attenuation level.Keywords: three-layer adhesive joints, viscoelastic, lamb waves, global matrix method
Procedia PDF Downloads 3934796 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve
Authors: Y. J. Wang, C. Q. Ru
Abstract:
A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral
Procedia PDF Downloads 5144795 A Study on the Influence of Salicylic Acid on Sub-Mergence Stress Recovery of Selected Rice Cultivars Grown in Kebbi State Northwest Nigeria
Authors: Ja'afar Umar, Salisu Naziru
Abstract:
Submergence stress in plants refers to the physiological and biochemical challenges that occur when plants are partially or fully submerged in water. This type of stress primarily affects plants in flood-prone areas or regions with heavy rainfall, where oxygen availability and other essential resources are limited. Salicylic acid (SA) is an important plant hormone involved in various physiological processes and responses to environmental stress, particularly in plant defense mechanisms against pathogens. Its role as a signaling molecule in plants is crucial for activating defense pathways, regulating growth, and managing responses to biotic (living) and abiotic (non-living) stresses. The study involved using salicylic acid (SA) at concentrations of 1g/L, 2g/L, and 3g/L, dissolved in water, to treat rice plants during submergence stress. The experiment had four treatments: 0g/L (control), 1g/L, 2g/L, and 3g/L of SA, each with four replications. Rice seedlings were submerged in water for 11 days and then desubmerged for 7 days. During the experiment, all plants except the control received a foliar spray of SA solutions, while control plants were sprayed with distilled water. The results indicate a significant difference (P<0.05) between the control and salicylic acid (SA)-treated rice plants. SalicyJalic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls. Salicylic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls.Keywords: submergence, stress, rice, salicylic
Procedia PDF Downloads 204794 Influence of Deficient Materials on the Reliability of Reinforced Concrete Members
Authors: Sami W. Tabsh
Abstract:
The strength of reinforced concrete depends on the member dimensions and material properties. The properties of concrete and steel materials are not constant but random variables. The variability of concrete strength is due to batching errors, variations in mixing, cement quality uncertainties, differences in the degree of compaction and disparity in curing. Similarly, the variability of steel strength is attributed to the manufacturing process, rolling conditions, characteristics of base material, uncertainties in chemical composition, and the microstructure-property relationships. To account for such uncertainties, codes of practice for reinforced concrete design impose resistance factors to ensure structural reliability over the useful life of the structure. In this investigation, the effects of reductions in concrete and reinforcing steel strengths from the nominal values, beyond those accounted for in the structural design codes, on the structural reliability are assessed. The considered limit states are flexure, shear and axial compression based on the ACI 318-11 structural concrete building code. Structural safety is measured in terms of a reliability index. Probabilistic resistance and load models are compiled from the available literature. The study showed that there is a wide variation in the reliability index for reinforced concrete members designed for flexure, shear or axial compression, especially when the live-to-dead load ratio is low. Furthermore, variations in concrete strength have minor effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and sever effect on the reliability of columns in axial compression. On the other hand, changes in steel yield strength have great effect on the reliability of beams in flexure, moderate effect on the reliability of beams in shear, and mild effect on the reliability of columns in axial compression. Based on the outcome, it can be concluded that the reliability of beams is sensitive to changes in the yield strength of the steel reinforcement, whereas the reliability of columns is sensitive to variations in the concrete strength. Since the embedded target reliability in structural design codes results in lower structural safety in beams than in columns, large reductions in material strengths compromise the structural safety of beams much more than they affect columns.Keywords: code, flexure, limit states, random variables, reinforced concrete, reliability, reliability index, shear, structural safety
Procedia PDF Downloads 4304793 Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin
Authors: Triveni Gogoi, Rima Chatterjee
Abstract:
Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study.Keywords: Castagna's equation, multi linear regression, multi attribute analysis, shear wave logs
Procedia PDF Downloads 2324792 The Influence of Married Women's Adult Children Care Burden and Stress on Depression: Testing the Moderated Mediating Effect of Satisfaction with Husbands’ Sharing of the Care
Authors: Soo-Bi Lee, Jun Young Jeong, Zehgn Lin, Chenminxi
Abstract:
Background: In South Korea, a problematic phenomenon has recently arisen whereby adult children continue to receive parentalcaregivingin some cases. These phenomena has been shown to affect the mental health of mothers. Study Goals: The purposes of this study are to verify whether the mediating effects of stress on the relationship between a woman’s care burden for their adult children and depression are moderated by their satisfaction about their husbands’ sharing of the caregiving. Methodology: This study analyzed 3,053 married women with adult children using the most recent data from the “Korean Longitudinal Survey of Women & Families 7th(2018)" conducted at the national level. The analysis was conducted using the SPSS Process Macro Model 7 to verify the moderated mediating effects and subsequently confirm their significance based on the bootstrapping method. Results and Implications: (1) Stress was identified a mediating factor in the relationship between the care burden for adult children and depression; and (2) the mediating effects of stress on depression from the burden of caring for adult children are modulated by the woman's satisfaction with her husband’s sharing of the care burden. In other words, the higher the caring burden of adult children, the higher the mother's stress, which increases depression. At this time, the higher the their satisfaction with the husband's share of care in the path of mother's care burden and stress, the lower the mother's stress and, ultimately, the depression be alleviated. Conclusion: Programs that promote the mental health of married women heavily with the caring burden for their adult children, as well as those that improve social awareness regarding husbands' sharing of the care burden, should be implemented. Also, social welfare policy alternatives are needed at the national level to reduce the caring burden caused by adult children.Keywords: married women, adult children care burden, stress, depression, satisfaction with husbands sharing of the care
Procedia PDF Downloads 2074791 Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties
Authors: Behrooz Ataee, Mohammad Golzar
Abstract:
The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile.Keywords: thermoplastic pultrusion, hybrid pultrusion, side-by-side fibers, impregnation
Procedia PDF Downloads 2584790 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes
Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland
Abstract:
This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.Keywords: speech prosody, PTSD, machine learning, feature extraction
Procedia PDF Downloads 914789 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: attenuation, earthquake, ground motion, Stochastic, seismic hazard
Procedia PDF Downloads 2494788 Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient
Authors: Jeong-Min Lee, Hyunwoo Song, Yonseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat.Keywords: gas turbine blade, Thermal Barrier Coating (TBC), thermal gradient, Finite Element Analysis (FEA)
Procedia PDF Downloads 6094787 Impact of Stress on Physical-Mental Wellbeing of Working Women in India: Awareness and Acceptability
Authors: Meera Shanker
Abstract:
Excellent education and financial need have encouraged Indian women to go out and work in well-paid and high-status occupations. In the era of cutthroat competition, women are expected to work hard to produce the desired result; hence, workload and expectations haveincreased. At home, they are anticipated to take care of family members, children, and household work. Women are stretching themselves mechanically to remain in the job competition and try to give their best at home. Consequentially, they are under tremendous pressure, stressed, and having issues related to physical-mental wellness. Mental healthcare is often ignored and not accepted due to a lack of awareness and cultural barriers. These further compounds the problem, resulting in decreased productivity in economic terms and an increase in stress-related physical-mental ailments. The main objective of the study was to find out the impact of stress on the physical-mental wellbeing of working women in India, along with their awareness and acceptability related to mental health. Six hundred and one woman working at various levels took part in this study, responding to the items related to stress and physical-mental illness. Finally, 21 items were retained under four meaningful factors measuring stress dimensions along with 17 items with three factors measuring physical-mental wellbeing. Confirmatory Factor Analysis (CFA), path analysis, in Structural Equation Modeling (SEM), was used to get a relationship, validity of the instruments. The psychometric properties of items and Cronbach’s Alpha reliabilities calculated for the subscales were relatively acceptable. The subscale correlations, regression, and path analysis of stress dimensions with physical-mental illness were found to be positive, indicating the growing stress among working women in India, which is impacting their physical-mental health. Single item analysis revealed that 77 percent of women have never visited psychologists. However, 70 percent of working women were not ready to seek the help of a psychologist.Keywords: working women, stress, physical-mental well-being, confirmatory factor analysis
Procedia PDF Downloads 1864786 Bifurcations of the Rotations in the Thermocapillary Flows
Authors: V. Batishchev, V. Getman
Abstract:
We study the self-similar fluid flows in the Marangoni layers with the axial symmetry. Such flows are induced by the radial gradients of the temperatures whose distributions along the free boundary obey some power law. The self-similar solutions describe thermo-capillar flows both in the thin layers and in the case of infinite thickness. We consider both positive and negative temperature gradients. In the former case the cooling of free boundary nearby the axis of symmetry gives rise to the rotation of fluid. The rotating flow concentrates itself inside the Marangoni layer while outside of it the fluid does not revolve. In the latter case we observe no rotating flows at all. In the layers of infinite thickness the separation of the rotating flow creates two zones where the flows are directed oppositely. Both the longitudinal velocity and the temperature have exactly one critical point inside the boundary layer. It is worth to note that the profiles are monotonic in the case of non-swirling flows. We describe the flow outside the boundary layer with the use of self-similar solution of the Euler equations. This flow is slow and non-swirling. The introducing of an outer flow gives rise to the branching of swirling flows from the non-swirling ones. There is such the critical velocity of the outer flow that a non-swirling flow exists for supercritical velocities and cannot be extended to the sub-critical velocities. For the positive temperature gradients there are two non-swirling flows. For the negative temperature gradients the non-swirling flow is unique. We determine the critical velocity of the outer flow for which the branching of the swirling flows happens. In the case of a thin layer confined within free boundaries we show that the cooling of the free boundaries near the axis of symmetry leads to the separating of the layer and creates two sub-layers with opposite rotations inside. This makes sharp contrast with the case of infinite thickness. We show that such rotation arises provided the thickness of the layer exceed some critical value. In the case of a thin layer confined within free and rigid boundaries we construct the branching equation and the asymptotic approximation for the secondary swirling flows near the bifurcation point. It turns out that the bifurcation gives rise to one pair of the secondary swirling flows with different directions of swirl.Keywords: free surface, rotation, fluid flow, bifurcation, boundary layer, Marangoni layer
Procedia PDF Downloads 3454785 Clarifying the Possible Symptomatic Pathway of Comorbid Depression, Anxiety, and Stress Among Adolescents Exposed to Childhood Trauma: Insight from the Network Approach
Authors: Xinyuan Zou, Qihui Tang, Shujian Wang, Yulin Huang, Jie Gui, Xiangping Liu, Gang Liu, Yanqiang Tao
Abstract:
Childhood trauma can have a long-lasting influence on individuals and contribute to mental disorders, including depression and anxiety. The current study aimed to explore the symptomatic and developmental patterns of depression, anxiety, and stress among adolescents who have suffered from childhood trauma. A total of 3,598 college students (female = 1,617 (44.94%), Mean Age = 19.68, SD Age = 1.35) in China completed the Childhood Trauma Questionnaire (CTQ) and the Depression, Anxiety, and Stress Scales (DASS-21), and 2,337 participants met the selection standard based on the cut-off scores of the CTQ. The symptomatic network and directed acyclic graph (DAG) network approaches were used. The results revealed that males reported experiencing significantly more physical abuse, physical neglect, emotional neglect, and sexual abuse compared to females. However, females scored significantly higher than males on all items of DASS-21, except for “Worthless”. No significant difference between the two genders was observed in the network structure and global strength. Meanwhile, among all participants, “Down-hearted” and “Agitated” appeared to be the most interconnected symptoms, the bridge symptoms in the symptom network, as well as the most vital symptoms in the DAG network. Apart from that, “No-relax” also served as the most prominent symptom in the DAG network. The results suggested that intervention targeted at assisting adolescents in developing more adaptive coping strategies with stress and regulating emotion could benefit the alleviation of comorbid depression, anxiety, and stress.Keywords: symptom network, childhood trauma, depression, anxiety, stress
Procedia PDF Downloads 65