Search results for: mechanical treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11250

Search results for: mechanical treatment

210 Evaluation of Biological and Confinement Properties of a Bone Substitute to in Situ Preparation Based on Demineralized Bone Matrix for Bone Tissue Regeneration

Authors: Aura Maria Lopera Echavarria, Angela Maria Lema Perez, Daniela Medrano David, Pedronel Araque Marin, Marta Elena Londoño Lopez

Abstract:

Bone regeneration is the process by which the formation of new bone is stimulated. Bone fractures can originate at any time due to trauma, infections, tumors, congenital malformations or skeletal diseases. Currently there are different strategies to treat bone defects that in some cases, regeneration does not occur on its own. That is why they are treated with bone substitutes, which provide a necessary environment for the cells to synthesize new bone. The Demineralized Bone Matrix (DBM) is widely used as a bone implant due to its good properties, such as osteoinduction and bioactivity. However, the use of DBM is limited, because its presentation is powder, which is difficult to implant with precision and is susceptible to migrating to other sites through blood flow. That is why the DBM is commonly incorporated into a variety of vehicles or carriers. The objective of this project is to evaluate the bioactive and confinement properties of a bone substitute based on demineralized bone matrix (DBM). Also, structural and morphological properties were evaluated. Bone substitute was obtained from EIA Biomaterials Laboratory of EIA University and the DBM was facilitated by Tissue Bank Foundation. Morphological and structural properties were evaluated by scanning electron microscopy (SEM), X-ray diffraction (DRX) and Fourier transform infrared spectroscopy with total attenuated reflection (FTIR-ATR). Water absorption capacity and degradation were also evaluated during three months. The cytotoxicity was evaluated by the MTT test. The bioactivity of the bone substitute was evaluated through immersion of the samples in simulated body fluid during four weeks. Confinement tests were performed on tibial fragments of a human donor with bone defects of determined size, to ensure that the substitute remains in the defect despite the continuous flow of fluid. According of the knowledge of the authors, the methodology for evaluating samples in a confined environment has not been evaluated before in real human bones. The morphology of the samples showed irregular surface and presented some porosity. DRX confirmed a semi-crystalline structure. The FTIR-ATR determined the organic and inorganic phase of the sample. The degradation and absorption measurements stablished a loss of 3% and 150% in one month respectively. The MTT showed that the system is not cytotoxic. Apatite clusters formed from the first week were visualized by SEM and confirmed by EDS. These calcium phosphates are necessary to stimulate bone regeneration and thanks to the porosity of the developed material, osteinduction and osteoconduction are possible. The results of the in vitro evaluation of the confinement of the material showed that the migration of the bone filling to other sites is negligible, although the samples were subjected to the passage of simulated body fluid. The bone substitute, putty type, showed stability, is bioactive, non-cytotoxic and has handling properties for specialists at the time of implantation. The obtained system allows to maintain the osteoinductive properties of DBM and it can fill completely fractures in any way; however, it does not provide a structural support, that is, it should only be used to treat fractures without requiring a mechanical load.

Keywords: bone regeneration, cytotoxicity, demineralized bone matrix, hydrogel

Procedia PDF Downloads 102
209 Developing Primary Care Datasets for a National Asthma Audit

Authors: Rachael Andrews, Viktoria McMillan, Shuaib Nasser, Christopher M. Roberts

Abstract:

Background and objective: The National Review of Asthma Deaths (NRAD) found that asthma management and care was inadequate in 26% of cases reviewed. Major shortfalls identified were adherence to national guidelines and standards and, particularly, the organisation of care, including supervision and monitoring in primary care, with 70% of cases reviewed having at least one avoidable factor in this area. 5.4 million people in the UK are diagnosed with and actively treated for asthma, and approximately 60,000 are admitted to hospital with acute exacerbations each year. The majority of people with asthma receive management and treatment solely in primary care. This has therefore created concern that many people within the UK are receiving sub-optimal asthma care resulting in unnecessary morbidity and risk of adverse outcome. NRAD concluded that a national asthma audit programme should be established to measure and improve processes, organisation, and outcomes of asthma care. Objective: To develop a primary care dataset enabling extraction of information from GP practices in Wales and providing robust data by which results and lessons could be drawn and drive service development and improvement. Methods: A multidisciplinary group of experts, including general practitioners, primary care organisation representatives, and asthma patients was formed and used as a source of governance and guidance. A review of asthma literature, guidance, and standards took place and was used to identify areas of asthma care which, if improved, would lead to better patient outcomes. Modified Delphi methodology was used to gain consensus from the expert group on which of the areas identified were to be prioritised, and an asthma patient and carer focus group held to seek views and feedback on areas of asthma care that were important to them. Areas of asthma care identified by both groups were mapped to asthma guidelines and standards to inform and develop primary and secondary care datasets covering both adult and pediatric care. Dataset development consisted of expert review and a targeted consultation process in order to seek broad stakeholder views and feedback. Results: Areas of asthma care identified as requiring prioritisation by the National Asthma Audit were: (i) Prescribing, (ii) Asthma diagnosis (iii) Asthma Reviews (iv) Personalised Asthma Action Plans (PAAPs) (v) Primary care follow-up after discharge from hospital (vi) Methodologies and primary care queries were developed to cover each of the areas of poor and variable asthma care identified and the queries designed to extract information directly from electronic patients’ records. Conclusion: This paper describes the methodological approach followed to develop primary care datasets for a National Asthma Audit. It sets out the principles behind the establishment of a National Asthma Audit programme in response to a national asthma mortality review and describes the development activities undertaken. Key process elements included: (i) mapping identified areas of poor and variable asthma care to national guidelines and standards, (ii) early engagement of experts, including clinicians and patients in the process, and (iii) targeted consultation of the queries to provide further insight into measures that were collectable, reproducible and relevant.

Keywords: asthma, primary care, general practice, dataset development

Procedia PDF Downloads 151
208 Piezotronic Effect on Electrical Characteristics of Zinc Oxide Varistors

Authors: Nadine Raidl, Benjamin Kaufmann, Michael Hofstätter, Peter Supancic

Abstract:

If polycrystalline ZnO is properly doped and sintered under very specific conditions, it shows unique electrical properties, which are indispensable for today’s electronic industries, where it is used as the number one overvoltage protection material. Under a critical voltage, the polycrystalline bulk exhibits high electrical resistance but becomes suddenly up to twelve magnitudes more conductive if this voltage limit is exceeded (i.e., varistor effect). It is known that these peerless properties have their origin in the grain boundaries of the material. Electric charge is accumulated in the boundaries, causing a depletion layer in their vicinity and forming potential barriers (so-called Double Schottky Barriers, or DSB) which are responsible for the highly non-linear conductivity. Since ZnO is a piezoelectric material, mechanical stresses induce polarisation charges that modify the DSB heights and as a result the global electrical characteristics (i.e., piezotronic effect). In this work, a finite element method was used to simulate emerging stresses on individual grains in the bulk. Besides, experimental efforts were made to testify a coherent model that could explain this influence. Electron back scattering diffraction was used to identify grain orientations. With the help of wet chemical etching, grain polarization was determined. Micro lock-in infrared thermography (MLIRT) was applied to detect current paths through the material, and a micro 4-point probes method system (M4PPS) was employed to investigate current-voltage characteristics between single grains. Bulk samples were tested under uniaxial pressure. It was found that the conductivity can increase by up to three orders of magnitude with increasing stress. Through in-situ MLIRT, it could be shown that this effect is caused by the activation of additional current paths in the material. Further, compressive tests were performed on miniaturized samples with grain paths containing solely one or two grain boundaries. The tests evinced both an increase of the conductivity, as observed for the bulk, as well as a decreased conductivity. This phenomenon has been predicted theoretically and can be explained by piezotronically induced surface charges that have an impact on the DSB at the grain boundaries. Depending on grain orientation and stress direction, DSB can be raised or lowered. Also, the experiments revealed that the conductivity within one single specimen can increase and decrease, depending on the current direction. This novel finding indicates the existence of asymmetric Double Schottky Barriers, which was furthermore proved by complementary methods. MLIRT studies showed that the intensity of heat generation within individual current paths is dependent on the direction of the stimulating current. M4PPS was used to study the relationship between the I-V characteristics of single grain boundaries and grain orientation and revealed asymmetric behavior for very specific orientation configurations. A new model for the Double Schottky Barrier, taking into account the natural asymmetry and explaining the experimental results, will be given.

Keywords: Asymmetric Double Schottky Barrier, piezotronic, varistor, zinc oxide

Procedia PDF Downloads 251
207 Technology of Electrokinetic Disintegration of Virginia Fanpetals (Sida hermaphrodita) Biomass in a Biogas Production System

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

Electrokinetic disintegration is one of the high-voltage electric methods. The design of systems is exceptionally simple. Biomass flows through a system of pipes with alongside mounted electrodes that generate an electric field. Discharges in the electric field deform cell walls and lead to their successive perforation, thereby making their contents easily available to bacteria. The spark-over occurs between electrode surface and pipe jacket which is the second pole and closes the circuit. The value of voltage ranges from 10 to 100kV. Electrodes are supplied by normal “power grid” monophase electric current (230V, 50Hz). Next, the electric current changes into direct current of 24V in modules serving for particular electrodes, and this current directly feeds the electrodes. The installation is completely safe because the value of generated current does not exceed 250mA and because conductors are grounded. Therefore, there is no risk of electric shock posed to the personnel, even in the case of failure or incorrect connection. Low values of the electric current mean small energy consumption by the electrode which is extremely low – only 35W per electrode – compared to other methods of disintegration. Pipes with electrodes with diameter of DN150 are made of acid-proof steel and connected from both sides with 90º elbows ended with flanges. The available S and U types of pipes enable very convenient fitting with system construction in the existing installations and rooms or facilitate space management in new applications. The system of pipes for electrokinetic disintegration may be installed horizontally, vertically, askew, on special stands or also directly on the wall of a room. The number of pipes and electrodes is determined by operating conditions as well as the quantity of substrate, type of biomass, content of dry matter, method of disintegration (single or circulatory), mounting site etc. The most effective method involves pre-treatment of substrate that may be pumped through the disintegration system on the way to the fermentation tank or recirculated in a buffered intermediate tank (substrate mixing tank). Biomass structure destruction in the process of electrokinetic disintegration causes shortening of substrate retention time in the tank and acceleration of biogas production. A significant intensification of the fermentation process was observed in the systems operating in the technical scale, with the greatest increase in biogas production reaching 18%. The secondary, but highly significant for the energetic balance, effect is a tangible decrease of energy input by agitators in tanks. It is due to reduced viscosity of the biomass after disintegration, and may result in energy savings reaching even 20-30% of the earlier noted consumption. Other observed phenomena include reduction in the layer of surface scum, reduced sewage capability for foaming and successive decrease in the quantity of bottom sludge banks. Considering the above, the system for electrokinetic disintegration seems a very interesting and valuable solutions meeting the offer of specialist equipment for the processing of plant biomass, including Virginia fanpetals, before the process of methane fermentation.

Keywords: electrokinetic disintegration, biomass, biogas production, fermentation, Virginia fanpetals

Procedia PDF Downloads 353
206 Comparative Studies on the Needs and Development of Autotronic Maintenance Training Modules for the Training of Automobile Independent Workshop Service Technicians in North – Western Region, Nigeria

Authors: Muhammad Shuaibu Birniwa

Abstract:

Automobile Independent Workshop Service Technicians (popularly called roadside mechanics) are technical personals that repairs most of the automobile vehicles in Nigeria. Majority of these mechanics acquired their skills through apprenticeship training. Modern vehicle imported into the country posed greater challenges to the present automobile technicians particularly in the area of carrying out maintenance repairs of these latest automobile vehicles (autotronics vehicle) due to their inability to possessed autotronic skills competency. To source for solution to the above mentioned problems, therefore a research is carried out in North – Western region of Nigeria to produce a suitable maintenance training modules that can be used to train the technicians for them to upgrade/acquire the needed competencies for successful maintenance repair of the autotronic vehicles that were running everyday on the nation’s roads. A cluster sampling technique is used to obtain a sample from the population. The population of the study is all autotronic inclined lecturers, instructors and independent workshop service technicians that are within North – Western region of Nigeria. There are seven states (Jigawa, Kaduna, Kano, Katsina, Kebbi, Sokoto and Zamfara) in the study area, these serves as clusters in the population. Five (5) states were randomly selected to serve as the sample size. The five states are Jigawa, Kano, Katsina, Kebbi and Zamfara, the entire population of the five states which serves as clusters is (183), lecturers (44), instructors (49) and autotronic independent workshop service technicians (90), all of them were used in the study because of their manageable size. 183 copies of autotronic maintenance training module questionnaires (AMTMQ) with 174 and 149 question items respectively were administered and collected by the researcher with the help of an assistants, they are administered to 44 Polytechnic lecturers in the department of mechanical engineering, 49 instructors in skills acquisition centres/polytechnics and 90 master craftsmen of an independent workshops that are autotronic inclined. Data collected for answering research questions 1, 3, 4 and 5 were analysed using SPSS software version 22, Grand Mean and standard deviation were used to answer the research questions. Analysis of Variance (ANOVA) was used to test null hypotheses one (1) to three (3) and t-test statistical tool is used to analyzed hypotheses four (4) and five (5) all at 0.05 level of significance. The research conducted revealed that; all the objectives, contents/tasks, facilities, delivery systems and evaluation techniques contained in the questionnaire were required for the development of the autotronic maintenance training modules for independent workshop service technicians in the north – western zone of Nigeria. The skills upgrade training conducted by federal government in collaboration with SURE-P, NAC and SMEDEN was not successful because the educational status of the target population was not considered in drafting the needed training modules. The mode of training used does not also take cognizance of the theoretical aspect of the trainees, especially basic science which rendered the programme ineffective and insufficient for the tasks on ground.

Keywords: autotronics, roadside, mechanics, technicians, independent

Procedia PDF Downloads 53
205 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults

Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson

Abstract:

Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.

Keywords: aging, exercise, habit, walking

Procedia PDF Downloads 79
204 Exploring Empathy Through Patients’ Eyes: A Thematic Narrative Analysis of Patient Narratives in the UK

Authors: Qudsiya Baig

Abstract:

Empathy yields an unparalleled therapeutic value within patient physician interactions. Medical research is inundated with evidence to support that a physician’s ability to empathise with patients leads to a greater willingness to report symptoms, an improvement in diagnostic accuracy and safety, and a better adherence and satisfaction with treatment plans. Furthermore, the Institute of Medicine states that empathy leads to a more patient-centred care, which is one of the six main goals of a 21st century health system. However, there is a paradox between the theoretical significance of empathy and its presence, or lack thereof, in clinical practice. Recent studies have reported that empathy declines amongst students and physicians over time. The three most impactful contributors to this decline are: (1) disagreements over the definitions of empathy making it difficult to implement it into practice (2) poor consideration or regulation of empathy leading to burnout and thus, abandonment altogether, and (3) the lack of diversity in the curriculum and the influence of medical culture, which prioritises science over patient experience, limiting some physicians from using ‘too much’ empathy in the fear of losing clinical objectivity. These issues were investigated by conducting a fully inductive thematic narrative analysis of patient narratives in the UK to evaluate the behaviours and attitudes that patients associate with empathy. The principal enquiries underpinning this study included uncovering the factors that affected experience of empathy within provider-patient interactions and to analyse their effects on patient care. This research contributes uniquely to this discourse by examining the phenomenon of empathy directly from patients’ experiences, which were systematically extracted from a repository of online patient narratives of care titled ‘CareOpinion UK’. Narrative analysis was specifically chosen as the methodology to examine narratives from a phenomenological lens to focus on the particularity and context of each story. By enquiring beyond the superficial who-whatwhere, the study of narratives prescribed meaning to illness by highlighting the everyday reality of patients who face the exigent life circumstances created by suffering, disability, and the threat of life. The following six themes were found to be the most impactful in influencing the experience of empathy: dismissive behaviours, judgmental attitudes, undermining patients’ pain or concerns, holistic care and failures and successes of communication or language. For each theme there were overarching themes relating to either a failure to understand the patient’s perspective or a success in taking a person-centred approach. An in-depth analysis revealed that a lack of empathy was greatly associated with an emotive-cognitive imbalance, which disengaged physicians with their patients’ emotions. This study hereby concludes that competent providers require a combination of knowledge, skills, and more importantly empathic attitudes to help create a context for effective care. The crucial elements of that context involve (a) identifying empathy clues within interactions to engage with patients’ situations, (b) attributing a perspective to the patient through perspective-taking and (c) adapting behaviour and communication according to patient’s individual needs. Empathy underpins that context, as does an appreciation of narrative, and the two are interrelated.

Keywords: empathy, narratives, person-centred, perspective, perspective-taking

Procedia PDF Downloads 113
203 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design

Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell

Abstract:

The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.

Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity

Procedia PDF Downloads 131
202 Investigating Role of Autophagy in Cispaltin Induced Stemness and Chemoresistance in Oral Squamous Cell Carcinoma

Authors: Prajna Paramita Naik, Sujit Kumar Bhutia

Abstract:

Background: Regardless of the development multimodal treatment strategies, oral squamous cell carcinoma (OSCC) is often associated with a high rate of recurrence, metastasis and chemo- and radio- resistance. The present study inspected the relevance of CD44, ABCB1 and ADAM17 expression as a putative stem cell compartment in oral squamous cell carcinoma (OSCC) and deciphered the role of autophagy in regulating the expression of aforementioned proteins, stemness and chemoresistance. Methods: A retrospective analysis of CD44, ABCB1 and ADAM17 expression with respect to the various clinicopathological factors of sixty OSCC patients were determined via immunohistochemistry. The correlation among CD44, ABCB1 and ADAM17 expression was established. Sphere formation assay, flow cytometry and fluorescence microscopy were conducted to elucidate the stemness and chemoresistance nature of established cisplatin-resistant oral cancer cells (FaDu). The pattern of expression of CD44, ABCB1 and ADAM17 in parental (FaDu-P) and resistant FaDu cells (FaDu-CDDP-R) were investigated through fluorescence microscopy. Western blot analysis of autophagy marker proteins was performed to compare the status of autophagy in parental and resistant FaDu cell. To investigate the role of autophagy in chemoresistance and stemness, sphere formation assay, immunofluorescence and Western blot analysis was performed post transfection with siATG14 and the level of expression of autophagic proteins, mitochondrial protein and stemness-associated proteins were analyzed. The statistical analysis was performed by GraphPad Prism 4.0 software. p-value was defined as follows: not significant (n.s.): p > 0.05;*: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001 were considered statistically significant. Results: In OSCC, high CD44, ABCB1 and ADAM17 expression were significantly correlated with higher tumor grades and poor differentiation. However, the expression of these proteins was not related to the age and sex of OSCC patients. Moreover, the expression of CD44, ABCB1 and ADAM17 were positively correlated with each other. In vitro and OSCC tissue double labeling experiment data showed that CD44+ cells were highly associated with ABCB1 and ADAM17 expression. Further, FaDu-CDDP-R cells showed higher sphere forming capacity along with increased fraction of the CD44+ population and β-catenin expression FaDu-CDDP-R cells also showed accelerated expression of CD44, ABCB1 and ADAM17. A comparatively higher autophagic flux was observed in FaDu-CDDP-R against FaDu-P cells. The expression of mitochondrial proteins was noticeably reduced in resistant cells as compared to parental cells indicating the occurrence of autophagy-mediated mitochondrial degradation in oral cancer. Moreover, inhibition of autophagy was coupled with the decreased formation of orospheres suggesting autophagy-mediated stemness in oral cancer. Blockade of autophagy was also found to induce the restoration of mitochondrial proteins in FaDu-CDDP-R cells indicating the involvement of mitophagy in chemoresistance. Furthermore, a reduced expression of CD44, ABCB1 and ADAM17 was also observed in ATG14 deficient cells FaDu-P and FaDu-CDDP-R cells. Conclusion: The CD44+ ⁄ABCB1+ ⁄ADAM17+ expression in OSCC might be associated with chemoresistance and a putative CSC compartment. Further, the present study highlights the contribution of mitophagy in chemoresistance and confirms the potential involvement of autophagic regulation in acquisition of stem-like characteristics in OSCC.

Keywords: ABCB1, ADAM17, autophagy, CD44, chemoresistance, mitophagy, OSCC, stemness

Procedia PDF Downloads 180
201 Innovation Outputs from Higher Education Institutions: A Case Study of the University of Waterloo, Canada

Authors: Wendy De Gomez

Abstract:

The University of Waterloo is situated in central Canada in the Province of Ontario- one hour from the metropolitan city of Toronto. For over 30 years, it has held Canada’s top spot as the most innovative university; and has been consistently ranked in the top 25 computer science and top 50 engineering schools in the world. Waterloo benefits from the federal government’s over 100 domestic innovation policies which have assisted in the country’s 15th place global ranking in the World Intellectual Property Organization’s (WIPO) 2022 Global Innovation Index. Yet undoubtedly, the University of Waterloo’s unique characteristics are what propels its innovative creativeness forward. This paper will provide a contextual definition of innovation in higher education and then demonstrate the five operational attributes that contribute to the University of Waterloo’s innovative reputation. The methodology is based on statistical analyses obtained from ranking bodies such as the QS World University Rankings, a secondary literature review related to higher education innovation in Canada, and case studies that exhibit the operationalization of the attributes outlined below. The first attribute is geography. Specifically, the paper investigates the network structure effect of the Toronto-Waterloo high-tech corridor and the resultant industrial relationships built there. The second attribute is University Policy 73-Intellectal Property Rights. This creator-owned policy grants all ownership to the creator/inventor regardless of the use of the University of Waterloo property or funding. Essentially, through the incentivization of IP ownership by all researchers, further commercialization and entrepreneurship are formed. Third, this IP policy works hand in hand with world-renowned business incubators such as the Accelerator Centre in the dedicated research and technology park and velocity, a 14-year-old facility that equips and guides founders to build and scale companies. Communitech, a 25-year-old provincially backed facility in the region, also works closely with the University of Waterloo to build strong teams, access capital, and commercialize products. Fourth, Waterloo’s co-operative education program contributes 31% of all co-op participants to the Canadian economy. Home to the world’s largest co-operative education program, data shows that over 7,000 from around the world recruit Waterloo students for short- and long-term placements- directly contributing to the student’s ability to learn and optimize essential employment skills when they graduate. Finally, the students themselves at Waterloo are exceptional. The entrance average ranges from the low 80s to the mid-90s depending on the program. In computer, electrical, mechanical, mechatronics, and systems design engineering, to have a 66% chance of acceptance, the applicant’s average must be 95% or above. Singularly, none of these five attributes could lead to the university’s outstanding track record of innovative creativity, but when bundled up into a 1000 acre- 100 building main campus with 6 academic faculties, 40,000+ students, and over 1300 world-class faculty, the recipe for success becomes quite evident.

Keywords: IP policy, higher education, economy, innovation

Procedia PDF Downloads 55
200 Correlation of Clinical and Sonographic Findings with Cytohistology for Diagnosis of Ovarian Tumours

Authors: Meenakshi Barsaul Chauhan, Aastha Chauhan, Shilpa Hurmade, Rajeev Sen, Jyotsna Sen, Monika Dalal

Abstract:

Introduction: Ovarian masses are common forms of neoplasm in women and represent 2/3rd of gynaecological malignancies. A pre-operative suggestion of malignancy can guide the gynecologist to refer women with suspected pelvic mass to a gynecological oncologist for appropriate therapy and optimized treatment, which can improve survival. In the younger age group preoperative differentiation into benign or malignant pathology can decide for conservative or radical surgery. Imaging modalities have a definite role in establishing the diagnosis. By using International Ovarian Tumor Analysis (IOTA) classification with sonography, costly radiological methods like Magnetic Resonance Imaging (MRI) / computed tomography (CT) scan can be reduced, especially in developing countries like India. Thus, this study is being undertaken to evaluate the role of clinical methods and sonography for diagnosis of the nature of the ovarian tumor. Material And Methods: This prospective observational study was conducted on 40 patients presenting with ovarian masses, in the Department of Obstetrics and Gynaecology, at a tertiary care center in northern India. Functional cysts were excluded. Ultrasonography and color Doppler were performed on all the cases.IOTA rules were applied, which take into account locularity, size, presence of solid components, acoustic shadow, dopper flow etc . Magnetic Resonance Imaging (MRI) / computed tomography (CT) scans abdomen and pelvis were done in cases where sonography was inconclusive. In inoperable cases, Fine needle aspiration cytology (FNAC) was done. The histopathology report after surgery and cytology report after FNAC was correlated statistically with the pre-operative diagnosis made clinically and sonographically using IOTA rules. Statistical Analysis: Descriptive measures were analyzed by using mean and standard deviation and the Student t-test was applied and the proportion was analyzed by applying the chi-square test. Inferential measures were analyzed by sensitivity, specificity, negative predictive value, and positive predictive value. Results: Provisional diagnosis of the benign tumor was made in 16(42.5%) and of the malignant tumor was made in 24(57.5%) patients on the basis of clinical findings. With IOTA simple rules on sonography, 15(37.5%) were found to be benign, while 23 (57.5%) were found to be malignant and findings were inconclusive in 2 patients (5%). FNAC/Histopathology reported that benign ovarian tumors were 14 (35%) and 26(65%) were malignant, which was taken as the gold standard. The clinical finding alone was found to have a sensitivity of 66.6% and a specificity of 90.9%. USG alone had a sensitivity of 86% and a specificity of 80%. When clinical findings and IOTA simple rules of sonography were combined (excluding inconclusive masses), the sensitivity and specificity were 83.3% and 92.3%, respectively. While including inconclusive masses, sensitivity came out to be 91.6% and specificity was 89.2. Conclusion: IOTA's simple sonography rules are highly sensitive and specific in the prediction of ovarian malignancy and also easy to use and easily reproducible. Thus, combining clinical examination with USG will help in the better management of patients in terms of time, cost and better prognosis. This will also avoid the need for costlier modalities like CT, and MRI.

Keywords: benign, international ovarian tumor analysis classification, malignant, ovarian tumours, sonography

Procedia PDF Downloads 65
199 Prospects of Low Immune Response Transplants Based on Acellular Organ Scaffolds

Authors: Inna Kornienko, Svetlana Guryeva, Anatoly Shekhter, Elena Petersen

Abstract:

Transplantation is an effective treatment option for patients suffering from different end-stage diseases. However, it is plagued by a constant shortage of donor organs and the subsequent need of a lifelong immunosuppressive therapy for the patient. Currently some researchers look towards using of pig organs to replace human organs for transplantation since the matrix derived from porcine organs is a convenient substitute for the human matrix. As an initial step to create a new ex vivo tissue engineered model, optimized protocols have been created to obtain organ-specific acellular matrices and evaluated their potential as tissue engineered scaffolds for culture of normal cells and tumor cell lines. These protocols include decellularization by perfusion in a bioreactor system and immersion-agitation on an orbital shaker with use of various detergents (SDS, Triton X-100) and freezing. Complete decellularization – in terms of residual DNA amount – is an important predictor of probability of immune rejection of materials of natural origin. However, the signs of cellular material may still remain within the matrix even after harsh decellularization protocols. In this regard, the matrices obtained from tissues of low-immunogenic pigs with α3Galactosyl-tranferase gene knock out (GalT-KO) may be a promising alternative to native animal sources. The research included a study of induced effect of frozen and fresh fragments of GalT-KO skin on healing of full-thickness plane wounds in 80 rats. Commercially available wound dressings (Ksenoderm, Hyamatrix and Alloderm) as well as allogenic skin were used as a positive control and untreated wounds were analyzed as a negative control. The results were evaluated on the 4th day after grafting, which corresponds to the time of start of normal wound epithelization. It has been shown that a non-specific immune response in models treated with GalT-Ko pig skin was milder than in all the control groups. Research has been performed to measure technical skin characteristics: stiffness and elasticity properties, corneometry, tevametry, and cutometry. These metrics enabled the evaluation of hydratation level, corneous layer husking level, as well as skin elasticity and micro- and macro-landscape. These preliminary data may contribute to development of personalized transplantable organs from GalT-Ko pigs with significantly limited potential of immune rejection. By applying growth factors to a decellularized skin sample it is possible to achieve various regenerative effects based on the particular situation. In this particular research BMP2 and Heparin-binding EGF-like growth factor have been used. Ideally, a bioengineered organ must be biocompatible, non-immunogenic and support cell growth. Porcine organs are attractive for xenotransplantation if severe immunologic concerns can be bypassed. The results indicate that genetically modified pig tissues with knock-outed α3Galactosyl-tranferase gene may be used for production of low-immunogenic matrix suitable for transplantation.

Keywords: decellularization, low-immunogenic, matrix, scaffolds, transplants

Procedia PDF Downloads 264
198 Assessing P0.1 and Occlusion Pressures in Brain-Injured Patients on Pressure Support Ventilation: A Study Protocol

Authors: S. B. R. Slagmulder

Abstract:

Monitoring inspiratory effort and dynamic lung stress in patients on pressure support ventilation in the ICU is important for protecting against self inflicted lung injury (P-SILI) and diaphragm dysfunction. Strategies to address the detrimental effects of respiratory drive and effort can lead to improved patient outcomes. Two non-invasive estimation methods, occlusion pressure (Pocc) and P0.1, have been proposed for achieving lung and diaphragm protective ventilation. However, their relationship and interpretation in neuro ICU patients is not well understood. P0.1 is the airway pressure measured during a 100-millisecond occlusion of the inspiratory port. It reflects the neural drive from the respiratory centers to the diaphragm and respiratory muscles, indicating the patient's respiratory drive during the initiation of each breath. Occlusion pressure, measured during a brief inspiratory pause against a closed airway, provides information about the inspiratory muscles' strength and the system's total resistance and compliance. Research Objective: Understanding the relationship between Pocc and P0.1 in brain-injured patients can provide insights into the interpretation of these values in pressure support ventilation. This knowledge can contribute to determining extubation readiness and optimizing ventilation strategies to improve patient outcomes. The central goal is to asses a study protocol for determining the relationship between Pocc and P0.1 in brain-injured patients on pressure support ventilation and their ability to predict successful extubation. Additionally, comparing these values between brain-damaged and non-brain-damaged patients may provide valuable insights. Key Areas of Inquiry: 1. How do Pocc and P0.1 values correlate within brain injury patients undergoing pressure support ventilation? 2. To what extent can Pocc and P0.1 values serve as predictive indicators for successful extubation in patients with brain injuries? 3. What differentiates the Pocc and P0.1 values between patients with brain injuries and those without? Methodology: P0.1 and occlusion pressures are standard measurements for pressure support ventilation patients, taken by attending doctors as per protocol. We utilize electronic patient records for existing data. Unpaired T-test will be conducted to compare P0.1 and Pocc values between both study groups. Associations between P0.1 and Pocc and other study variables, such as extubation, will be explored with simple regression and correlation analysis. Depending on how the data evolve, subgroup analysis will be performed for patients with and without extubation failure. Results: While it is anticipated that neuro patients may exhibit high respiratory drive, the linkage between such elevation, quantified by P0.1, and successful extubation remains unknown The analysis will focus on determining the ability of these values to predict successful extubation and their potential impact on ventilation strategies. Conclusion: Further research is pending to fully understand the potential of these indices and their impact on mechanical ventilation in different patient populations and clinical scenarios. Understanding these relationships can aid in determining extubation readiness and tailoring ventilation strategies to improve patient outcomes in this specific patient population. Additionally, it is vital to account for the influence of sedatives, neurological scores, and BMI on respiratory drive and occlusion pressures to ensure a comprehensive analysis.

Keywords: brain damage, diaphragm dysfunction, occlusion pressure, p0.1, respiratory drive

Procedia PDF Downloads 51
197 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants

Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst

Abstract:

Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.

Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles

Procedia PDF Downloads 175
196 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein

Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel

Abstract:

γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.

Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design

Procedia PDF Downloads 254
195 Saline Aspiration Negative Intravascular Test: Mitigating Risk with Injectable Fillers

Authors: Marcelo Lopes Dias Kolling, Felipe Ferreira Laranjeira, Guilherme Augusto Hettwer, Pedro Salomão Piccinini, Marwan Masri, Carlos Oscar Uebel

Abstract:

Introduction: Injectable fillers are among the most common nonsurgical cosmetic procedures, with significant growth yearly. Knowledge of rheological and mechanical characteristics of fillers, facial anatomy, and injection technique is essential for safety. Concepts such as the use of cannula versus needle, aspiration before injection, and facial danger zones have been well discussed. In case of an accidental intravascular puncture, the pressure inside the vessel may not be sufficient to push blood into the syringe due to the characteristics of the filler product; this is especially true for calcium hydroxyapatite (CaHA) or hyaluronic acid (HA) fillers with high G’. Since viscoelastic properties of normal saline are much lower than those of fillers, aspiration with saline prior to filler injection may decrease the risk of a false negative aspiration and subsequent catastrophic effects. We discuss a technique to add an additional safety step to the procedure with saline aspiration prior to injection, a ‘’reverse Seldinger’’ technique for intravascular access, which we term SANIT: Saline Aspiration Negative Intravascular Test. Objectives: To demonstrate the author’s (PSP) technique which adds an additional safety step to the process of filler injection, with both CaHA and HA, in order to decrease the risk of intravascular injection. Materials and Methods: Normal skin cleansing and topical anesthesia with prilocaine/lidocaine cream are performed; the facial subunits to be treated are marked. A 3mL Luer lock syringe is filled with 2mL of 0.9% normal saline and a 27G needle, which is turned one half rotation. When a cannula is to be used, the Luer lock syringe is attached to a 27G 4cm single hole disposable cannula. After skin puncture, the 3mL syringe is advanced with the plunger pulled back (negative pressure). Progress is made to the desired depth, all the while aspirating. Once the desired location of filler injection is reached, the syringe is exchanged for the syringe containing a filler, securely grabbing the hub of the needle and taking care to not dislodge the needle tip. Prior to this, we remove 0.1mL of filler to allow for space inside the syringe for aspiration. We again aspirate and inject retrograde. SANIT is especially useful for CaHA, since the G’ is much higher than HA, and thus reflux of blood into the syringe is less likely to occur. Results: The technique has been used safely for the past two years with no adverse events; the increase in cost is negligible (only the cost of 2mL of normal saline). Over 100 patients (over 300 syringes) have been treated with this technique. The risk of accidental intravascular puncture has been calculated to be between 1:6410 to 1:40882 syringes among expert injectors; however, the consequences of intravascular injection can be catastrophic even with board-certified physicians. Conclusions: While the risk of intravascular filler injection is low, the consequences can be disastrous. We believe that adding the SANIT technique can help further mitigate risk with no significant untoward effects and could be considered by all performing injectable fillers. Further follow-up is ongoing.

Keywords: injectable fillers, safety, saline aspiration, injectable filler complications, hyaluronic acid, calcium hydroxyapatite

Procedia PDF Downloads 137
194 Synthesis of Smart Materials Based on Polyaniline Coated Fibers

Authors: Mihaela Beregoi, Horia Iovu, Cristina Busuioc, Alexandru Evanghelidis, Elena Matei, Monica Enculescu, Ionut Enculescu

Abstract:

Nanomaterials field is very attractive for all researchers who are attempting to develop new devices with the same or improved properties than the micro-sized ones, while reducing the reagents and power consumptions. In this way, a wide range of nanomaterials were fabricated and integrated in applications for electronics, optoelectronics, solar cells, tissue reconstruction and drug delivery. Obviously, the most appealing ones are those dedicated to the medical domain. Different types of nano-sized materials, such as particles, fibers, films etc., can be synthesized by using physical, chemical or electrochemical methods. One of these techniques is electrospinning, which enable the production of fibers with nanometric dimensions by pumping a polymeric solution in a high electric field; due to the electrostatic charging and solvent evaporation, the precursor mixture is converted into nonwoven meshes with different fiber densities and mechanical properties. Moreover, polyaniline is a conducting polymer with interesting optical properties, suitable for displays and electrochromic windows. Otherwise, polyaniline is an electroactive polymer that can contract/expand by applying electric stimuli, due to the oxidation/reduction reactions which take place in the polymer chains. These two main properties can be exploited in order to synthesize smart materials that change their dimensions, exhibiting in the same time good electrochromic properties. In the context aforesaid, a poly(methyl metacrylate) solution was spun to get webs composed of fibers with diameter values between 500 nm and 1 µm. Further, the polymer meshes were covered with a gold layer in order to make them conductive and also appropriate as working electrode in an electrochemical cell. The gold shell was deposited by DC sputtering. Such metalized fibers can be transformed into smart materials by covering them with a thin layer of conductive polymer. Thus, the webs were coated with a polyaniline film by the electrochemical route, starting from and aqueous solution of aniline and sulfuric acid, where sulfuric acid acts as oxidant agent. For the polymerization of aniline, a saturated calomel electrode was employed as reference, a platinum plate as counter electrode and the gold covered webs as working electrode. Chronoamperometry was selected as deposition method for polyaniline, by modifying the deposition time. Metalized meshes with different fiber densities were used, the transmission ranging between 70 and 80 %. The morphological investigation showed that polyaniline layer has a granular structure for all deposition experiments. As well, some preliminary optical tests were done by using sulfuric acid as electrolyte, which revealed the modification of polyaniline colour from green to dark blue when applying a voltage. In conclusion, new multilayered materials were obtained by a simple approach: the merge of the electrospinning method benefits with polyaniline chemistry. This synthesis method allows the fabrication of structures with reproducible characteristics, suitable for display or tissue substituents.

Keywords: electrospinning, fibers, smart materials, polyaniline

Procedia PDF Downloads 275
193 Species Profiling of White Grub Beetles and Evaluation of Pre and Post Sown Application of Insecticides against White Grub Infesting Soybean

Authors: Ajay Kumar Pandey, Mayank Kumar

Abstract:

White grub (Coleoptera: Scarabaeidae) is a major destructive pest in western Himalayan region of Uttarakhand. Beetles feed on apple, apricot, plum, walnut etc. during night while, second and third instar grubs feed on live roots of cultivated as well as non-cultivated crops. Collection and identification of scarab beetles through light trap was carried out at Crop Research Centre, Govind Ballab Pant University Pantnagar, Udham Singh Nagar (Uttarakhand) during 2018. Field trials were also conducted in 2018 to evaluate pre and post sown application of different insecticides against the white grub infesting soybean. The insecticides like Carbofuran 3 Granule (G) (750 g a.i./ha), Clothianidin 50 Water Dispersal Granule (WG) (120 g a.i./ha), Fipronil 0.3 G (50 g a.i./ha), Thiamethoxam 25 WG (80 g a.i./ha), Imidacloprid 70 WG (300 g a.i./ha), Chlorantraniliprole 0.4% G(100 g a.i./ha) and mixture of Fipronil 40% and Imidacloprid 40% WG (300 g a.i./ha) were applied at the time of sowing in pre sown experiment while same dosage of insecticides were applied in standing soybean crop during (first fortnight of July). Commutative plant mortality data were recorded after 20, 40, 60 days intervals and compared with untreated control. Total 23 species of white grub beetles recorded on the light trap and Holotrichia serrata Fabricious (Coleoptera: Melolonthinae) was found to be predominant species by recording 20.6% relative abundance out of the total light trap catch (i.e. 1316 beetles) followed by Phyllognathus sp. (14.6% relative abundance). H. rosettae and Heteronychus lioderus occupied third and fourth rank with 11.85% and 9.65% relative abundance, respectively. The emergence of beetles of predominant species started from 15th March, 2018. In April, average light trap catch was 382 white grub beetles, however, peak emergence of most of the white grub species was observed from June to July, 2018 i.e. 336 beetles in June followed by 303 beetles in the July. On the basis of the emergence pattern of white grub beetles, it may be concluded that the Peak Emergence Period (PEP) for the beetles of H. serrata was second fortnight of April for the total period of 15 days. In May, June and July relatively low population of H. serrata was observed. A decreasing trend in light trap catch was observed and went on till September during the study. No single beetle of H. serrata was observed on light trap from September onwards. The cumulative plant mortality data in both the experiments revealed that all the insecticidal treatments were significantly superior in protection-wise (6.49-16.82% cumulative plant mortality) over untreated control where highest plant mortality was 17.28 to 39.65% during study. The mixture of Fipronil 40% and Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective having lowest plant mortality i.e. 9.29 and 10.94% in pre and post sown crop, followed by Clothianidin 50 WG (120 g a.i. per ha) where the plant mortality was 10.57 and 11.93% in pre and post sown treatments, respectively. Both treatments were found significantly at par among each other. Production-wise, all the insecticidal treatments were found statistically superior (15.00-24.66 q per ha grain yields) over untreated control where the grain yield was 8.25 & 9.13 q per ha. Treatment Fipronil 40% + Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective and significantly superior over Imidacloprid 70WG applied at the rate of 300 g a.i. per ha.

Keywords: bio efficacy, insecticide, soybean, white grub

Procedia PDF Downloads 112
192 Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations of previous approaches, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with attention mechanism. In a previous work on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: transformers, generative ai, gene expression design, classification

Procedia PDF Downloads 44
191 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 30
190 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 218
189 Diabetic Screening in Rural Lesotho, Southern Africa

Authors: Marie-Helena Docherty, Sion Edryd Williams

Abstract:

The prevalence of diabetes mellitus is increasing worldwide. In Sub-Saharan Africa, type 2 diabetes represents over 90% of all types of diabetes with the number of diabetic patients expected to rise. This represents a huge economic burden in an area already contending with high rates of other significant diseases, including the highest worldwide prevalence of HIV. Diabetic complications considerably impact on morbidity and mortality. The epidemiological data for the region quotes high rates of retinopathy (7-63%), neuropathy (27-66%) and microalbuminuria (10-83%). It is therefore imperative that diabetic screening programmes are established. It is recognised that in many parts of the developing world the implementation and management of such programmes is limited by a lack of available resources. The International Diabetes Federation produced guidelines in 2012 taking these limitations into account suggesting that all diabetic patients should have access to basic screening. These guidelines are consistent with the national diabetic guidelines produced by the Lesotho Medical Council. However, diabetic care in Lesotho is delivered at the local level, with variable levels of quality. A cross sectional study was performed in the outpatient department of Maluti Hospital in Mapoteng, Lesotho, a busy rural hospital in the Berea district. Demographic data on gender, age and modality of treatment were collected over a six-week time period. Information regarding 3 basic screening parameters was obtained. These parameters included eye screening (defined as a documented ophthalmology review within the last 12 months), foot screening (defined as a documented foot health assessment by any health care professional within the last 12 months) and secondary prevention (defined as a documented blood pressure and lipid profile reading within the last 12 months). These parameters were selected on the basis of the absolute minimum level of resources in Maluti Hospital. Renal screening was excluded, as the hospital does not have access to reliable renal profile checks or urinalysis. There is however a fully functioning on-site ophthalmology department run by a senior ophthalmologist with the ability to provide retinal photography, retinal surgery and photocoagulation therapy. Data was collected on 183 type 2 diabetics. 112 patients were male and 71 were female. The average age was 43 years. 4 patients were diet controlled, 140 patients were on oral hypoglycaemic agents (metformin and/or glibenclamide), and 39 patients were on a combination of insulin and oral hypoglycaemics. In the preceding 12 months, 5 patients had undergone eye screening (3%), 24 patients had undergone foot screening (13%), and 31 patients had lipid profile testing (17%). All patients had a documented blood pressure reading (100%). Our results show that screening is poorly performed in the basic indicators suggested by the IDF and the Lesotho Medical Council. On the basis of these results, a screening programme was developed using the mnemonic SaFE; secondary prevention, foot and eye care. This is simple, memorable and transferable between healthcare professionals. In the future, the expectation would be to expand upon this current programme to include renal screening, and to further develop screening pertaining to secondary prevention.

Keywords: Africa, complications, rural, screening

Procedia PDF Downloads 273
188 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control

Authors: Man Ying Kang, Joshua Kin Man Nan

Abstract:

The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.

Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial

Procedia PDF Downloads 92
187 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 54
186 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 119
185 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 84
184 A Cluster Randomised Controlled Trial Investigating the Impact of Integrating Mass Drug Administration Treating Soil Transmitted Helminths with Mass Dog Rabies Vaccination in Remote Communities in Tanzania

Authors: Felix Lankester, Alicia Davis, Safari Kinung'hi, Catherine Bunga, Shayo Alkara, Imam Mzimbiri, Jonathan Yoder, Sarah Cleaveland, Guy H. Palmer

Abstract:

Achieving the London Declaration goal of a 90% reduction in neglected tropical diseases (NTDs) by 2030 requires cost-effective strategies that attain high and comprehensive coverage. The first objective of this trial was to assess the impact on cost and coverage of employing a novel integrative One Health approach linking two NTD control programs: mass drug administration (MDA) for soil-transmitted helminths in humans (STH) and mass dog rabies vaccination (MDRV). The second objective was to compare the coverage achieved by the MDA, a community-wide deworming intervention, with that of the existing national primary school-based deworming program (NSDP), with particular focus on the proportion of primary school-age children reached and their school enrolment status. Our approach was unconventional because, in line with the One Health approach to disease control, it coupled the responsibilities and resources of the Ministries responsible for human and animal health into one program with the shared aim of preventing multiple NTDs. The trial was carried out in hard-to-reach pastoral communities comprising 24 villages of the Ngorongoro District, Tanzania, randomly allocated to either Arm A (MDA and MDRV), Arm B (MDA only) or Arm C (MDRV only). Objective one: The percentage of people in each target village that received treatment through MDA in Arms A and B was 63% and 65%, respectively (χ2 = 1, p = 0.32). The percentage of dogs vaccinated in Arm A and C was 70% and 81%, respectively (χ2 =9, p = 0.003). It took 33% less time for a single person and a dog to attend the integrated delivery than two separate events. Cost per dose (including delivery) was lower under the integrated strategy, with delivery of deworming and rabies vaccination reduced by $0.13 (54%) and $0.85 (19%) per dose, respectively. Despite a slight reduction in the proportion of village dogs vaccinated in the integrated event, both the integrated and non-integrated strategies achieved the target threshold of 70% required to eliminate rabies. Objective two: The percentages of primary school age children enrolled in school that was reached by this trial (73%) and the existing NSDP (80%) were not significantly different (F = 0.9, p = 0.36). However, of the primary school age children treated in this trial, 46% were not enrolled in school. Furthermore, 86% of the people treated would have been outside the reach of the NSDP because they were not primary school age or were primary school age children not enrolled in school. The comparable reach, the substantial reductions in cost per dose delivered and the decrease in participants’ time support this integrated One Health approach to control multiple NTDs. Further, the recorded level of non-enrolment at primary school suggests that, in remote areas, school-based delivery strategies could miss a large fraction of school-age children and that programs that focus delivery solely at the level of the primary school will miss a substantial proportion of both primary school age children as well as other individuals from the community. We have shown that these populations can be effectively reached through extramural programs.

Keywords: canine mediated human rabies, integrated health interventions, mass drug administration, neglected tropical disease, One Health, soil-transmitted helminths

Procedia PDF Downloads 152
183 Improving the Quality of Discussion and Documentation of Advance Care Directives in a Community-Based Resident Primary Care Clinic

Authors: Jason Ceavers, Travis Thompson, Juan Torres, Ramanakumar Anam, Alan Wong, Andrei Carvalho, Shane Quo, Shawn Alonso, Moises Cintron, Ricardo C. Carrero, German Lopez, Vamsi Garimella, German Giese

Abstract:

Introduction: Advance directives (AD) are essential for patients to communicate their wishes when they are not able to. Ideally, these discussions should not occur for the first time when a patient is hospitalized with an acute life-threatening illness. There is a large number of patients who do not have clearly documented ADs, resulting in the misutilization of resources and additional patient harm. This is a nationwide issue, and the Joint Commission has it as one of its national quality metrics. Presented here is a proposed protocol to increase the number of documented AD discussions in a community-based, internal medicine residency primary care clinic in South Florida. Methods: The SMART Aim for this quality improvement project is to increase documentation of AD discussions in the outpatient setting by 25% within three months in medicare patients. A survey was sent to stakeholders (clinic attendings, residents, medical assistants, front desk staff, and clinic managers), asking them for three factors they believed contributed most to the low documentation rate of AD discussions. The two most important factors were time constraints and systems issues (such as lack of a standard method to document ADs and ADs not being uploaded to the chart) which were brought up by 25% and 21.2% of the 32 survey responders, respectively. Pre-intervention data from clinic patients in 2020-2021 revealed 17.05% of patients had clear, actionable ADs documented. To address these issues, an AD pocket card was created to give to patients. One side of the card has a brief explanation of what ADs are. The other side has a column of interventions (cardiopulmonary resuscitation, mechanical ventilation, dialysis, tracheostomy, feeding tube) with boxes patients check off if they want the intervention done, do not want the intervention, do not want to discuss the topic, or need more information. These cards are to be filled out and scanned into their electronic chart to be reviewed by the resident before their appointment. The interventions that patients want more information on will be discussed by the provider. If any changes are made, the card will be re-scanned into their chart. After three months, we will chart review the patients seen in the clinic to determine how many medicare patients have a pocket card uploaded and how many have advance directives discussions documented in a progress note or annual wellness note. If there is not enough time for an AD discussion, a follow-up appointment can be scheduled for that discussion. Discussion: ADs are a crucial part of patient care, and failure to understand a patient’s wishes leads to improper utilization of resources, avoidable litigation, and patient harm. Time constraints and systems issues were identified as two major factors contributing to the lack of advance directive discussion in our community-based resident primary care clinic. Our project aims at increasing the documentation rate for ADs through a simple pocket card intervention. These are self-explanatory, easy to read and allow the patients to clearly express what interventions they desire or what they want to discuss further with their physician.

Keywords: advance directives, community-based, pocket card, primary care clinic

Procedia PDF Downloads 147
182 Buoyant Gas Dispersion in a Small Fuel Cell Enclosure: A Comparison Study Using Plain and Pressed Louvre Vent Passive Ventilation Schemes

Authors: T. Ghatauray, J. Ingram, P. Holborn

Abstract:

The transition from a ‘carbon rich’ fossil fuel dependent to a ‘sustainable’ and ‘renewable’ hydrogen based society will see the deployment of hydrogen fuel cells (HFC) in transport applications and in the generation of heat and power for buildings, as part of a decentralised power network. Many deployments will be low power HFCs for domestic combined heat and power (CHP) and commercial ‘transportable’ HFCs for environmental situations, such as lighting and telephone towers. For broad commercialisation of small fuel cells to be achieved there needs to be significant confidence in their safety in both domestic and environmental applications. Low power HFCs are housed in protective steel enclosures. Standard enclosures have plain rectangular ventilation openings intended for thermal management of electronics and not the dispersion of a buoyant gas. Degradation of the HFC or supply pipework in use could lead to a low-level leak and a build-up of hydrogen gas in the enclosure. Hydrogen’s wide flammable range (4-75%) is a significant safety concern, with ineffective enclosure ventilation having the potential to cause flammable mixtures to develop with the risk of explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations, but drains HFC power and is vulnerable to failure. This is undesirable in low power and remote installations and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow, with the size, shape and position of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. With environmentally sited enclosures, ventilation openings with pressed horizontal and angled louvres are preferred to protect the HFC and electronics inside. There is an economic cost to adding louvres, but also a safety concern. A question arises over whether the use of pressed louvre vents impairs enclosure passive ventilation performance, when compared to same opening area plain vents. Comparison small enclosure (0.144m³) tests of same opening area pressed louvre and plain vents were undertaken. A displacement ventilation arrangement was incorporated into the enclosure with opposing upper and lower ventilation openings. A range of vent areas were tested. Helium (used as a safe analogue for hydrogen) was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak at leak rates from 1 to 10 lpm. Helium sensors were used to record concentrations at eight heights in the enclosure. The enclosure was otherwise empty. These tests determined that the use of pressed and angled louvre ventilation openings on the enclosure impaired the passive ventilation flow and increased helium concentrations in the enclosure. High-level stratified buoyant gas layers were also found to be deeper than with plain vent openings and were within the flammable range. The presence of gas within the flammable range is of concern, particularly as the addition of the fuel cell and electronics in the enclosure would further reduce the available volume and increase concentrations. The opening area of louvre vents would need to be greater than equivalent plain vents to achieve comparable ventilation flows or alternative schemes would need to be considered.

Keywords: enclosure, fuel cell, helium, hydrogen safety, louvre vent, passive ventilation

Procedia PDF Downloads 257
181 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 155