Search results for: artificial market
4382 A Philosophical Investigation into African Conceptions of Personhood in the Fourth Industrial Revolution
Authors: Sanelisiwe Ndlovu
Abstract:
Cities have become testbeds for automation and experimenting with artificial intelligence (AI) in managing urban services and public spaces. Smart Cities and AI systems are changing most human experiences from health and education to personal relations. For instance, in healthcare, social robots are being implemented as tools to assist patients. Similarly, in education, social robots are being used as tutors or co-learners to promote cognitive and affective outcomes. With that general picture in mind, one can now ask a further question about Smart Cities and artificial agents and their moral standing in the African context of personhood. There has been a wealth of literature on the topic of personhood; however, there is an absence of literature on African personhood in highly automated environments. Personhood in African philosophy is defined by the role one can and should play in the community. However, in today’s technologically advanced world, a risk is that machines become more capable of accomplishing tasks that humans would otherwise do. Further, on many African communitarian accounts, personhood and moral standing are associated with active relationality with the community. However, in the Smart City, human closeness is gradually diminishing. For instance, humans already do engage and identify with robotic entities, sometimes even romantically. The primary aim of this study is to investigate how African conceptions of personhood and community interact in a highly automated environment such as Smart Cities. Accordingly, this study lies in presenting a rarely discussed African perspective that emphasizes the necessity and the importance of relationality in handling Smart Cities and AI ethically. Thus, the proposed approach can be seen as the sub-Saharan African contribution to personhood and the growing AI debates, which takes the reality of the interconnectedness of society seriously. And it will also open up new opportunities to tackle old problems and use existing resources to confront new problems in the Fourth Industrial Revolution.Keywords: smart city, artificial intelligence, personhood, community
Procedia PDF Downloads 2054381 Analyzing the Upcoming Changes in the Multi Brand E-commerce Industry with Specific Reference to the Indian Market
Authors: Shubham Banerjee
Abstract:
The paper focuses on, how the business model of the Indian multi brand ecommerce industry is unstable and is headed towards an e-commerce bubble burst. Due to multiple players in the industry and little or no product differentiation, the Indian multi brand ecommerce industry has turned into an oligopoly market where there is hardly any brand loyalty of the customers. Companies have been rapidly increasing their selling cost in the forms of discounts and advertisements to retain and grow its customer base. This is resulting into higher revenues, but is driving the companies further away from their break-even point. With close to half a decade into the industry, none of the companies have been able to generate profits. With private investors losing patience and devaluing companies, the paper will throw light on how the multi brand e-commerce industry will change in the coming years.Keywords: bubble burst, finance, multi brand ecommerce, product differentiation, private investor
Procedia PDF Downloads 2904380 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 4784379 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling
Authors: Hanbey Hazar, Hakan Gul
Abstract:
In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating
Procedia PDF Downloads 5334378 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era
Authors: Loha Hashimy, Isabella Castillo
Abstract:
In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers
Procedia PDF Downloads 914377 Modeling of Digital and Settlement Consolidation of Soil under Oedomete
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3354376 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)
Authors: Javad Abdi, Azam Famil Khalili
Abstract:
Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning
Procedia PDF Downloads 4364375 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices
Authors: Eti Mizrahi, Gizem İntepe
Abstract:
The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.Keywords: forecasting, logistic stock exchange, modeling, Africa
Procedia PDF Downloads 5474374 Branding in FMCG Sector in India: A Comparison of Indian and Multinational Companies
Authors: Pragati Sirohi, Vivek Singh Rana
Abstract:
Brand is a name, term, sign, symbol or design or a combination of all these which is intended to identify the goods or services of one seller or a group of sellers and to differentiate them from those of the competitors and perception influences purchase decisions here and so building that perception is critical. The FMCG industry is a low margin business. Volumes hold the key to success in this industry. Therefore, the industry has a strong emphasis on marketing. Creating strong brands is important for FMCG companies and they devote considerable money and effort in developing brands. Brand loyalty is fickle. Companies know this and that is why they relentlessly work towards brand building. The purpose of the study is a comparison between Indian and Multinational companies with regard to FMCG sector in India. It has been hypothesized that after liberalization the Indian companies has taken up the challenge of globalization and some of these are giving a stiff competition to MNCs. There is an existence of strong brand image of MNCs compared to Indian companies. Advertisement expenditures of MNCs are proportionately higher compared to Indian counterparts. The operational area of the study is the country as a whole. Continuous time series data is available from 1996-2014 for the selected 8 companies. The selection of these companies is done on the basis of their large market share, brand equity and prominence in the market. Research methodology focuses on finding trend growth rates of market capitalization, net worth, and brand values through regression analysis by the usage of secondary data from prowess database developed by CMIE (Centre for monitoring Indian Economy). Estimation of brand values of selected FMCG companies is being attempted, which can be taken to be the excess of market capitalization over the net worth of a company. Brand value indices are calculated. Correlation between brand values and advertising expenditure is also measured to assess the effect of advertising on branding. Major results indicate that although MNCs enjoy stronger brand image but few Indian companies like ITC is the outstanding leader in terms of its market capitalization and brand values. Dabur and Tata Global Beverages Ltd are competing equally well on these values. Advertisement expenditures are the highest for HUL followed by ITC, Colgate and Dabur which shows that Indian companies are not behind in the race. Although advertisement expenditures are playing a role in brand building process there are many other factors which affect the process. Also, brand values are decreasing over the years for FMCG companies in India which show that competition is intense with aggressive price wars and brand clutter. Implications for Indian companies are that they have to consistently put in proactive and relentless efforts in their brand building process. Brands need focus and consistency. Brand longevity without innovation leads to brand respect but does not create brand value.Keywords: brand value, FMCG, market capitalization, net worth
Procedia PDF Downloads 3614373 Postharvest Studies Beyond Fresh Market Eating Quality: Phytochemical Changes in Peach Fruit During Ripening and Advanced Senescence
Authors: Mukesh Singh Mer, Brij Lal Attri, Raj Narayan, Anil Kumar
Abstract:
Postharvest studies were conducted under the concept that fruit do not qualify for the fresh market may be used as a source of bioactive compounds. One peach (Prunus persica cvs Red June) were evaluated for their photochemical content and antioxidant capacity during the ripening and over ripening periods (advanced senescence) for 12 and 15 d, respectively. Firmness decreased rapidly during this period from an initial pre –ripe stage of 5.85 lb/in2 for peach until the fruit reached the fully ripe stage of lb/in2. In this study we evaluate the varietal performance in respect of the quality beyond fresh market eating and nutrition levels. The varieties are (T-1 F-16-23), (T-2 Florda king), (T-3 Nectarine), (T-4 Red June). The result pertaining are there the highest fruit length (68.50 mm), fruit breadth (71.38 mm), fruit weight (186.11 g) found in T4 Red June and fruit firmness (8.74 lb/in 2) found in T3-Nectarine. The acidity (1.66 %), ascorbic acid (440 mg/100 g), reducing sugar (19.77 %) and total sugar (51.73 %) found in T4- Red June, T-2 Florda King, T-3 Nectarine at harvesting time but decrease in fruit length ( 60.81 mm), fruit breadth (51.84 mm), fruit weight (143.03 g) found in T4 Red June and fruit firmness (6.29 lb/in 2) found in T3-Nectarine. The acidity (0.80 %), ascorbic acid (329.50 mg/100 g), reducing sugar (34.03 %) and total sugar (26.97 %) found in T1- F-16-23, T-2 Florda King, T-1 F-16-23 and T-3 Nectarine after 15 days in freeze conditions when will have been since reached beyond market. The study reveals that the size and yield good in Red June and the nutritional value higher in Florda King and Nectarine peach. Fruit firmness remained unchanged afterwards. In addition, total soluble solids in peach were basically similar during the ripening and over ripening periods. Further research on secondary metabolism regulation during ripening and advanced senescence is needed to obtain fruit as enriched dietary sources of bioactive compounds or for its use in alternative high value health markets including dietary supplements, functional foods cosmetics and pharmaceuticals.Keywords: metabolism, acidity, ascorbic acid, pharmaceuticals
Procedia PDF Downloads 5684372 The Awareness of Computer Science Students Regarding the Security of Location Based Games
Authors: Jacques Barnard, Magda Huisman, Gunther R. Drevin
Abstract:
Rapid expansion and development in die mobile technology market has created an opportunity for users to participate in location based games. As a consequence of this fast expanding market and new technology, it is important to be aware of the implications this has on security. This paper measures the impact on the security awareness of games’ participants, as well as on that of students at university level with regards to their various stages of input in years of studying and gamer classification. This serves to provide insight into the matter as to discernible differences in the awareness of the security implications concerning these technologies. The data was accumulated via a web questionnaire that was to be completed yearly by students from respective year groups. Results signify a meaningful disparity in security awareness among students completing the varying study years and research. This awareness, however, does not always impact on gamers.Keywords: gamer classifications, location based games, location based data, security awareness
Procedia PDF Downloads 2964371 Employers’ Perspective on Female Graduate Employability in Nigeria
Authors: Temitope Faloye
Abstract:
In today’s changing job market economy, most employers of labor want employees who are employable and possess relevant skills. Graduates need to possess generic skills due to the continually changing nature of the job market, which requires adaptive coping strategies. Most employers of labor complain that graduates are not employable, which is one of the major factors causing a high rate of graduate unemployment in Nigeria. However, the number of unemployed females is higher than that of unemployed males; hence gender difference is linked to the employability of graduates. The human capital theory is considered an appropriate theory for this study. A qualitative approach will be used to provide answers to the research questions. Therefore, the research study aims to investigate the employers’ perspective on female graduate employability in Nigeria.Keywords: graduate employability, generic skills, graduate unemployment, gender
Procedia PDF Downloads 1874370 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2174369 Decoding WallStreetBets: The Impact of Daily Disagreements on Trading Volumes
Authors: F. Ghandehari, H. Lu, L. El-Jahel, D. Jayasuriya
Abstract:
Disagreement among investors is a fundamental aspect of financial markets, significantly influencing market dynamics. Measuring this disagreement has traditionally posed challenges, often relying on proxies like analyst forecast dispersion, which are limited by biases and infrequent updates. Recent movements in social media indicate that retail investors actively seek financial advice online and can influence the stock market. The evolution of the investing landscape, particularly the rise of social media as a hub for financial advice, provides an alternative avenue for real-time measurement of investor sentiment and disagreement. Platforms like Reddit offer rich, community-driven discussions that reflect genuine investor opinions. This research explores how social media empowers retail investors and the potential of leveraging textual analysis of social media content to capture daily fluctuations in investor disagreement. This study investigates the relationship between daily investor disagreement and trading volume, focusing on the role of social media platforms in shaping market dynamics, specifically using data from WallStreetBets (WSB) on Reddit. This paper uses data from 2020 to 2023 from WSB and analyses 4,896 firms with enough social media activity in WSB to define stock-day level disagreement measures. Consistent with traditional theories that disagreement induces trading volume, the results show significant evidence supporting this claim through different disagreement measures derived from WSB discussions.Keywords: disagreement, retail investor, social finance, social media
Procedia PDF Downloads 444368 The Impact Of The Covid-19 Lockdown On Solid Waste Pollution And Environmental Hazard. A Blessing In Disguise? A Case Of Liberia
Authors: Eric Berry White
Abstract:
The paper examines the causality between solid waste pollution and lockdown. Particularly in 2020, the world experiences the takeover of the Corona virus pandemic, and most countries decided to adopt lockdown measure as the best solution to curtail the spread of the virus. On March 20, 2020, the Government of Liberia implemented a curfew that starts from 3:00PM to 6:00AM. This means that no unauthorized person is allowed to be in the streets during this time. In most developing countries, the issue of public waste and environmental hazard pollution tend to have a high effect among the slum communities where there are markets. This research covers 6 slums communities around the two biggest market hubs within Monrovia, and the result shows that the lockdown measure significantly reduced public waste pollution by reducing the movement of marketers in slum communities , where limited educational and sensitization for young people is reflected on their job market exclusion, jobless circle, and youth workforce concentration in informal work market. The study discovered that with public awareness and sensitization with females, solid waste could be reduced by 13 percentage point. But there is no evidence that awareness among male conduce pollution. within affected communities, Despite the impact of the lockdown on food consumption, these results emphasized that with the right monitoring of waste and aware, pollution could be reduce. By understanding these results and implementing the best policy, the paper recommends that dump sites be close at certain hours.Keywords: lockdown, environmental, pollution, waste
Procedia PDF Downloads 854367 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 4824366 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3254365 Effects of Alternative Opportunities and Compensation on Turnover Intention of Singapore PMET
Authors: Han Guan Chew, Keith Yong Ngee Ng, Shan-Wei Fan
Abstract:
In Singapore, talent retention is one of the most persistent and real issue companies have to grapple with due to the tight labour market. Being resource-scarce, Singapore depends solely on its talented pool of high quality human resource to sustain its competitive advantage in the global economy. But the complex and multifaceted nature of turnover phenomenon makes the prescription of effective talent retention strategies in such a competitive labour market very challenging, especially when it comes to monetary incentives, companies struggle to answer the question of “How much is enough?” By examining the interactive effects of perceived alternative employment opportunities, annual salary and satisfaction with compensation on the turnover intention of 102 Singapore Professionals, Managers, Executives and Technicians (PMET) through correlation analyses and multiple regressions, important insights into the psyche of the Singapore talent pool can be drawn. It is found that annual salary influence turnover intention indirectly through mediation and moderation effects on PMET’s satisfaction on compensation. PMET are also found to be heavily swayed by better external opportunities. This implies that talent retention strategies should not adopt a purely monetary based blanket approach but rather a comprehensive and holistic one that considers the dynamics of prevailing market conditions.Keywords: employee turnover, high performers, knowledge workers, perceived alternative employment opportunities salary, satisfaction on compensation, Singapore PMET, talent retention
Procedia PDF Downloads 2854364 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 1464363 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 2784362 Extension of Moral Agency to Artificial Agents
Authors: Sofia Quaglia, Carmine Di Martino, Brendan Tierney
Abstract:
Artificial Intelligence (A.I.) constitutes various aspects of modern life, from the Machine Learning algorithms predicting the stocks on Wall streets to the killing of belligerents and innocents alike on the battlefield. Moreover, the end goal is to create autonomous A.I.; this means that the presence of humans in the decision-making process will be absent. The question comes naturally: when an A.I. does something wrong when its behavior is harmful to the community and its actions go against the law, which is to be held responsible? This research’s subject matter in A.I. and Robot Ethics focuses mainly on Robot Rights and its ultimate objective is to answer the questions: (i) What is the function of rights? (ii) Who is a right holder, what is personhood and the requirements needed to be a moral agent (therefore, accountable for responsibility)? (iii) Can an A.I. be a moral agent? (ontological requirements) and finally (iv) if it ought to be one (ethical implications). With the direction to answer this question, this research project was done via a collaboration between the School of Computer Science in the Technical University of Dublin that oversaw the technical aspects of this work, as well as the Department of Philosophy in the University of Milan, who supervised the philosophical framework and argumentation of the project. Firstly, it was found that all rights are positive and based on consensus; they change with time based on circumstances. Their function is to protect the social fabric and avoid dangerous situations. The same goes for the requirements considered necessary to be a moral agent: those are not absolute; in fact, they are constantly redesigned. Hence, the next logical step was to identify what requirements are regarded as fundamental in real-world judicial systems, comparing them to that of ones used in philosophy. Autonomy, free will, intentionality, consciousness and responsibility were identified as the requirements to be considered a moral agent. The work went on to build a symmetrical system between personhood and A.I. to enable the emergence of the ontological differences between the two. Each requirement is introduced, explained in the most relevant theories of contemporary philosophy, and observed in its manifestation in A.I. Finally, after completing the philosophical and technical analysis, conclusions were drawn. As underlined in the research questions, there are two issues regarding the assignment of moral agency to artificial agent: the first being that all the ontological requirements must be present and secondly being present or not, whether an A.I. ought to be considered as an artificial moral agent. From an ontological point of view, it is very hard to prove that an A.I. could be autonomous, free, intentional, conscious, and responsible. The philosophical accounts are often very theoretical and inconclusive, making it difficult to fully detect these requirements on an experimental level of demonstration. However, from an ethical point of view it makes sense to consider some A.I. as artificial moral agents, hence responsible for their own actions. When considering artificial agents as responsible, there can be applied already existing norms in our judicial system such as removing them from society, and re-educating them, in order to re-introduced them to society. This is in line with how the highest profile correctional facilities ought to work. Noticeably, this is a provisional conclusion and research must continue further. Nevertheless, the strength of the presented argument lies in its immediate applicability to real world scenarios. To refer to the aforementioned incidents, involving the murderer of innocents, when this thesis is applied it is possible to hold an A.I. accountable and responsible for its actions. This infers removing it from society by virtue of its un-usability, re-programming it and, only when properly functioning, re-introducing it successfullyKeywords: artificial agency, correctional system, ethics, natural agency, responsibility
Procedia PDF Downloads 1934361 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis
Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang
Abstract:
Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression
Procedia PDF Downloads 4234360 A Study on Vitalization Factors of Itaewon Commercial Street-Focused on Itaewon-Ro
Authors: Park, Yoon Hong, Wang, Jung Kab, Choi Seong-Won, Kim, Hong Kyu
Abstract:
Itaewon-Ro is a special place where the Seoul Metropolitan city designated as the fist are of tourism, specially with the commercial supremacy that foreigners may like. It is the place that grew with regional specialty. Study on the vitalization factors of commercialist were analyzed on consumer shop choice factor, Physical environment based on commercial supremacy vitalization, Functional side of the road and regional specialty. However, since Itaewon seemed to take great place in the cultural factor, Because of its regional specialty, Research was processed. This study is the analysis on the vitalization of Itaewon commercialist that looked for important factors with AHP analysis on consumers use as commercialist. Based on the field study and preceded study, top three factors were distinguished with physical factor, cultural factor, landscape factor, and thirteen detail contents were found. This study focused on the choice of the consumer and with a consumer-based questionnaire, we analyzed the importance of vitalization factors. Results of the research are shown in the following paragraphs. In the Itaewon commercial market, mostly women in the 20~30s were the main consumers for meeting and hopping. Vitalization category that the consumer thinks it most importantly was 'attraction', 'various businesses', and 'convenience of transportation'. 'Attraction that cannot be seen in other places', Which was chosen as the most important factor was judged that Itaewon holds cultural identity that is shown in the process of development, Instead of showing artificial and physical composition.Keywords: commercialist, vitalization factor, regional specialty, cultural factor, AHP analysis
Procedia PDF Downloads 4254359 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5194358 Pricing Strategy in Marketing: Balancing Value and Profitability
Authors: Mohsen Akhlaghi, Tahereh Ebrahimi
Abstract:
Pricing strategy is a vital component in achieving the balance between customer value and business profitability. The aim of this study is to provide insights into the factors, techniques, and approaches involved in pricing decisions. The study utilizes a descriptive approach to discuss various aspects of pricing strategy in marketing, drawing on concepts from market research, consumer psychology, competitive analysis, and adaptability. This approach presents a comprehensive view of pricing decisions. The result of this exploration is a framework that highlights key factors influencing pricing decisions. The study examines how factors such as market positioning, product differentiation, and brand image shape pricing strategies. Additionally, it emphasizes the role of consumer psychology in understanding price elasticity, perceived value, and price-quality associations that influence consumer behavior. Various pricing techniques, including charm pricing, prestige pricing, and bundle pricing, are mentioned as methods to enhance sales by influencing consumer perceptions. The study also underscores the importance of adaptability in responding to market dynamics through regular price monitoring, dynamic pricing, and promotional strategies. It recognizes the role of digital platforms in enabling personalized pricing and dynamic pricing models. In conclusion, the study emphasizes that effective pricing strategies strike a balance between customer value and business profitability, ultimately driving sales, enhancing brand perception, and fostering lasting customer relationships.Keywords: business, customer benefits, marketing, pricing
Procedia PDF Downloads 834357 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 1884356 Health as a Proxy for Labour Productivity: The Impact on Wages in Egypt’s Private Sector
Authors: Yasmine Ahmed Shemeis
Abstract:
Determining the impact of productivity increases on wage levels is often difficult due to the unavailability of individual-level productivity data. Accordingly, we proxy for productivity using a self-perceived measure of health based on the postulated positive relationship between better health and productivity improvements. Using Egypt’s labour market data for the years 2012 and 2018 and utilizing a Maximum Likelihood Estimation method, we address two issues: the endogeneity of health in the estimation of wages and a sample selection bias. Our findings indicate the great value that better health has in enhancing wage levels in Egypt’s private sector. Also, we find that overlooking the endogeneity of health underestimates its effect on wages. Thus, the improvement of health states is likely to be beneficial in improving labour market outcomes in terms of wages as well as labour productivity in Egypt.Keywords: labour, Productivity, Wages, Endogeneity, Sample Selection
Procedia PDF Downloads 844355 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology
Authors: Amarendar Reddy Addula
Abstract:
Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.Keywords: artificial intelligence, ethics & human rights issues, laws, international laws
Procedia PDF Downloads 984354 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 734353 Measuring the Effect of the Privatization of the Kuwait Stock Exchange on Its Performance
Authors: Mohamad H. Atyeh, Wael Alrashed, Steven Telford
Abstract:
The main objective of this research is to measure if there have been any notable changes in the trading actives of the Kuwait stock Exchange (KSE) after the privatization process that took place on the 25th of April 2016. The data that are used to test if there is any change in the KSE market performance are the daily indices for the period from the 25th of April 2016 till the 24th of October 2016 (after privatization) and a similar six months period before the date of the privatization from the 24th of October 2015 till the 24th of April 2016. In addition, as a control, the study included a period that is a period parallel to the six months period after the privatization. The results indicate that privatization is associated with lower variability for the majority of variables, but that the observed switch in slope direction is not actually a product of privatization, but rather one of serial correlation.Keywords: privatization, Kuwait stock exchange (KSE), market capitalization (MCAP), capital markets authority (CMA), Boursa Kuwait securities company (BKSC)
Procedia PDF Downloads 300