Search results for: economic community
28 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil
Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes
Abstract:
Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey
Procedia PDF Downloads 17827 Immunostimulatory Response of Supplement Feed in Fish against Aeromonas hydrophila
Authors: Shikha Rani, Neeta Sehgal, Vipin Kumar Verma, Om Prakash
Abstract:
Introduction: Fish is an important protein source for humans and has great economic value. Fish cultures are affected due to various anthropogenic activities that lead to bacterial and viral infections. Aeromonas hydrophila is a fish pathogenic bacterium that causes several aquaculture outbreaks throughout the world and leads to huge mortalities. In this study, plants of no commercial value were used to investigate their immunostimulatory, antioxidant, anti-inflammatory, anti-bacterial, and disease resistance potential in fish against Aeromonas hydrophila, through fish feed fortification. Methods: The plant was dried at room temperature in the shade, dissolved in methanol, and analysed for biological compounds through GC-MS/MS. DPPH, FRAP, Phenolic, and flavonoids were estimated following standardized protocols. In silico molecular docking was also performed to validate its broad-spectrum activities based on binding affinity with specific proteins. Fish were divided into four groups (n=6; total 30 in a group): Group 1, non-challenged fish (fed on a non-supplemented diet); Group 2, fish challenged with bacteria (fed on a non-supplemented diet); Group 3 and 4, fish challenged with bacteria (A. hydrophila) and fed on plant supplemented feed at 2.5% and 5%. Blood was collected from the fish on 0, 7th, 14th, 21st, and 28th days. Serum was separated for glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase assay (ALP), lysozyme activity assay, superoxide dismutase assay (SOD), lipid peroxidation assay (LPO) and molecular parameters (including cytokine levels) were estimated through ELISA. The phagocytic activity of macrophages from the spleen and head kidney, along with quantitative analysis of immune-related genes, were analysed in different tissue samples. The digestive enzymes (Pepsin, Trypsin, and Chymotrypsin) were also measured to evaluate the effect of plant-supplemented feed on freshwater fish. Results and Discussion: GC-MS/MS analysis of a methanolic extract of plant validated the presence of key compounds having antioxidant, anti-inflammatory, anti-bacterial, anti-inflammatory, and immunomodulatory activities along with disease resistance properties. From biochemical investigations like ABTS, DPPH, and FRAP, the amount of total flavonoids, phenols, and promising binding affinities towards different proteins in molecular docking analysis helped us to realize the potential of this plant that can be used for investigation in the supplemented feed of fish. Measurement liver function tests, ALPs, oxidation-antioxidant enzyme concentrations, and immunoglobulin concentrations in the experimental groups (3 and 4) showed significant improvement as compared to the positive control group. The histopathological evaluation of the liver, spleen, and head kidney supports the biochemical findings. The isolated macrophages from the group fed on supplemented feed showed a higher percentage of phagocytosis and a phagocytic index, indicating an enhanced cell-mediated immune response. Significant improvements in digestive enzymes were also observed in fish fed on supplemented feed, even after weekly challenges with bacteria. Hence, the plant-fortified feed can be recommended as a regular feed to enhance fish immunity and disease resistance against the Aeromonas hydrophila infection after confirmation from the field trial.Keywords: immunostimulation, antipathogen, plant fortified feed, macrophages, GC-MS/MS, in silico molecular docking
Procedia PDF Downloads 8726 Amphiphilic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Algae
Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres
Abstract:
Biofilm is a predominant lifestyle chosen by bacteria. Whether it is developed on an immerged surface or a mobile biofilm known as flocs, the bacteria within this form of life show properties different from its planktonic ones. Within the biofilm, the self-formed matrix of Extracellular Polymeric Substances (EPS) offers hydration, resources capture, enhanced resistance to antimicrobial agents, and allows cell-communication. Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint6 (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation7, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids9 to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge (BSV36, KLN47) or a zwitterionic polar-head group (SL386, MB2871) to prevent microfouling with marine bacteria. We also study the toxicity of these compounds in order to identify the most promising compound that must feature high anti-adhesive properties and a low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.Keywords: amphiphilic phospholipids, bacterial biofilm, marine microfouling, non-toxic antifouling
Procedia PDF Downloads 15125 Climate Change Effects on Western Coastal Groundwater in Yemen (1981-2020)
Authors: Afrah S. M. Al-Mahfadi
Abstract:
Climate change is a global issue that has significant impacts on water resources, resulting in environmental, economic, and political consequences. Groundwater reserves, particularly in coastal areas, are facing depletion, leading to serious problems in regions such as Yemen. This study focuses on the western coastal region of Yemen, which already faces risks such as water crises, food insecurity, and widespread poverty. Climate change exacerbates these risks by causing high temperatures, sea level rise, inadequate sea level rise, and inadequate environmental policies. Research Aim: The aim of this research is to provide a comprehensive overview of the impact of climate change on the western coastal region of Yemen. Specifically, the study aims to analyze the relationship between climate change and the loss of fresh groundwater resources in this area. Methodology: The research utilizes a combination of a literature review and three case studies conducted through site visits. Arch-GIS mapping is employed to analyze and visualize the relationship between climate change and the depletion of fresh groundwater resources. Additionally, data on precipitation from 1981 to 2020 and scenarios of projected sea level rise (SLR) are considered. Findings: The study reveals several future issues resulting from climate change. It is projected that the annual temperature will increase while the rainfall rate will decrease. Furthermore, the sea level is expected to rise by approximately 0.30 to 0.72 meters by 2100. These factors contribute to the loss of wetlands, the retreat of shorelines and estuaries, and the intrusion of seawater into the coastal aquifer, rendering drinking water from wells increasingly saline. Data Collection and Analysis Procedures: Data for this research are collected through a literature review, including studies on climate change impacts in coastal areas and the hydrogeology of the study region. Furthermore, three case studies are conducted through site visits. Arch-GIS mapping techniques are utilized to analyze the relationship between climate change and the loss of fresh groundwater resources. Historical precipitation data from 1981 to 2020 and scenarios of projected sea level rise are also analyzed. Questions Addressed: (1) What is the impact of climate change on the western coastal region of Yemen? (2) How does climate change affect the availability of fresh groundwater resources in this area? Conclusion: The study concludes that the western coastal region of Yemen is facing significant challenges due to climate change. The projected increase in temperature, decrease in rainfall, and rise in sea levels have severe implications, such as the loss of wetlands, shorelines, and estuaries. Additionally, the intrusion of seawater into the coastal aquifer further exacerbates the issue of saline drinking water. Urgent measures are needed to address climate change, including improving water management, implementing integrated coastal zone planning, raising awareness among stakeholders, and implementing emergency projects to mitigate the impacts. Recommendations: To mitigate the adverse effects of climate change, several recommendations are provided. These include improving water management practices, developing integrated coastal zone planning strategies, raising awareness among all stakeholders, improving health and education, and implementing emergency projects to combat climate change. These measures aim to enhance adaptive capacity and resilience in the face of future climate change impacts.Keywords: climate change, groundwater, coastal wetlands, Yemen
Procedia PDF Downloads 6724 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria
Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar
Abstract:
The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator
Procedia PDF Downloads 4523 Fold and Thrust Belts Seismic Imaging and Interpretation
Authors: Sunjay
Abstract:
Plate tectonics is of very great significance as it represents the spatial relationships of volcanic rock suites at plate margins, the distribution in space and time of the conditions of different metamorphic facies, the scheme of deformation in mountain belts, or orogens, and the association of different types of economic deposit. Orogenic belts are characterized by extensive thrust faulting, movements along large strike-slip fault zones, and extensional deformation that occur deep within continental interiors. Within oceanic areas there also are regions of crustal extension and accretion in the backarc basins that are located on the landward sides of many destructive plate margins.Collisional orogens develop where a continent or island arc collides with a continental margin as a result of subduction. collisional and noncollisional orogens can be explained by differences in the strength and rheology of the continental lithosphere and by processes that influence these properties during orogenesis.Seismic Imaging Difficulties-In triangle zones, several factors reduce the effectiveness of seismic methods. The topography in the central part of the triangle zone is usually rugged and is associated with near-surface velocity inversions which degrade the quality of the seismic image. These characteristics lead to low signal-to-noise ratio, inadequate penetration of energy through overburden, poor geophone coupling with the surface and wave scattering. Depth Seismic Imaging Techniques-Seismic processing relates to the process of altering the seismic data to suppress noise, enhancing the desired signal (higher signal-to-noise ratio) and migrating seismic events to their appropriate location in space and depth. Processing steps generally include analysis of velocities, static corrections, moveout corrections, stacking and migration. Exploration seismology Bow-tie effect -Shadow Zones-areas with no reflections (dead areas). These are called shadow zones and are common in the vicinity of faults and other discontinuous areas in the subsurface. Shadow zones result when energy from a reflector is focused on receivers that produce other traces. As a result, reflectors are not shown in their true positions. Subsurface Discontinuities-Diffractions occur at discontinuities in the subsurface such as faults and velocity discontinuities (as at “bright spot” terminations). Bow-tie effect caused by the two deep-seated synclines. Seismic imaging of thrust faults and structural damage-deepwater thrust belts, Imaging deformation in submarine thrust belts using seismic attributes,Imaging thrust and fault zones using 3D seismic image processing techniques, Balanced structural cross sections seismic interpretation pitfalls checking, The seismic pitfalls can originate due to any or all of the limitations of data acquisition, processing, interpretation of the subsurface geology,Pitfalls and limitations in seismic attribute interpretation of tectonic features, Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Carbon capture and geological storage leakage surveillance because fault behave as a seal or a conduit for hydrocarbon transportation to a trap,etc.Keywords: tectonics, seismic imaging, fold and thrust belts, seismic interpretation
Procedia PDF Downloads 7122 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray
Authors: Tahani Mashikhi
Abstract:
Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.Keywords: deposit, dye, electrospray, TiO₂, XPS
Procedia PDF Downloads 5121 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience
Authors: Krishna Raj Regmi
Abstract:
A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture
Procedia PDF Downloads 51420 The Impact of Right to Repair Initiatives on Environmental and Financial Performance in European Consumer Electronics Firms: An Econometric Analysis
Authors: Daniel Stabler, Anne-Laure Mention, Henri Hakala, Ahmad Alaassar
Abstract:
In Europe, 2.2 billion tons of waste annually generate severe environmental damage and economic burdens, and negatively impact human health. A stark illustration of the problem is found within the consumer electronics industry, which reflects one of the most complex global waste streams. Of the 5.3 billion globally discarded mobile phones in 2022, only 17% were properly recycled. To address these pressing issues, Europe has made significant strides in developing waste management strategies, Circular Economy initiatives, and Right to Repair policies. These endeavors aim to make product repair and maintenance more accessible, extend product lifespans, reduce waste, and promote sustainable resource use. European countries have introduced Right to Repair policies, often in conjunction with extended producer responsibility legislation, repair subsidies, and consumer repair indices, to varying degrees of regulatory rigor. Changing societal trends emphasizing sustainability and environmental responsibility have driven consumer demand for more sustainable and repairable products, benefiting repair-focused consumer electronics businesses. In academic research, much of the literature in Management studies has examined the European Circular Economy and the Right to Repair from firm-level perspectives. These studies frequently employ a business-model lens, emphasizing innovation and strategy frameworks. However, this study takes an institutional perspective, aiming to understand the adoption of Circular Economy and repair-focused business models within the European consumer electronics market. The concepts of the Circular Economy and the Right to Repair align with institutionalism as they reflect evolving societal norms favoring sustainability and consumer empowerment. Regulatory institutions play a pivotal role in shaping and enforcing these concepts through legislation, influencing the behavior of businesses and individuals. Compliance and enforcement mechanisms are essential for their success, compelling actors to adopt sustainable practices and consider product life extension. Over time, these mechanisms create a path for more sustainable choices, underscoring the influence of institutions and societal values on behavior and decision-making. Institutionalism, particularly 'neo-institutionalism,' provides valuable insights into the factors driving the adoption of Circular and repair-focused business models. Neo-institutional pressures can manifest through coercive regulatory initiatives or normative standards shaped by socio-cultural trends. The Right to Repair movement has emerged as a prominent and influential idea within academic discourse and sustainable development initiatives. Therefore, understanding how macro-level societal shifts toward the Circular Economy and the Right to Repair trigger firm-level responses is imperative. This study aims to answer a crucial question about the impact of European Right to Repair initiatives had on the financial and environmental performance of European consumer electronics companies at the firm level. A quantitative and statistical research design will be employed. The study will encompass an extensive sample of consumer electronics firms in Northern and Western Europe, analyzing their financial and environmental performance in relation to the implementation of Right to Repair mechanisms. The study's findings are expected to provide valuable insights into the broader implications of the Right to Repair and Circular Economy initiatives on the European consumer electronics industry.Keywords: circular economy, right to repair, institutionalism, environmental management, european union
Procedia PDF Downloads 8419 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong
Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong
Abstract:
Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.Keywords: climate change, robust decision support, scenarios, water resources management
Procedia PDF Downloads 17418 Experimental Study on Granulated Steel Slag as an Alternative to River Sand
Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth
Abstract:
River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.Keywords: steel slag, river sand, granulated slag, environmental
Procedia PDF Downloads 24717 Successful Optimization of a Shallow Marginal Offshore Field and Its Applications
Authors: Kumar Satyam Das, Murali Raghunathan
Abstract:
This note discusses the feasibility of field development of a challenging shallow offshore field in South East Asia and how its learnings can be applied to marginal field development across the world especially developing marginal fields in this low oil price world. The field was found to be economically challenging even during high oil prices and the project was put on hold. Shell started development study with the aim to significantly reduce cost through competitively scoping and revive stranded projects. The proposed strategy to achieve this involved Improve Per platform recovery and Reduction in CAPEX. Methodology: Based on various Benchmarking Tool such as Woodmac for similar projects in the region and economic affordability, a challenging target of 50% reduction in unit development cost (UDC) was set for the project. Technical scope was defined to the minimum as to be a wellhead platform with minimum functionality to ensure production. The evaluation of key project decisions like Well location and number, well design, Artificial lift methods and wellhead platform type under different development concept was carried out through integrated multi-discipline approach. Key elements influencing per platform recovery were Wellhead Platform (WHP) location, Well count, well reach and well productivity. Major Findings: Reservoir being shallow posed challenges in well design (dog-leg severity, casing size and the achievable step-out), choice of artificial lift and sand-control method. Integrated approach amongst relevant disciplines with challenging mind-set enabled to achieve optimized set of development decisions. This led to significant improvement in per platform recovery. It was concluded that platform recovery largely depended on the reach of the well. Choice of slim well design enabled designing of high inclination and better productivity wells. However, there is trade-off between high inclination Gas Lift (GL) wells and low inclination wells in terms of long term value, operational complexity, well reach, recovery and uptime. Well design element like casing size, well completion, artificial lift and sand control were added successively over the minimum technical scope design leading to a value and risk staircase. Logical combinations of options (slim well, GL) were competitively screened to achieve 25% reduction in well cost. Facility cost reduction was achieved through sourcing standardized Low Cost Facilities platform in combination with portfolio execution to maximizing execution efficiency; this approach is expected to reduce facilities cost by ~23% with respect to the development costs. Further cost reductions were achieved by maximizing use of existing facilities nearby; changing reliance on existing water injection wells and utilizing existing water injector (W.I.) platform for new injectors. Conclusion: The study provides a spectrum of technically feasible options. It also made clear that different drivers lead to different development concepts and the cost value trade off staircase made this very visible. Scoping of the project through competitive way has proven to be valuable for decision makers by creating a transparent view of value and associated risks/uncertainty/trade-offs for difficult choices: elements of the projects can be competitive, whilst other parts will struggle, even though contributing to significant volumes. Reduction in UDC through proper scoping of present projects and its benchmarking paves as a learning for the development of marginal fields across the world, especially in this low oil price scenario. This way of developing a field has on average a reduction of 40% of cost for the Shell projects.Keywords: benchmarking, full field development, CAPEX, feasibility
Procedia PDF Downloads 16016 Language Anxiety and Learner Achievement among University Undergraduates in Sri Lanka: A Case Study of University of Sri Jayewardenepura
Authors: Sujeeva Sebastian Pereira
Abstract:
Language Anxiety (LA) – a distinct psychological construct of self-perceptions and behaviors related to classroom language learning – is perceived as a significant variable highly correlated with Second Language Acquisition (SLA). However, the existing scholarship has inadequately explored the nuances of LA in relation to South Asia, especially in terms of Sri Lankan higher education contexts. Thus, the current study, situated within the broad areas of Psychology of SLA and Applied Linguistics, investigates the impact of competency-based LA and identity-based LA on learner achievement among undergraduates of Sri Lanka. Employing a case study approach to explore the impact of LA, 750 undergraduates of the University of Sri Jayewardenepura, Sri Lanka, thus covering 25% of the student population from all seven faculties of the university, were selected as participants using stratified proportionate sampling in terms of ethnicity, gender, and disciplines. The qualitative and quantitative research inquiry utilized for data collection include a questionnaire consisting a set of structured and unstructured questions, and semi-structured interviews as research instruments. Data analysis includes both descriptive and statistical measures. As per the quantitative measures of data analysis, the study employed Pearson Correlation Coefficient test, Chi-Square test, and Multiple Correspondence Analysis; it used LA as the dependent variable, and two types of independent variables were used: direct and indirect variables. Direct variables encompass the four main language skills- reading, writing, speaking and listening- and test anxiety. These variables were further explored through classroom activities on grammar, vocabulary and individual and group presentations. Indirect variables are identity, gender and cultural stereotypes, discipline, social background, income level, ethnicity, religion and parents’ education level. Learner achievement was measured through final scores the participants have obtained for Compulsory English- a common first-year course unit mandatory for all undergraduates. LA was measured using the FLCAS. In order to increase the validity and reliability of the study, data collected were triangulated through descriptive content analysis. Clearly evident through both the statistical analysis and the qualitative analysis of the results is the significant linear negative correlation between LA and learner achievement, and the significant negative correlation between LA and culturally-operated gender stereotypes which create identity disparities in learners. The study also found that both competency-based LA and identity-based LA are experienced primarily and inescapably due to the apprehensions regarding speaking in English. Most participants who reported high levels of LA were from an urban socio-economic background of lower income families. Findings exemplify the linguistic inequality prevalent in the socio-cultural milieu in Sri Lankan society. This inequality makes learning English a dire need, yet, very much an anxiety provoking process because of many sociolinguistic, cultural and ideological factors related to English as a Second Language (ESL) in Sri Lanka. The findings bring out the intricate interrelatedness of both the dependent variable (LA) and the independent variables stated above, emphasizing that the significant linear negative correlation between LA and learner achievement is connected to the affective, cognitive and sociolinguistic domains of SLA. Thus, the study highlights the promise in linguistic practices such as code-switching, crossing and accommodating hybrid identities as strategies in minimizing LA and maximizing the experience of ESL.Keywords: language anxiety, identity-based anxiety, competence-based anxiety, TESL, Sri Lanka
Procedia PDF Downloads 19215 “Divorced Women are Like Second-Hand Clothes” - Hate Language in Media Discourse (Using the Example of Electronic Media Platforms)
Authors: Sopio Totibadze
Abstract:
Although the legal framework of Georgia reflects the main principles of gender equality and is in line with the international situation (UNDP, 2018), Georgia remains a male-dominated society. This means that men prevail in many areas of social, economic, and political life, which frequently gives women a subordinate status in society and the family (UN women). According to the latest study, “violence against women and girls in Georgia is also recognized as a public problem, and it is necessary to focus on it” (UN women). Moreover, the Public Defender's report on the protection of human rights in Georgia (2019) reveals that “in the last five years, 151 women were killed in Georgia due to gender and family violence”. Sadly, these statistics have increased significantly since that time. The issue was acutely reflected in the document published by the Organization for Security and Cooperation in Europe, “Gender Hate Crime” (March 10, 2021). “Unfortunately, the rates of femicide ..... are still high in the country, and distrust of law enforcement agencies often makes such cases invisible, which requires special attention from the state.” More precisely, the cited document considers that there are frequent cases of crimes based on gender-based oppression in Georgia, which pose a threat not only to women but also to people of any gender whose desires and aspirations do not correspond to the gender norms and roles prevailing in society. According to the study, this type of crime has a “significant and lasting impact on the victim(s) and also undermines the safety and cohesion of society and gender equality”. It is well-known that language is often used as a tool for gender oppression (Rusieshvili-Cartledge and Dolidze, 2021; Totibadze, 2021). Therefore, feminist and gender studies in linguistics ultimately serve to represent the problem, reflect on it, and propose ways to solve it. Together with technical advancement in communication, a new form of discrimination has arisen- hate language against women in electronic media discourse. Due to the nature of social media and the internet, messages containing hate language can spread in seconds and reach millions of people. However, only a few know about the detrimental effects they may have on the addressee and society. This paper aims to analyse the hateful comments directed at women on various media platforms to determine (1) the linguistic strategies used while attacking women and (2) the reasons why women may fall victim to this type of hate language. The data have been collected over six months, and overall, 500 comments will be examined for the paper. Qualitative and quantitative analysis was chosen for the methodology of the study. The comments posted on various media platforms, including social media posts, articles, or pictures, have been selected manually due to several reasons, the most important being the problem of identifying hate speech as it can disguise itself in different ways- humour, memes, etc. The comments on the articles, posts, pictures, and videos selected for sociolinguistic analysis depict a woman, a taboo topic, or a scandalous event centred on a woman that triggered a lot of hatred and hate language towards the person to whom the post/article was dedicated. The study has revealed that a woman can become a victim of hatred directed at them if they do something considered to be a deviation from a societal norm, namely, get a divorce, be sexually active, be vocal about feministic values, and talk about taboos. Interestingly, people who utilize hate language are not only men trying to “normalize” the prejudiced patriarchal values but also women who are equally active in bringing down a "strong" woman. The paper also aims to raise awareness about the hate language directed at women, as being knowledgeable about the issue at hand is the first step to tackling it.Keywords: femicide, hate language, media discourse, sociolinguistics
Procedia PDF Downloads 8414 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture
Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy
Abstract:
Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin
Procedia PDF Downloads 24213 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 14912 Results concerning the University: Industry Partnership for a Research Project Implementation (MUROS) in the Romanian Program Star
Authors: Loretta Ichim, Dan Popescu, Grigore Stamatescu
Abstract:
The paper reports the collaboration between a top university from Romania and three companies for the implementation of a research project in a multidisciplinary domain, focusing on the impact and benefits both for the education and industry. The joint activities were developed under the Space Technology and Advanced Research Program (STAR), funded by the Romanian Space Agency (ROSA) for a university-industry partnership. The context was defined by linking the European Space Agency optional programs, with the development and promotion national research, with the educational and industrial capabilities in the aeronautics, security and related areas by increasing the collaboration between academic and industrial entities as well as by realizing high-level scientific production. The project name is Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems (MUROS), which was carried 2013-2016. The project included the University POLITEHNICA of Bucharest (coordinator) and three companies, which manufacture and market unmanned aerial systems. The project had as main objective the development of an integrated system for combined ground wireless sensor networks and UAV monitoring in various application scenarios for critical infrastructure surveillance. This included specific activities related to fundamental and applied research, technology transfer, prototype implementation and result dissemination. The core area of the contributions laid in distributed data processing and communication mechanisms, advanced image processing and embedded system development. Special focus is given by the paper to analyzing the impact the project implementation in the educational process, directly or indirectly, through the faculty members (professors and students) involved in the research team. Three main directions are discussed: a) enabling students to carry out internships at the partner companies, b) handling advanced topics and industry requirements at the master's level, c) experiments and concept validation for doctoral thesis. The impact of the research work (as the educational component) developed by the faculty members on the increasing performances of the companies’ products is highlighted. The collaboration between university and companies was well balanced both for contributions and results. The paper also presents the outcomes of the project which reveals the efficient collaboration between high education and industry: master thesis, doctoral thesis, conference papers, journal papers, technical documentation for technology transfer, prototype, and patent. The experience can provide useful practices of blending research and education within an academia-industry cooperation framework while the lessons learned represent a starting point in debating the new role of advanced research and development performing companies in association with higher education. This partnership, promoted at UE level, has a broad impact beyond the constrained scope of a single project and can develop into long-lasting collaboration while benefiting all stakeholders: students, universities and the surrounding knowledge-based economic and industrial ecosystem. Due to the exchange of experiences between the university (UPB) and the manufacturing company (AFT Design), a new project, SIMUL, under the Bridge Grant Program (Romanian executive agency UEFISCDI) was started (2016 – 2017). This project will continue the educational research for innovation on master and doctoral studies in MUROS thematic (collaborative multi-UAV application for flood detection).Keywords: education process, multisensory robotic system, research and innovation project, technology transfer, university-industry partnership
Procedia PDF Downloads 24511 Design of DNA Origami Structures Using LAMP Products as a Combined System for the Detection of Extended Spectrum B-Lactamases
Authors: Kalaumari Mayoral-Peña, Ana I. Montejano-Montelongo, Josué Reyes-Muñoz, Gonzalo A. Ortiz-Mancilla, Mayrin Rodríguez-Cruz, Víctor Hernández-Villalobos, Jesús A. Guzmán-López, Santiago García-Jacobo, Iván Licona-Vázquez, Grisel Fierros-Romero, Rosario Flores-Vallejo
Abstract:
The group B-lactamic antibiotics include some of the most frequently used small drug molecules against bacterial infections. Nevertheless, an alarming decrease in their efficacy has been reported due to the emergence of antibiotic-resistant bacteria. Infections caused by bacteria expressing extended Spectrum B-lactamases (ESBLs) are difficult to treat and account for higher morbidity and mortality rates, delayed recovery, and high economic burden. According to the Global Report on Antimicrobial Resistance Surveillance, it is estimated that mortality due to resistant bacteria will ascend to 10 million cases per year worldwide. These facts highlight the importance of developing low-cost and readily accessible detection methods of drug-resistant ESBLs bacteria to prevent their spread and promote accurate and fast diagnosis. Bacterial detection is commonly done using molecular diagnostic techniques, where PCR stands out for its high performance. However, this technique requires specialized equipment not available everywhere, is time-consuming, and has a high cost. Loop-Mediated Isothermal Amplification (LAMP) is an alternative technique that works at a constant temperature, significantly decreasing the equipment cost. It yields double-stranded DNA of several lengths with repetitions of the target DNA sequence as a product. Although positive and negative results from LAMP can be discriminated by colorimetry, fluorescence, and turbidity, there is still a large room for improvement in the point-of-care implementation. DNA origami is a technique that allows the formation of 3D nanometric structures by folding a large single-stranded DNA (scaffold) into a determined shape with the help of short DNA sequences (staples), which hybridize with the scaffold. This research aimed to generate DNA origami structures using LAMP products as scaffolds to improve the sensitivity to detect ESBLs in point-of-care diagnosis. For this study, the coding sequence of the CTM-X-15 ESBL of E. coli was used to generate the LAMP products. The set of LAMP primers were designed using PrimerExplorerV5. As a result, a target sequence of 200 nucleotides from CTM-X-15 ESBL was obtained. Afterward, eight different DNA origami structures were designed using the target sequence in the SDCadnano and analyzed with CanDo to evaluate the stability of the 3D structures. The designs were constructed minimizing the total number of staples to reduce costs and complexity for point-of-care applications. After analyzing the DNA origami designs, two structures were selected. The first one was a zig-zag flat structure, while the second one was a wall-like shape. Given the sequence repetitions in the scaffold sequence, both were able to be assembled with only 6 different staples each one, ranging between 18 to 80 nucleotides. Simulations of both structures were performed using scaffolds of different sizes yielding stable structures in all the cases. The generation of the LAMP products were tested by colorimetry and electrophoresis. The formation of the DNA structures was analyzed using electrophoresis and colorimetry. The modeling of novel detection methods through bioinformatics tools allows reliable control and prediction of results. To our knowledge, this is the first study that uses LAMP products and DNA-origami in combination to delect ESBL-producing bacterial strains, which represent a promising methodology for diagnosis in the point-of-care.Keywords: beta-lactamases, antibiotic resistance, DNA origami, isothermal amplification, LAMP technique, molecular diagnosis
Procedia PDF Downloads 22510 Managing Crowds at Sports Mega Events: Examining the Impact of ‘Fan Parks’ at International Football Tournaments between 2002 and 2016
Authors: Joel Rookwood
Abstract:
Sports mega events have become increasingly significant in sporting, political and economic terms, with analysis often focusing on issues including resource expenditure, development, legacy and sustainability. Transnational tournaments can inspire interest from a variety of demographics, and the operational management of such events can involve contributions from a range of personnel. In addition to television audiences events also attract attending spectators, and in football contexts the temporary migration of fans from potentially rival nations and teams can present event organising committees and security personnel with various challenges in relation to crowd management. The behaviour, interaction and control of supporters has previously led to incidents of disorder and hooliganism, with damage to property as well as injuries and deaths proving significant consequences. The Heysel tragedy at the 1985 European Cup final in Brussels is a notable example, where 39 fans died following crowd disorder and mismanagement. Football disasters and disorder, particularly in the context of international competition, have inspired responses from police, law makers, event organisers, clubs and associations, including stadium improvements, legislative developments and crowd management practice to improve the effectiveness of spectator safety. The growth and internationalisation of fandom and developments in event management and tourism have seen various responses to the evolving challenges associated with hosting large numbers of visiting spectators at mega events. In football contexts ‘fan parks’ are a notable example. Since the first widespread introduction in European football competitions at the 2006 World Cup finals in Germany, these facilities have become a staple element of such mega events. This qualitative, longitudinal, multi-continent research draws on extensive semi-structured interview and observation data. As a frame of reference, this work considers football events staged before and after the development of fan parks. Research was undertaken at four World Cup finals (Japan 2002, Germany 2006, South Africa 2010 and Brazil 2014), four European Championships (Portugal 2004, Switzerland/Austria 2008, Poland/Ukraine 2012 and France 2016), four other confederation tournaments (Ghana 2008, Qatar 2011, USA 2011 and Chile 2015), and four European club finals (Istanbul 2005, Athens 2007, Rome 2009 and Basle 2016). This work found that these parks are typically temporarily erected, specifically located zones where supporters congregate together irrespective of allegiances to watch matches on large screens, and partake in other forms of organised on-site entertainment. Such facilities can also allow organisers to control the behaviour, confine the movement and monitor the alcohol consumption of supporters. This represents a notable shift in policy from previous football tournaments, when the widely assumed causal link between alcohol and hooliganism which frequently shaped legislative and police responses to disorder, also dissuaded some authorities from permitting fans to consume alcohol in and around stadia. It also reflects changing attitudes towards modern football fans. The work also found that in certain contexts supporters have increasingly engaged with such provision which impacts fan behaviour, but that this is relative to factors including location, facilities, management and security.Keywords: event, facility, fan, management, park
Procedia PDF Downloads 3139 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study
Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre
Abstract:
Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.
Procedia PDF Downloads 1148 Evaluation of Coal Quality and Geomechanical Moduli Using Core and Geophysical Logs: Study from Middle Permian Barakar Formation of Gondwana Coalfield
Authors: Joyjit Dey, Souvik Sen
Abstract:
Middle Permian Barakar formation is the major economic coal bearing unit of vast east-west trending Damodar Valley basin of Gondwana coalfield. Primary sedimentary structures were studied from the core holes, which represent majorly four facies groups: sandstone dominated facies, sandstone-shale heterolith facies, shale facies and coal facies. Total eight major coal seams have been identified with the bottom most seam being the thickest. Laterally, continuous coal seams were deposited in the calm and quiet environment of extensive floodplain swamps. Channel sinuosity and lateral channel migration/avulsion results in lateral facies heterogeneity and coal splitting. Geophysical well logs (Gamma-Resistivity-Density logs) have been used to establish the vertical and lateral correlation of various litho units field-wide, which reveals the predominance of repetitive fining upwards cycles. Well log data being a permanent record, offers a strong foundation for generating log based property evaluation and helps in characterization of depositional units in terms of lateral and vertical heterogeneity. Low gamma, high resistivity, low density is the typical coal seam signatures in geophysical logs. Here, we have used a density cutoff of 1.6 g/cc as a primary discriminator of coal and the same has been employed to compute various coal assay parameters, which are ash, fixed carbon, moisture, volatile content, cleat porosity, vitrinite reflectance (VRo%), which were calibrated with the laboratory based measurements. The study shows ash content and VRo% increase from west to east (towards basin margin), while fixed carbon, moisture and volatile content increase towards west, depicting increased coal quality westwards. Seam wise cleat porosity decreases from east to west, this would be an effect of overburden, as overburden pressure increases westward with the deepening of basin causing more sediment packet deposited on the western side of the study area. Coal is a porous, viscoelastic material in which velocity and strain both change nonlinearly with stress, especially for stress applied perpendicular to the bedding plane. Usually, the coal seam has a high velocity contrast relative to its neighboring layers. Despite extensive discussion of the maceral and chemical properties of coal, its elastic characteristics have received comparatively little attention. The measurement of the elastic constants of coal presents many difficulties: sample-to-sample inhomogeneity and fragility and velocity dependence on stress, orientation, humidity, and chemical content. In this study, a conclusive empirical equation VS= 0.80VP-0.86 has been used to model shear velocity from compression velocity. Also the same has been used to compute various geomechanical moduli. Geomech analyses yield a Poisson ratio of 0.348 against coals. Average bulk modulus value is 3.97 GPA, while average shear modulus and Young’s modulus values are coming out as 1.34 and 3.59 GPA respectively. These middle Permian Barakar coals show an average 23.84 MPA uniaxial compressive strength (UCS) with 4.97 MPA cohesive strength and 0.46 as friction coefficient. The output values of log based proximate parameters and geomechanical moduli suggest a medium volatile Bituminous grade for the studied coal seams, which is found in the laboratory based core study as well.Keywords: core analysis, coal characterization, geophysical log, geo-mechanical moduli
Procedia PDF Downloads 2287 Crowdfunding: Could it be Beneficial to Social Entrepreneurship
Authors: Berrachid Dounia, Bellihi Hassan
Abstract:
The financial crisis made a barrier in front of small projects that are looking for funding, but in the other hand it has had at least an interesting side effect which is the rise of alternative and increasingly creative forms of financing. The traditional forms of financing has known a recession due to the new difficult situation of economical recession that all parts of the world have known. Having an innovating idea that has an effect on both sides, the economic one and social one is very beneficial for those who wants to get rid of the economical crisis. In this case, entrepreneurs who want to be successful are looking for the means of financing that are going to get their projects to the reality. The financing could be various, whether the entrepreneur can use his own resources, or go to the three “Fs”(Family, friends, and fools),look for Angel Investors, or try for the academic solution like universities and private incubators, but sometimes, entrepreneurs feels uncomfortable about those means and start looking to newer, less traditional forms of financing their projects. In the last few years, people have shown a great interest to the use of internet for many reasons (information, social networking, communication, entertainment, transaction, etc.). The use of internet facilitates relations between people and eases the maintenance of existing relationships ,it increases also the number of exchanges which leads to a “collective creativity”, moreover, internet gives an opportunity to create new tool for mobilizing civil society, which makes the participation in a project company much easier. The new atmosphere of business forces the project leaders to look for new solution of financing that cut out the financial intermediaries. Using platforms in order to finance projects is an alternative that is changing the traditional solutions of financing projects. New creative ways of lending money appears like Peer to Peer (person to person or P2P)lending. This digital directly intermediary got his origins from microcredit principles. Crowdfunding also, like P2P, involves getting individuals to pool their resources to finance a project without a typical financial intermediary. For Lambert and Schwienbacher "Crowdfunding involves an open call, essentially through the Internet, for the provision of financial resources either in the form of donations (without rewards) or in exchange for some form of reward and/or voting rights in order to support initiatives for specific purposes". The idea of this proposal for investors and entrepreneurs is to encourage small contributions from a large number of funders "the crowd" in order to raise money to fund projects. All those conditions made from crowdfunding a useful alternative to project leaders, and especially the ones who are carrying special ideas that need special funds. As mentioned before by Laflamme. S. et Lafortune. S. internet is a tool for mobilizing civil society. In our case, the crowdfunding is the tool that funds social entrepreneurship, in the case of not for profit organizations, it focuses his attention on social problems which could be resolved by mobilizing different resources, creating innovative initiatives, and building new social arrangements which call up the civil society. Social entrepreneurs are mostly the ones who goes onto crowdfunding web site, so they propose the amount which is expected to realize their project and then they receive the funds from crowd funders. Something the crowd funders expect something in return, like a product from the business (a sample from a product (case of a cooperative) or a CD (in the case of films or songs)), but not their money back. Thus, we cannot say that their lands are donations, because a donator did not expect anything back. However, in order to encourage "crowd-funders", rewards motivates people to get interested by projects and made some money from internet. The operation of crowd funding is making all parts satisfied investors, entrepreneurs and also crowdfunding sites owners. This paper aims to give a view of the mechanism of crowdfunding, by clarifying the techniques and its different categories, and social entrepreneurship as a sponsor of social development. Also, it aims to show how this alternative of financing could be beneficial for social entrepreneurs and how it is bringing a solution to fund social projects. The article concludes with a discussion of the contribution of crowdfunding in social entrepreneurship especially in the Moroccan context.Keywords: crowd-funding, social entrepreneurship, projects funding, financing
Procedia PDF Downloads 3806 Salmon Diseases Connectivity between Fish Farm Management Areas in Chile
Authors: Pablo Reche
Abstract:
Since 1980’s aquaculture has become the biggest economic activity in southern Chile, being Salmo salar and Oncorhynchus mykiss the main finfish species. High fish density makes both species prone to contract diseases, what drives the industry to big losses, affecting greatly the local economy. Three are the most concerning infective agents, the infectious salmon anemia virus (ISAv), the bacteria Piscirickettsia salmonis and the copepod Caligus rogercresseyi. To regulate the industry the government arranged the salmon farms within management areas named as barrios, which coordinate the fallowing periods and antibiotics treatments of their salmon farms. In turn, barrios are gathered into larger management areas, named as macrozonas whose purpose is to minimize the risk of disease transmission between them and to enclose the outbreaks within their boundaries. However, disease outbreaks still happen and transmission to neighbor sites enlarges the initial event. Salmon disease agents are mostly transported passively by local currents. Thus, to understand how transmission occurs it must be firstly studied the physical environment. In Chile, salmon farming takes place in the inner seas of the southernmost regions of western Patagonia, between 41.5ºS-55ºS. This coastal marine system is characterised by western winds, latitudinally modulated by the position of the South-Eats Pacific high-pressure centre, high precipitation rates and freshwater inflows from the numerous glaciers (including the largest ice cap out of Antarctic and Greenland). All of these forcings meet in a complex bathymetry and coastline system - deep fjords, shallow sills, narrow straits, channels, archipelagos, inlets, and isolated inner seas- driving an estuarine circulation (fast outflows westwards on surface and slow deeper inflows eastwards). Such a complex system is modelled on the numerical model MIKE3, upon whose 3D current fields particle-track-biological models (one for each infective agent) are decoupled. Each agent biology is parameterized by functions for maturation and mortality (reproduction not included). Such parameterizations are depending upon environmental factors, like temperature and salinity, so their lifespan will depend upon the environmental conditions those virtual agents encounter on their way while passively transported. CLIC (Connectivity-Langrangian–IFOP-Chile) is a service platform that supports the graphical visualization of the connectivity matrices calculated from the particle trajectories files resultant of the particle-track-biological models. On CLIC users can select, from a high-resolution grid (~1km), the areas the connectivity will be calculated between them. These areas can be barrios and macrozonas. Users also can select what nodes of these areas are allowed to release and scatter particles from, depth and frequency of the initial particle release, climatic scenario (winter/summer) and type of particle (ISAv, Piscirickettsia salmonis, Caligus rogercresseyi plus an option for lifeless particles). Results include probabilities downstream (where the particles go) and upstream (where the particles come from), particle age and vertical distribution, all of them aiming to understand how currently connectivity works to eventually propose a minimum risk zonation for aquaculture purpose. Preliminary results in Chiloe inner sea shows that the risk depends not only upon dynamic conditions but upon barrios location with respect to their neighbors.Keywords: aquaculture zonation, Caligus rogercresseyi, Chilean Patagonia, coastal oceanography, connectivity, infectious salmon anemia virus, Piscirickettsia salmonis
Procedia PDF Downloads 1585 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1514 Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories
Authors: Erika T. Fajardo-Ariza, Luis A. Castillo-Sanabria, Andrea Nieto-Veloza, Carlos M. Zuluaga-Domínguez
Abstract:
The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts.Keywords: drying technology, postharvest loss reduction, solar dryers, sustainable agriculture
Procedia PDF Downloads 373 Blue Economy and Marine Mining
Authors: Fani Sakellariadou
Abstract:
The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts
Procedia PDF Downloads 872 Modern Day Second Generation Military Filipino Amerasians and Ghosts of the U.S. Military Prostitution System in West Central Luzon's 'AMO Amerasian Triangle'
Authors: P. C. Kutschera, Elena C. Tesoro, Mary Grace Talamera-Sandico, Jose Maria G. Pelayo III
Abstract:
Second generation military Filipino Amerasians comprise a formidable contemporary segment of the estimated 250,000-plus biracial Amerasians in the Philippines today. Overall, they are a stigmatized and socioeconomically marginalized diaspora, historically; they were abandoned or estranged by U.S. military personnel fathers assigned during the century-long Colonial, Post-World War II and Cold War Era of permanent military basing (1898-1992). Indeed, U.S. military personnel remain stationed in smaller numbers in the Philippines today. This inquiry is an outgrowth of two recent small sample studies. The first surfaced the impact of the U.S. military prostitution system on formation of the ‘Derivative Amerasian Family Construct’ on first generation Amerasians; a second, qualitative case study suggested the continued effect of the prostitution systems' destructive impetuous on second generation Amerasians. The intent of this current qualitative, multiple-case study was to actively seek out second generation sex industry toilers. The purpose was to focus further on this human phenomenon in the post-basing and post-military prostitution system eras. As background, the former military prostitution apparatus has transformed into a modern dynamic of rampant sex tourism and prostitution nationwide. This is characterized by hotel and resorts offering unrestricted carnal access, urban and provincial brothels (casas), discos, bars and pickup clubs, massage parlors, local barrio karaoke bars and street prostitution. A small case study sample (N = 4) of female and male second generation Amerasians were selected. Sample formation employed a non-probability ‘snowball’ technique drawing respondents from the notorious Angeles, Metro Manila, Olongapo City ‘AMO Amerasian Triangle’ where most former U.S. military installations were sited and modern sex tourism thrives. A six-month study and analysis of in-depth interviews of female and male sex laborers, their families and peers revealed a litany of disturbing, and troublesome experiences. Results showed profiles of debilitating human poverty, history of family disorganization, stigmatization, social marginalization and the ghost of the military prostitution system and its harmful legacy on Amerasian family units. Emerging were testimonials of wayward young people ensnared in a maelstrom of deep economic deprivation, familial dysfunction, psychological desperation and societal indifference. The paper recommends that more study is needed and implications of unstudied psychosocial and socioeconomic experiences of distressed younger generations of military Amerasians require specific research. Heretofore apathetic or disengaged U.S. institutions need to confront the issue and formulate activist and solution-oriented social welfare, human services and immigration easement policies and alternatives. These institutions specifically include academic and social science research agencies, corporate foundations, the U.S. Congress, and Departments of State, Defense and Health and Human Services, and Homeland Security (i.e. Citizen and Immigration Services) It is them who continue to endorse a laissez-faire policy of non-involvement over the entire Filipino Amerasian question. Such apathy, the paper concludes, relegates this consequential but neglected blood progeny to the status of humiliating destitution and exploitation. Amerasians; thus, remain entrapped in their former colonial, and neo-colonial habitat. Ironically, they are unwitting victims of a U.S. American homeland that fancies itself geo-politically as a strong and strategic military treaty ally of the Philippines in the Western Pacific.Keywords: Asian Americans, diaspora, Filipino Amerasians, military prostitution, stigmatization
Procedia PDF Downloads 4901 Dynamic Theory of Criminal Psychology Effect on Human Organs: A Comprehensive Study by the Scientific Activism in View of Judicial Interpretation and Impact on Global Society
Authors: Tanmoy Basu
Abstract:
The dynamic theory of criminal psychology and its physiological effects on human organs presents a novel perspective that bridges the gap between behavioral sciences and medical research, with significant implications for judicial interpretation and global societal impact. This study seeks to explore the intricate interplay between psychological factors driving criminal behavior and their measurable effects on the human body, hypothesizing that psychological stressors inherent in criminal tendencies produce detectable physiological changes. These insights have the potential to reshape approaches to crime prevention, judicial fairness, and rehabilitation strategies worldwide. Criminal psychology, often confined to behavioral and cognitive dimensions, rarely considers its direct impact on human biology. This research proposes that criminal tendencies and behavior's, characterized by heightened psychological stress and deviant mental patterns, trigger physiological responses in the cardiovascular, endocrine, and neurological systems. The scientific questions addressed here are pivotal: Can criminal psychology leave biological imprints? If so, can these markers provide early warning systems or contribute to judicial evaluations of criminal accountability? Addressing these questions can transform the intersection of science, law, and society. Criminological theories traditionally focus on socio-economic, cultural, or psychological triggers for criminal acts. However, emerging research underscores the psychosomatic connections between mental states and bodily health. Psychological stressors such as anxiety, guilt, or fear—common in individuals predisposed to criminal behavior—may lead to systemic changes in hormone levels, cardiovascular strain, and neural activity. Despite these connections, their implications for understanding criminal behavior remain underexplored, leaving a critical gap in the literature. This study adopts a multidisciplinary, mixed-methods approach that combines empirical data collection with theoretical analysis. Neurological imaging, biomarkers, and physiological testing are employed to identify and quantify changes in the human body associated with individuals exhibiting criminal tendencies. These data are correlated with detailed case histories, enabling an integrative perspective on how psychological and physiological factors converge in criminal behavior. Complementary qualitative analyses provide insights into contextual factors, such as socio-environmental stressors, that influence these physiological responses. Preliminary results reveal a strong correlation between criminal psychology and physiological dysfunction. Specifically, individuals displaying persistent criminal tendencies exhibit elevated cortisol levels, irregular heart rate patterns, and abnormal neural activity in regions associated with impulse control and decision-making. These findings suggest that criminal psychology is not merely a cognitive or emotional phenomenon but one with tangible biological markers. The results are interpreted through the lens of judicial applications, suggesting that physiological markers could supplement psychological evaluations in assessing criminal intent and responsibility. This perspective raises ethical considerations about the use of biological data in legal systems, highlighting the need for careful policy-making. The study advocates for integrating scientific activism into judicial frameworks, enabling more evidence-based decisions that consider both psychological and physiological dimensions of criminal behavior. This research holds transformative potential for global society. By recognizing the biological underpinnings of criminal psychology, policymakers can devise more holistic crime prevention strategies and rehabilitation programmed. Furthermore, this understanding promotes equitable judicial interpretations, ensuring that decisions are informed by comprehensive, evidence-based analyses. This comprehensive investigation not only deepens the understanding of criminal psychology but also paves the way for innovative intersections between science, law, and societal reform.Keywords: behavioral science, criminal psychology, cognitive dimensions, dysfunction, dynamic theory, emotional phenomenon, global societal impact, human organs, judicial interpretation, psychological changes, rehabilitation strategies
Procedia PDF Downloads 9