Search results for: accuracy assessment.
8072 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach
Authors: Chen-Yin Kuo, Yung-Hsin Lee
Abstract:
Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy
Procedia PDF Downloads 3148071 The Effects of Adlerian Supervision on Enhancing Career Consultants’ Case Conceptualization
Authors: Lin Shang Neng
Abstract:
Due to rapid changes in the societal environment, career development and planning have become increasingly crucial, leading more individuals to seek the assistance of career consultations. However, the training process for career consultants often emphasizes the application of assessment tools and guidance in job-seeking behavior. The abilities of case conceptualization and consulting skills require further in-service supervision. This study aims to inquire about the supervised experiences of employment specialists at the Employment Service Center of the Taiwan Ministry of Labor or career consultants who held private clinics for at least three years. The research participants were continuously supervised by the Adlerian approach twice a month for at least one year, helping them integrate the whole picture of the client through Lifestyle Assessment (the qualitative way, specific diagnosis) and other Adlerian assessment tools (the quantitative way, general diagnosis.) The supervisor was familiar with Adlerian Psychology and certified by the North American Society of Adlerian Psychology. The research method involves semi-structured interviews and qualitative analysis. For the ethical considerations, the participants were invited to interview after the supervision sessions finished. The findings of this research were discussed with possible implications, like how they applied Adlerian Psychology to their career consultations, especially to case conceptualizations and consulting skills. Recommendations for further research and training for career consultants are also discussed.Keywords: supervision, Adlerian psychology, case conceptualization, career consultant
Procedia PDF Downloads 768070 Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients
Authors: Matjaž Divjak, Simon Zelič, Aleš Holobar
Abstract:
We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.Keywords: video-based attention monitoring, gaze estimation, stroke rehabilitation, user compliance
Procedia PDF Downloads 4228069 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 2068068 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques
Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari
Abstract:
Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel
Procedia PDF Downloads 3358067 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes
Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany
Abstract:
In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.Keywords: IDA, near-fault, probabilistic performance assessment, seismic fragility, strongback system, uncertainty
Procedia PDF Downloads 1128066 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk
Procedia PDF Downloads 3418065 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5308064 Occupational Health Assessment in a Telco Account: A Workplace Integrated Safety and Health and Cornell Musculoskeletal Discomfort Questionnaire Analysis Among Diverse Employees at Alorica
Authors: Karl Bryant Buan, Owaida Macadadaya Jr., Mon Eleazar Nonato, Zeke Andrew Palabrica, Charistabelle Mae Santiago
Abstract:
This study explored the occupational health risks faced by employees in the Business Process Outsourcing (BPO) industry, particularly in the Telco Account department of Alorica. The study used a stratified sampling method and a diagnostic tool called Workplace Integrated Safety and Health (WISH) Assessment to measure and evaluate the employees' perception of workplace health and safety. The results showed that more than 50% of call center workers reported feeling emotionally drained, sleep deprived, burnt out, and in need of anxiety or stress medication due to their work. Additionally, there was a significant difference in the perception of employee diversity, specifically in terms of leadership commitment, participation, policies, programs, and practices. The Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) results revealed that most employees complained of discomfort in their lower back, shoulder, upper back, neck, and hip. The researchers recommended an implementation plan for alternative work set-up, a satisfaction survey for employees, team-building activities or programs, and motivational approaches through benefits, incentives, and rewards.Keywords: WISH assessment, CMDQ, ANOVA, diverse SOGIESC
Procedia PDF Downloads 698063 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 1508062 Cognitive Methods for Detecting Deception During the Criminal Investigation Process
Authors: Laid Fekih
Abstract:
Background: It is difficult to detect lying, deception, and misrepresentation just by looking at verbal or non-verbal expression during the criminal investigation process, as there is a common belief that it is possible to tell whether a person is lying or telling the truth just by looking at the way they act or behave. The process of detecting lies and deception during the criminal investigation process needs more studies and research to overcome the difficulties facing the investigators. Method: The present study aimed to identify the effectiveness of cognitive methods and techniques in detecting deception during the criminal investigation. It adopted the quasi-experimental method and covered a sample of (20) defendants distributed randomly into two homogeneous groups, an experimental group of (10) defendants be subject to criminal investigation by applying cognitive techniques to detect deception and a second experimental group of (10) defendants be subject to the direct investigation method. The tool that used is a guided interview based on models of investigative questions according to the cognitive deception detection approach, which consists of three techniques of Vrij: imposing the cognitive burden, encouragement to provide more information, and ask unexpected questions, and the Direct Investigation Method. Results: Results revealed a significant difference between the two groups in term of lie detection accuracy in favour of defendants be subject to criminal investigation by applying cognitive techniques, the cognitive deception detection approach produced superior total accuracy rates both with human observers and through an analysis of objective criteria. The cognitive deception detection approach produced superior accuracy results in truth detection: 71%, deception detection: 70% compared to a direct investigation method truth detection: 52%; deception detection: 49%. Conclusion: The study recommended if practitioners use a cognitive deception detection technique, they will correctly classify more individuals than when they use a direct investigation method.Keywords: the cognitive lie detection approach, deception, criminal investigation, mental health
Procedia PDF Downloads 658061 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features
Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han
Abstract:
Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction
Procedia PDF Downloads 2288060 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 378059 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1208058 Evaluating Factors Affecting Audiologists’ Diagnostic Performance in Auditory Brainstem Response Reading: Training and Experience
Authors: M. Zaitoun, S. Cumming, A. Purcell
Abstract:
This study aims to determine if audiologists' experience characteristics in ABR (Auditory Brainstem Response) reading is associated with their performance in interpreting ABR results. Fifteen ABR traces with varying degrees of hearing level were presented twice, making a total of 30. Audiologists were asked to determine the hearing threshold for each of the cases after completing a brief survey regarding their experience and training in ABR administration. Sixty-one audiologists completed all tasks. Correlations between audiologists’ performance measures and experience variables suggested significant associations (p < 0.05) between training period in ABR testing and audiologists’ performance in terms of both sensitivity and accuracy. In addition, the number of years conducting ABR testing correlated with specificity. No other correlations approached significance. While there are relatively few significant correlations between ABR performance and experience, accuracy in ABR reading is associated with audiologists’ length of experience and period of training. To improve audiologists’ performance in reading ABR results, an emphasis on the importance of training should be raised and standardized levels and period for audiologists training in ABR testing should also be set.Keywords: ABR, audiology, performance, training, experience
Procedia PDF Downloads 1658057 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 438056 Differences in Assessing Hand-Written and Typed Student Exams: A Corpus-Linguistic Study
Authors: Jutta Ransmayr
Abstract:
The digital age has long arrived at Austrian schools, so both society and educationalists demand that digital means should be integrated accordingly to day-to-day school routines. Therefore, the Austrian school-leaving exam (A-levels) can now be written either by hand or by using a computer. However, the choice of writing medium (pen and paper or computer) for written examination papers, which are considered 'high-stakes' exams, raises a number of questions that have not yet been adequately investigated and answered until recently, such as: What effects do the different conditions of text production in the written German A-levels have on the component of normative linguistic accuracy? How do the spelling skills of German A-level papers written with a pen differ from those that the students wrote on the computer? And how is the teacher's assessment related to this? Which practical desiderata for German didactics can be derived from this? In a trilateral pilot project of the Austrian Center for Digital Humanities (ACDH) of the Austrian Academy of Sciences and the University of Vienna in cooperation with the Austrian Ministry of Education and the Council for German Orthography, these questions were investigated. A representative Austrian learner corpus, consisting of around 530 German A-level papers from all over Austria (pen and computer written), was set up in order to subject it to a quantitative (corpus-linguistic and statistical) and qualitative investigation with regard to the spelling and punctuation performance of the high school graduates and the differences between pen- and computer-written papers and their assessments. Relevant studies are currently available mainly from the Anglophone world. These have shown that writing on the computer increases the motivation to write, has positive effects on the length of the text, and, in some cases, also on the quality of the text. Depending on the writing situation and other technical aids, better results in terms of spelling and punctuation could also be found in the computer-written texts as compared to the handwritten ones. Studies also point towards a tendency among teachers to rate handwritten texts better than computer-written texts. In this paper, the first comparable results from the German-speaking area are to be presented. Research results have shown that, on the one hand, there are significant differences between handwritten and computer-written work with regard to performance in orthography and punctuation. On the other hand, the corpus linguistic investigation and the subsequent statistical analysis made it clear that not only the teachers' assessments of the students’ spelling performance vary enormously but also the overall assessments of the exam papers – the factor of the production medium (pen and paper or computer) also seems to play a decisive role.Keywords: exam paper assessment, pen and paper or computer, learner corpora, linguistics
Procedia PDF Downloads 1688055 Typhoon Disaster Risk Assessment of Mountain Village: A Case Study of Shanlin District in Kaohsiung
Abstract:
Taiwan is mountainous country, 70% of land is covered with mountains. Because of extreme climate, the mountain villages with sensitive and fragile environment often get easily affected by inundation and debris flow from typhoon which brings huge rainfall. Due to inappropriate development, overuse and fewer access roads, occurrence of disaster becomes more frequent through downpour and rescue actions are postponed. However, risk map is generally established through administrative boundaries, the difference of urban and rural area is ignored. The neglect of mountain village characteristics eventually underestimates the importance of factors related to vulnerability and reduces the effectiveness. In disaster management, there are different strategies and actions at each stage. According to different tasks, there will be different risk indices and weights to analyze disaster risk for each stage and then it will contribute to confront threat and reduce impact appropriately on right time. Risk map is important in mitigation, but also in response stage because some factors such as road network will be changed by disaster. This study will use risk assessment to establish risk map of Shanlin District which is mountain village in Kaohsiung as a case study in mitigation and response stage through Analytic Hierarchy Process (AHP). AHP helps to recognize the composition and weights of risk factors in mountain village by experts’ opinions through survey design and is combined with present potential hazard map to produce risk map.Keywords: risk assessment, mountain village, risk map, analytic hierarchy process
Procedia PDF Downloads 3978054 Exploring Health-Related Inequalities between Private, Public and Active Transport Users, Using Relative Importance Index: Case Study on Santiago de Chile
Authors: Beatriz Mella Lira, Karla Yohannessen, Robin Hickman
Abstract:
The aim of the paper is recognising inequalities through the self-assessment of health-related factors, in the context of daily mobilities in Santiago de Chile. Human capabilities will be used as the theoretical basis for the recognition and assessment of these factors regarding the functioning (what people are currently able to do) and capabilities (what people want to achieve and what is valuable for them), reflecting differences across social groups and among types of transport users. The self-assessment of health-related factors considers perceptions of stress, physical effort, proximity to other transport users, pollution, safety, and comfort. The types of transport users are classified as: private (cars, taxis, colectivos, motos), public (buses and metro) and active (bicycles and walking). The methodology follows a capability-based questionnaire, which was applied in different areas of Santiago de Chile, considering concepts extracted from the human capabilities list. The self-assessment of these health-related factors examines the context of peoples’ mobilities for performing their daily activities, considering socioeconomic differences as income, age, gender, disabilities, residence location and primary mode choice. The paper uses Relative Importance Index (RII) for weighting the relative influence or valuation of the factors. The respondents were asked to rate the importance of each factor on a scale from 1 to 5, in an ascending order of importance. The results suggest that these health-related factors impact not just the perceptions of users, but their well-being and their propensity for achieving their capabilities and the things they value in life. The paper is focused on the development of an applicable approach, measuring factors that should be included in transport project appraisal, as a more comprehensive and complementary method.Keywords: active transport, health, human capabilities, Santiago de Chile, transport inequalities, transportation planning, urban planning
Procedia PDF Downloads 1898053 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets
Authors: Akshat Kumar, Vidushi
Abstract:
This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry
Procedia PDF Downloads 738052 Efficacy and User Satisfaction on the Rama-Chest Cryo Arm Innovation for Bronchoscopic Cryotherapy
Authors: Chariya Laohavich
Abstract:
At the current, the trends in the lung disease at a university hospital are the treat and diagnosis by bronchoscopy. Bronchoscopic cryotherapy is a long time procedure 1-4 hours. The cryo probe is sensitive and easy to be damaged and expensive. We have this study management for protection the cryo probe, user satisfaction and qualities work. This study conducted in 4 stages: stage 1 for a survey of problems and assessment of user’s needs; stage 2 for designing and developing the Rama-chest cryo arm for a bronchoscopy process; stage 3 for test-implementing the Rama-chest cryo arm in real situations, studying its problems and obstacles, and evaluating the user satisfaction; and stage 4 for an overall assessment and improvement. The sample used in this study consisted of a total of 15 Ramathipbodi Hospital’s Bronchoscopist and bronchoscopist’s nurse who had used the Rama-chest cryo arm for bronchoscopic cryotherapy from January to June 2016. Objective: To study efficacy and user satisfaction on the Rama-chest cryo arm innovation for bronchoscopic cryotherapy. Data were collected using a Rama-chest cryo arm satisfaction assessment form and analysed based on mean and standard deviation. Result is the Rama-chest cryo arm was an innovation that accommodated during bronchoscopic cryotherapy. The subjects rated this the cryo arm as being most satisfactory (M = 4.86 ± , SD 0.48. Therefore we have developed a cryo arm that uses local material, practical and economic. Our innovation is not only flexible and sustainable development but also lean and seamless. This produced device can be used as effectively as the imported one, and thus can be eventually substituted.Keywords: efficacy, satisfaction, Rama-chest cryo arm, innovation, bronchoscopic cryotherapy
Procedia PDF Downloads 2418051 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 1728050 A Comparison between Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process for Rationality Evaluation of Land Use Planning Locations in Vietnam
Authors: X. L. Nguyen, T. Y. Chou, F. Y. Min, F. C. Lin, T. V. Hoang, Y. M. Huang
Abstract:
In Vietnam, land use planning is utilized as an efficient tool for the local government to adjust land use. However, planned locations are facing disapproval from people who live near these planned sites because of environmental problems. The selection of these locations is normally based on the subjective opinion of decision-makers and is not supported by any scientific methods. Many researchers have applied Multi-Criteria Analysis (MCA) methods in which Analytic Hierarchy Process (AHP) is the most popular techniques in combination with Fuzzy set theory for the subject of rationality assessment of land use planning locations. In this research, the Fuzzy set theory and Analytic Network Process (ANP) multi-criteria-based technique were used for the assessment process. The Fuzzy Analytic Hierarchy Process was also utilized, and the output results from two methods were compared to extract the differences. The 20 planned landfills in Hung Ha district, Thai Binh province, Vietnam was selected as a case study. The comparison results indicate that there are different between weights computed by AHP and ANP methods and the assessment outputs produced from these two methods also slight differences. After evaluation of existing planned sites, some potential locations were suggested to the local government for possibility of land use planning adjusts.Keywords: Analytic Hierarchy Process, Analytic Network Process, Fuzzy set theory, land use planning
Procedia PDF Downloads 4208049 An Assessment of Radio-Based Education about Female Genital Cutting and Health and Human Rights Issues in Douentza, Mali
Authors: Juliet Sorensen, Megan Schliep
Abstract:
Introduction: After a multidisciplinary assessment of health and human rights issues in central Mali, a musical album was created in 2014 in Douentza, Mali to provide health information on female genital mutilation/cutting (FGM/C), malaria, HIV/AIDS, girls’ education, breastfeeding, and sanitation. The objective of this study was to assess the impact of this album. Methods: A mixed-methods assessment was conducted with 149 individuals across 10 villages in Douentza Cercle. Analyses focused on the association of radio listening habits, age, sex, ethnicity and education with a public health knowledge score. Results: Over 90% of respondents reported daily radio listening, many listening five or more hours per day. Potential risks of FGM/C cited by participants included death (59%), difficulty in childbirth (48%), sterility (34%), and fistula (33%); when asked about their level of control over FGM/C, 28% stated they would never cut their daughters. Being a listener for 1-5 hours per day was associated with a 11.5% higher score of 'public health knowledge' compared to those listening only a little or not at all (p < 0.01). Education (marginal versus no formal education) was associated with 7.6% increased score (p < 0.01). Conclusion: Radio appears to be a significant part of community members’ daily routines and may be a valuable medium for transmitting information, particularly for lower literacy individuals.Keywords: female genital cutting, public health and social justice education, radio, Mali
Procedia PDF Downloads 2838048 Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield
Authors: Norul Husna A. Kasim, Siva K. Balasundram
Abstract:
The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications.Keywords: anthocyanin, flavonoid fluorescence sensor, palm oil yield and quality
Procedia PDF Downloads 8078047 Environmental Assessment of Roll-to-Roll Printed Smart Label
Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois
Abstract:
Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.Keywords: Eco-design, label, life cycle assessment, printed electronics
Procedia PDF Downloads 1628046 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 2678045 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification
Authors: Chung-Ming Lo, Chung-Chien Lee
Abstract:
In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis
Procedia PDF Downloads 2848044 A Case of Generalized Anxiety Disorder (GAD)
Authors: Muhammad Zeeshan
Abstract:
This case study is about a 54 years man named Mr. U, referred to Capital Hospital, Islamabad, with the presenting complaints of Generalized Anxiety Disorder (GAD). Contrary to his complaints, the client reported psychological symptoms such as restlessness, low mood and fear of darkness and fear from closed places from the last 30 days. He also had a fear of death and his existence in the grave. His sleep was also disturbed due to excessive urination due to diabetes. He was also suffering from semantic symptoms such as headache, numbness of feet and pain in the chest and blockage of the nose. A complete history was taken and informal assessment (clinical interview and MSE) and formal testing (BAI) was applied that showed the clear diagnosis of Generalized Anxiety Disorder. CBT, relaxation techniques, prayer chart and behavioural techniques were applied for the treatment purposes.Keywords: generalized anxiety disorder, presenting complaints, formal and informal assessment, diagnosis
Procedia PDF Downloads 2848043 Assessment of Biosecurity Strategies of Selected Fishponds in Bataan
Authors: Rudy C. Flores, Felicisima E. Tungol, Armando A. Villafuerte, Abraham S. Antonio, Roy N. Oroyo, Henry A. Cruz
Abstract:
An assessment of the biosecurity strategies of selected fishponds in Bataan was conducted by the researchers from Bataan Peninsula State University Orani Campus to determine the present status of Biosecurity strategies being practice by selected freshwater and brackish water fishpond operators in the province to have an initial data of their system of safeguarding cultured fishes against possible diseases. Likewise, it aims to evaluate the extent of implementation of the following areas of Biosecurity namely; fishpond location, perimeter, entrance, building/ pond structure, shipping, new stocks, feeds, dead stocks, soil and water treatment, disinfection and vaccination program. The results of the assessment revealed that the present average status of the surveyed fish ponds in Bataan based on the data gathered from selected fishpond operators is poor for 44.64% and fair for 12.61%, which means that more than one- half of the surveyed fishpond do not have the first and second line of defense against diseases and there is always a higher risk of infection, contamination and possibility of disease outbreak. This indicates that fishpond operators in Bataan need technological interventions to improve their harvest and prevent heavy losses from fish diseases, although biosecurity is satisfactory for 12.92% and very good for 9.16%, which indicate that 22.08% of the surveyed fishponds have their own strategies to keep their stocks from diseases.Keywords: biosecurity, fishpond operators, soil and water treatment, filtration system, bird scaring devices
Procedia PDF Downloads 701