Search results for: tumor necrosis factor-related apoptosis-inducing ligand
126 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy
Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells
Abstract:
Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease
Procedia PDF Downloads 276125 Serum Concentration of the CCL7 Chemokine in Diabetic Pregnant Women during Pregnancy until the Postpartum Period
Authors: Fernanda Piculo, Giovana Vesentini, Gabriela Marini, Debora Cristina Damasceno, Angelica Mercia Pascon Barbosa, Marilza Vieira Cunha Rudge
Abstract:
Introduction: Women with previous gestational diabetes mellitus (GDM) were significantly more likely to have urinary incontinence (UI) and pelvic floor muscle dysfunction compared to non-diabetic women two years after a cesarean section. Additional results demonstrated that induced diabetes causes detrimental effects on pregnant rat urethral muscle. These results indicate the need for exploration of the mechanistic role of a recovery factor in female UI. Chemokine ligand 7 (CCL7) was significantly over expressed in rat serum, urethral and vaginal tissues immediately following induction of stress UI in a rat model simulating birth trauma. CCL7 over expression has shown potency for stimulating targeted stem cell migration and provide a translational link (clinical measurement) which further provide opportunities for treatment. The aim of this study was to investigate the CCL7 levels profile in diabetic pregnant women with urinary incontinence during pregnancy over the first year postpartum. Methods: This study was conducted in the Perinatal Diabetes Research Center of the Botucatu Medical School/UNESP, and was approved by the Research Ethics Committee of the Institution (CAAE: 20639813.0.0000.5411). The diagnosis of GDM was established between 24th and 28th gestational weeks, by the 75 g-OGTT test according to ADA’s criteria. Urinary incontinence was defined according to the International Continence Society and the CCL7 levels was measured by ELISA (R&D Systems, Catalog Number DCC700). Two hundred twelve women were classified into four study groups: normoglycemic continent (NC), normoglycemic incontinent (NI), diabetic continent (DC) and diabetic incontinent (DI). They were evaluated at six-time-points: 12-18, 24-28 and 34-38 gestational weeks, 24-48 hours, 6 weeks and 6-12 months postpartum. Results: At 12-18 weeks, it was possible to consider only two groups, continent and incontinent, because at this early gestational period has not yet been the diagnosis of GDM. The group with GDM and UI (DI group) showed lower levels of CCL7 in all time points during pregnancy and postpartum, compared to normoglycemic groups (NC and NI), indicating that these women have not recovered from child birth induced UI during the 6-12 months postpartum compared to their controls, and that the progression of UI and/or lack of recovery throughout the first postpartum year can be related with lower levels of CCL7. Instead, serum CCL7 was significantly increased in the NC group. Taken together, these findings of overexpression of CCL7 in the NC group and decreased levels in the DI group, could confirm that diabetes delays the recovery from child birth induced UI, and that CCL7 could potentially be used as a serum marker of injury. Conclusion: This study demonstrates lower levels of CCL7 in the DI group during pregnancy and postpartum and suggests that the progression of UI in diabetic women and/or lack of recovery throughout the first postpartum year can be related with low levels of CCL7. This provides a translational potential where CCL7 measurement could be used as a surrogate for injury after delivery. Successful controlled CCL7 mediated stem cell homing to the lower urinary tract could one day introduce the potential for non-operative treatment or prevention of stress urinary incontinence.Keywords: CCL7, gestational diabetes, pregnancy, urinary incontinence
Procedia PDF Downloads 338124 Transition Metal Bis(Dicarbollide) Complexes in Design of Molecular Switches
Authors: Igor B. Sivaev
Abstract:
Design of molecular machines is an extraordinary growing and very important area of research that it was recognized by awarding Sauvage, Stoddart and Feringa the Nobel Prize in Chemistry in 2016 'for the design and synthesis of molecular machines'. Based on the type of motion being performed, molecular machines can be divided into two main types: molecular motors and molecular switches. Molecular switches are molecules or supramolecular complexes having bistability, i.e., the ability to exist in two or more stable forms, among which may be reversible transitions under external influence (heating, lighting, changing the medium acidity, the action of chemicals, exposure to magnetic or electric field). Molecular switches are the main structural element of any molecular electronics devices. Therefore, the design and the study of molecules and supramolecular systems capable of performing mechanical movement is an important and urgent problem of modern chemistry. There is growing interest in molecular switches and other devices of molecular electronics based on transition metal complexes; therefore choice of suitable stable organometallic unit is of great importance. An example of such unit is bis(dicarbollide) complexes of transition metals [3,3’-M(1,2-C₂B₉H₁₁)₂]ⁿ⁻. The control on the ligand rotation in such complexes can be reached by introducing substituents which could provide stabilization of certain rotamers due to specific interactions between the ligands, on the one hand, and which can participate as Lewis bases in complex formation with external metals resulting in a change in the rotation angle of the ligands, on the other hand. A series of isomeric methyl sulfide derivatives of cobalt bis(dicarbollide) complexes containing methyl sulfide substituents at boron atoms in different positions of the pentagonal face of the dicarbollide ligands [8,8’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻, rac-[4,4’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ and meso-[4,7’-(MeS)₂-3,3’-Co(1,2-C₂B₉H₁₀)₂]⁻ were synthesized by the reaction of CoCl₂ with the corresponding methyl sulfide carborane derivatives [10-MeS-7,8-C₂B₉H₁₁)₂]⁻ and [10-MeS-7,8-C₂B₉H₁₁)₂]⁻. In the case of asymmetrically substituted cobalt bis(dicarbollide) complexes the corresponding rac- and meso-isomers were successfully separated by column chromatography as the tetrabutylammonium salts. The compounds obtained were studied by the methods of ¹H, ¹³C, and ¹¹B NMR spectroscopy, single crystal X-ray diffraction, cyclic voltammetry, controlled potential coulometry and quantum chemical calculations. It was found that in the solid state, the transoid- and gauche-conformations of the 8,8’- and 4,4’-isomers are stabilized by four intramolecular CH···S(Me)B hydrogen bonds each one (2.683-2.712 Å and 2.709-2.752 Å, respectively), whereas gauche-conformation of the 4,7’-isomer is stabilized by two intramolecular CH···S hydrogen bonds (2.699-2.711 Å). The existence of the intramolecular CH·S(Me)B hydrogen bonding in solutions was supported by the 1H NMR spectroscopy. These data are in a good agreement with results of the quantum chemical calculations. The corresponding iron and nickel complexes were synthesized as well. The reaction of the methyl sulfide derivatives of cobalt bis(dicarbollide) with various labile transition metal complexes results in rupture of intramolecular hydrogen bonds and complexation of the methyl sulfide groups with external metal. This results in stabilization of other rotational conformation of cobalt bis(dicarbollide) and can be used in design of molecular switches. This work was supported by the Russian Science Foundation (16-13-10331).Keywords: molecular switches, NMR spectroscopy, single crystal X-ray diffraction, transition metal bis(dicarbollide) complexes, quantum chemical calculations
Procedia PDF Downloads 172123 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker
Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi
Abstract:
Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles
Procedia PDF Downloads 290122 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma
Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal
Abstract:
Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy
Procedia PDF Downloads 510121 History of Pediatric Renal Pathology
Authors: Mostafa Elbaba
Abstract:
Because childhood renal diseases are grossly different compared to adult diseases, pediatric nephrology was founded as a specialty in 1965. Renal pathology specialty was introduced at the London Ciba Symposium in 1961. The history of renal pathology can be divided into two eras: one starting in the 1650s with the invention of the microscope, the second in the 1950s with the implementation of renal biopsy, and the presence of electron microscopy and immunofluorescence study. Prior to the 1950s, the study of diseased human kidneys was restricted to postmortem examination by gross pathology. In 1827, Richard Bright first described his triad of kidney disease, which was confirmed by morbid kidney changes at autopsy. In 1905 Friedrich Mueller coined the term “nephrosis” describing the inflammatory form of “degenerative” diseases, and later F. Munk added the term “lipoid nephrosis”. The most profound influence on renal diseases’ classification came from the publication of Volhard and Fahr in 1914. In 1899, Carl Max Wilhelm Wilms described Wilms' tumor of the kidneys in children. Chronic pyelonephritis was a popular renal diagnosis and the most common cause of uremia until the 1960s. Although kidney biopsy had been used early in the 1930s for renal tumors, the earliest reports of its use in the diagnosis of medical kidney disease were by Iversen and Brun in 1951, followed by Alwall in 1952, then by Pardo in 1953. The earliest intentional renal biopsies were done in 1944 by Nils Alwall, while the procedure was abandoned after the death of one of his 13 patients who biopsied. In 1950, Antonino Perez-Ara attempted renal biopsies, but his results were missed because of an unpopular journal publication. In the year 1951, Claus Brun and Poul Iverson developed the biopsy procedure using an aspiration technique. Popularizing renal biopsy practice is accredited to Robert Kark, who published his distinct work in 1954. He perfected the technique of renal biopsy in the prone position using the Vim-Silverman needle and used intravenous pyelography to improve the localization of the kidney.Keywords: history, medicine, nephrology, pediatrics, pathology
Procedia PDF Downloads 59120 Cadmium Telluride Quantum Dots (CdTe QDs)-Thymine Conjugate Based Fluorescence Biosensor for Sensitive Determination of Nucleobases/Nucleosides
Authors: Lucja Rodzik, Joanna Lewandowska-Lancucka, Michal Szuwarzynski, Krzysztof Szczubialka, Maria Nowakowska
Abstract:
The analysis of nucleobases is of great importance for bioscience since their abnormal concentration in body fluids suggests the deficiency and mutation of the immune system, and it is considered to be an important parameter for diagnosis of various diseases. The presented conjugate meets the need for development of the effective, selective and highly sensitive sensor for nucleobase/nucleoside detection. The novel, highly fluorescent cadmium telluride quantum dots (CdTe QDs) functionalized with thymine and stabilized with thioglycolic acid (TGA) conjugates has been developed and thoroughly characterized. Successful formation of the material was confirmed by elemental analysis, and UV–Vis fluorescence and FTIR spectroscopies. The crystalline structure of the obtained product was characterized with X-ray diffraction (XRD) method. The composition of CdTe QDs and their thymine conjugate was also examined using X-ray photoelectron spectroscopy (XPS). The size of the CdTe-thymine was 3-6 nm as demonstrated using atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) imaging. The plasmon resonance fluorescence band at 540 nm on excitation at 351 nm was observed for these nanoparticles. The intensity of this band increased with the increase in the amount of conjugated thymine with no shift in its position. Based on the fluorescence measurements, it was found that the CdTe-thymine conjugate interacted efficiently and selectively not only with adenine, a nucleobase complementary to thymine, but also with nucleosides and adenine-containing modified nucleosides, i.e., 5′-deoxy-5′-(methylthio)adenosine (MTA) and 2’-O-methyladenosine, the urinary tumor markers which allow monitoring of the disease progression. The applicability of the CdTe-thymine sensor for the real sample analysis was also investigated in simulated urine conditions. High sensitivity and selectivity of CdTe-thymine fluorescence towards adenine, adenosine and modified adenosine suggest that obtained conjugate can be potentially useful for development of the biosensor for complementary nucleobase/nucleoside detection.Keywords: CdTe quantum dots, conjugate, sensor, thymine
Procedia PDF Downloads 412119 Application of Gold Nanorods in Cancer Photothermaltherapy
Authors: Mehrnaz Mostafavi
Abstract:
Lung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities such as surgical resection, radiation, and chemotherapy remains far from satisfactory. Systemic drug delivery is rarely successful because only a limited amount of the chemotherapeutic drug targets lung tumor sites, even when administered at a high dose. Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest.Multimodal or combination therapy represents a promising new method to fight disease. Therefore, a combination of different therapeutic strategies may be the best alternative to improve treatment outcomes for lung cancer. Photothermal therapy was proposed as a novel approach to treatment. In this work, photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation was investigated.Four types of small (<100nm), NIR absorbing gold nanoparticles (nanospheres, nanorods) were synthesized using wet chemical methods and characterized by transmission electron microscopy, dynamic light scattering and UV-vis spectroscopy. Their synthesis and properties were evaluated, to determine their feasibility as a photothermal agent for clinical applications. In vitro cellular uptake studies of the nanoparticles into lung cancer cell lines was measured using light scattering microscopy.Small gold nanorods had good photothermal properties and the greatest cellular uptake, and were used in photothermal studies. Under 4W laser irradiation, an increase in temperature of 10°C and decrease in cell viability of up to 80% were obtained.Keywords: photothermal, therapy, cancer, gold nanorods
Procedia PDF Downloads 245118 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 268117 The Improvement in Clinical Outcomes with the Histological Presence of Nidus Following Radiofrequency Ablation (RFA) for Osteoid Osteoma (OO)
Authors: Amirul Adlan, Motaz AlAqeel, Scott Evans, Vaiyapuri sumathi, Mark Davies, Rajesh Botchu
Abstract:
Background & Objectives: Osteoid osteoma (OO) is a benign tumor of the bone commonly found in childhood and adolescence, causing bone pain, especially during the night. CT-guided radiofrequency ablation (RFA) is currently the mainstay treatment for OO. There is currently no literature reporting the outcomes of OO following RFA based on the histological presence of a nidus seen on a biopsy taken at the time of RFA. The primary aim of this study was to compare the clinical outcomes of OO between the group of patients with the presence of nidus on biopsy samples from RFA with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO, reflecting our experience as a tertiary orthopedic oncology center. Methods: We retrospectively reviewed 88 consecutive patients diagnosed with osteoid osteoma treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). The median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%), while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Results: Pain improvement in the patient group with nidus in the histology sample was significantly better than in the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus(OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Conclusions: Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of osteoid osteoma following RFA is better in patients with appendicular lesions than spinal or axially located lesions.Keywords: osteoid osteoma, benign tumour, radiofrequency ablation, oncology
Procedia PDF Downloads 154116 Vertebral Artery Dissection Complicating Pregnancy and Puerperium: Case Report and Review of the Literature
Authors: N. Reza Pour, S. Chuah, T. Vo
Abstract:
Background: Vertebral artery dissection (VAD) is a rare complication of pregnancy. It can occur spontaneously or following a traumatic event. The pathogenesis is unclear. Predisposing factors include chronic hypertension, Marfan’s syndrome, fibromuscular dysplasia, vasculitis and cystic medial necrosis. Physiological changes of pregnancy have also been proposed as potential mechanisms of injury to the vessel wall. The clinical presentation varies and it can present as a headache, neck pain, diplopia, transient ischaemic attack, or an ischemic stroke. Isolated cases of VAD in pregnancy and puerperium have been reported in the literature. One case was found to have posterior circulation stroke as a result of bilateral VAD and labour was induced at 37 weeks gestation for preeclampsia. Another patient at 38 weeks with severe neck pain that persisted after induction for elevated blood pressure and arteriography showed right VAD postpartum. A single case of lethal VAD in pregnancy with subsequent massive subarachnoid haemorrhage has been reported which was confirmed by the autopsy. Case Presentation: We report two cases of vertebral artery dissection in pregnancy. The first patient was a 32-year-old primigravida presented at the 38th week of pregnancy with the onset of early labour and blood pressure (BP) of 130/70 on arrival. After 2 hours, the patient developed a severe headache with blurry vision and BP was 238/120. Despite treatment with an intravenous antihypertensive, she had eclamptic fit. Magnesium solfate was started and Emergency Caesarean Section was performed under the general anaesthesia. On the second day after the operation, she developed left-sided neck pain. Magnetic Resonance Imaging (MRI) angiography confirmed a short segment left vertebral artery dissection at the level of C3. The patient was treated with aspirin and remained stable without any neurological deficit. The second patient was a 33-year-old primigavida who was admitted to the hospital at 36 weeks gestation with BP of 155/105, constant headache and visual disturbances. She was medicated with an oral antihypertensive agent. On day 4, she complained of right-sided neck pain. MRI angiogram revealed a short segment dissection of the right vertebral artery at the C2-3 level. Pregnancy was terminated on the same day with emergency Caesarean Section and anticoagulation was started subsequently. Post-operative recovery was complicated by rectus sheath haematoma requiring evacuation. She was discharged home on Aspirin without any neurological sequelae. Conclusion: Because of collateral circulation, unilateral vertebral artery dissections may go unrecognized and may be more common than suspected. The outcome for most patients is benign, reflecting the adequacy of the collateral circulation in young patients. Spontaneous VAD is usually treated with anticoagulation or antiplatelet therapy for a minimum of 3-6 months to prevent future ischaemic events, allowing the dissection to heal on its own. We had two cases of VAD in the context of hypertensive disorders of pregnancy with an acceptable outcome. A high level of vigilance is required particularly with preeclamptic patients presenting with head/neck pain to allow an early diagnosis. This is as we hypothesize, early and aggressive management of vertebral artery dissection may potentially prevent further complications.Keywords: eclampsia, preeclampsia, pregnancy, Vertebral Artery Dissection
Procedia PDF Downloads 279115 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy
Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane
Abstract:
Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging
Procedia PDF Downloads 78114 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines
Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk
Abstract:
Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines
Procedia PDF Downloads 130113 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI
Authors: Di Luo, Maria Buchberger, Anja Pickhard
Abstract:
Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival
Procedia PDF Downloads 132112 Literature Review of Rare Synchronous Tumours
Authors: Diwei Lin, Amanda Tan, Rajinder Singh-Rai
Abstract:
We present the first reported case of a concomitant Leydig cell tumor (LCT) and paratesticular leiomyoma in an adult male with a known history of bilateral cryptorchidism. An 80-year-old male presented with a 2-month history of a left testicular lump associated with mild discomfort and a gradual increase in size on a background of bilateral cryptorchidism requiring multiple orchidopexy procedures as a child. Ultrasound confirmed a lesion suspicious for malignancy and he proceeded to a left radical orchidectomy. Histopathological assessment of the left testis revealed a concomitant testicular LCT with malignant features and paratesticular leiomyoma. Leydig cell tumors (LCTs) are the most common pure testicular sex cord-stromal tumors, accounting for up to 3% of all testicular tumors. They can occur at almost any age, but are noted to have a bi-modal distribution, with a peak incidence at 6 to 10 and at 20 to 50 years of age. LCT’s are often hormonally active and can lead to feminizing or virilizing syndromes. LCT’s are usually regarded as benign but can rarely exhibit malignant traits. Paratesticular tumours are uncommon and their reported prevalence varies between 3% and 16%. They occur in a complex anatomical area which includes the contents of the spermatic cord, testicular tunics, epididymis and vestigial remnants. Up to 90% of paratesticular tumours are believed to originate from the spermatic cord, though it is often difficult to definitively ascertain the exact site of origin. Although any type of soft-tissue neoplasm can be found in the paratesticular region, the most common benign tumors reported are lipomas of the spermatic cord, adenomatoid tumours of the epididymis and leiomyomas of the testis. Genetic studies have identified potential mutations that could potentially cause LCTs, but there are no known associations between concomitant LCTs and paratesticular tumors. The presence of cryptorchidism in adults with both LCTs and paratesticular neoplasms individually has been previously reported and it appears intuitive that cryptorchidism is likely to be associated with the concomitant presentation in this case report. This report represents the first documented case in the literature of a unilateral concomitant LCT and paratesticular leiomyoma on a background of bilateral cryptorchidism.Keywords: testicular cancer, leydig cell tumour, leiomyoma, paratesticular neoplasms
Procedia PDF Downloads 362111 PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues
Authors: F. Polito, M. Cucinotta, A. Conti, C. Lo Giudice, C. Tomasello, F. Angileri, D. La Torre, M. Aguennouz
Abstract:
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors.Keywords: glioblastoma, PTOP, telomere, brain tumors
Procedia PDF Downloads 346110 Biosynthesis of Tumor Inhibitory Podophyllotoxin, Quercetin and Kaempferol from Callogenesis of Dysosma Pleiantha (Hance) Woodson
Authors: Palaniyandi Karuppaiya, Hsin Sheng Tsay, Fang Chen
Abstract:
Medicinal herbs do represent a huge and noteworthy reservoir for novel anticancer drugs discovery. Dysosma pleiantha (Hance) Woodson (Berberidaceae), one of the oldest traditional Chinese medicinal herb, highly prized by the mountain tribes of Taiwan and China for its medicinal properties contained pharmaceutically important antitumor compounds podophyllotoxin, quercetin and kaempferol. Among lignans, podophyllotoxin is an active antitumor compound and has now been modified to produce clinically useful drugs etoposide and teniposide. In recent years, natural populations of D. peliantha have declined considerably due to anthropogenic activities such as habitat destruction and commercial exploitation for medicinal applications. As to its overall conservation status, D. pleiantha has been ranked as threatened on the China Species Red List. In the present study, an efficient in vitro callus culture system of D. pleiantha was established on Gamborg’s medium with various combinations and concentrations of different auxins and cytokinins under dark condition. Best callus induction was recorded in 2 mg/L 2, 4 - Dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin and the maximum callus proliferation was achieved at 1 mg/L 2,4-D. Among the explants tested, maximum callus induction (86 %) was achieved from tender leaves. Hence, in subsequent experiments, leaf callus was further investigated for suitable callus biomass and production level of anticancer compounds under the influence of different additives. A maximum fresh callus biomass (8.765 g) was recorded in callus proliferation medium contained 500 mg/L casein hydrolysate. High performance liquid chromatography results revealed that the addition of different concentrations of peptone (1, 2 and 4 g/L) in callus proliferation medium enhanced podophyllotoxin (16 fold), quercetin (12 fold) and kaempferol (5 fold) accumulation than control. Thus, the established in vitro callus culture under the influence of different additives may offer an alternative source of enhanced production of podophyllotoxin, kaempferol and quecertin without harming natural plant population.Keywords: dysosma pleiantha, kaempferol, podophyllotoxin, quercetin
Procedia PDF Downloads 277109 Enhanced Cytotoxic Effect of Expanded NK Cells with IL12 and IL15 from Leukoreduction Filter on K562 Cell Line Exhibits Comparable Cytotoxicity to Whole Blood
Authors: Abdulbaset Mazarzaei
Abstract:
Natural killer (NK) cells are innate immune effectors that play a pivotal role in combating tumors and infected cells. In recent years, the therapeutic potential of NK cells has gained significant attention due to their remarkable cytotoxic ability. This study focuses on investigating the cytotoxic effect of expanded NK cells enriched with interleukin 12 (IL12) and interleukin 15 (IL15), derived from the leukoreduction filter, on the K562 cell line. Firstly, NK cells were isolated from whole blood samples obtained from healthy volunteers. These cells were subsequently expanded ex vivo using a combination of feeder cells, IL12, and IL15. The expanded NK cells were then harvested and assessed for their cytotoxicity against K562, a well-established human chronic myelogenous leukemia cell line. The cytotoxicity was evaluated using flow cytometry assay. Results demonstrate that the expanded NK cells significantly exhibited enhanced cytotoxicity against K562 cells compared to non-expanded NK cells. Interestingly, the expanded NK cells derived specifically from IL12 and IL15-enriched leukoreduction filters showed a robust cytotoxic effect similar to the whole blood-derived NK cells. These findings suggest that IL12 and IL15 in the leukoreduction filter are crucial in promoting NK cell cytotoxicity. Furthermore, the expanded NK cells displayed relatively similar cytotoxicity profiles to whole blood-derived NK cells, indicating their comparable capability in targeting and eliminating tumor cells. This observation is of significant relevance as expanded NK cells from the leukoreduction filter could potentially serve as a readily accessible and efficient source for adoptive immunotherapy. In conclusion, this study highlights the significant cytotoxic effect of expanded NK cells enriched with IL12 and IL15 obtained from the leukoreduction filter on the K562 cell line. Moreover, it emphasizes that these expanded NK cells exhibit comparable cytotoxicity to whole blood-derived NK cells. These findings reinforce the potential clinical utility of using expanded NK cells from the leukoreduction filter as an effective strategy in adoptive immunotherapy for the treatment of cancer. Further studies are warranted to explore the broader implications of this approach in clinical settings.Keywords: natural killer (NK) cells, Cytotoxicity, Leukoreduction filter, IL-12 and IL-15 Cytokines
Procedia PDF Downloads 65108 ROCK Signaling and Radio Resistance: The Association and the Effect
Authors: P. Annapurna, Cecil Ross, Sudhir Krishna, Sweta Srivastava
Abstract:
Irradiation plays a pivotal role in cervical cancer treatment, however some tumors exhibit resistance to therapy while some exhibit relapse, due to better repair and enhanced resistance mechanisms operational in their cells. The present study aims to understand the signaling mechanism operational in resistance phenotype and in the present study we report the role of Rho GTPase associated protein kinase (ROCK) signaling in cervical carcinoma radio-resistance. ROCK signaling has been implicated in several tumor progressions and is important for DNA repair. Irradiation of spheroid cultures of SiHa cervical carcinoma derived cell line at 6Gy resulted in generation of resistant cells in vitro which had better clonogenic abilities and formed larger and more colonies, in soft agar colony formation assay, as compared to the non-irradiated cells. These cells also exhibited an enhanced motility phenotype. Cell cycle profiling showed the cells to be blocked in G2M phase with enhanced pCDC2 levels indicating onset of possible DNA repair mechanism. Notably, 3 days post-irradiation, irradiated cells showed increased ROCK2 translocation to the nucleus with enhanced protein expression as compared to the non-irradiated cells. Radio-sensitization of the resistant cells was enhanced using Y27632, an inhibitor to ROCK signaling. The treatment of resistant cells with Y27632 resulted in increased cell death upon further irradiation. This observation has been confirmed using inhibitory antibodies to ROCK1/2. Result show that both ROCK1/2 have a functional contribution in radiation resistance of cervical cancer cells derived from cell lines. Interestingly enrichment of stem like cells (Hoechst negative cells) was also observed upon irradiation and these cells were markedly sensitive to Y27632 treatment. Our results thus suggest the role of ROCK signaling in radio-resistance in cervical carcinoma. Further studies with human biopsies, mice models and mechanistic of ROCK signaling in the context of radio-resistance will clarify the role of this molecule further and allow for therapeutics development.Keywords: cervical carcinoma, radio-resistance, ROCK signaling, cancer treatment
Procedia PDF Downloads 331107 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy
Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri
Abstract:
The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation
Procedia PDF Downloads 132106 Extending ACOSOG Z0011 to Encompass Mastectomy Patients: A Retrospective Review
Authors: Ruqayya Naheed Khan, Awais Amjad Malik, Awais Naeem, Amina Khan, Asad Parvaiz
Abstract:
Introduction: Axillary nodal status in breast cancer patients is a paramount prognosticator, next to primary tumor size and grade. It has been well established that patients with negative sentinel lymph node biopsy can safely avoid axillary lymph node dissection. A positive sentinel lymph node has traditionally required subsequent axillary dissection. According to ACOSOG Z11 trial, patients who underwent axillary dissection with 3 or more positive sentinel nodes or opted for observation in case of negative sentinel lymph node, did not find any difference in Overall Survival (OS) and Disease Free Survival (DFS). The Z11 trial included patients who underwent breast conserving surgery and excluded patients with mastectomies. The purpose of this study is to determine whether Z0011 can be applied to mastectomy patients as well in 1-3 positive sentinel lymph nodes and avoid unnecessary ALND. Methods: A retrospective review was conducted at Shaukat Khanam Memorial Cancer Hospital Pakistan from Jan 2015 to Dec 2017 including patients who were treated for invasive breast cancer and required upfront mastectomy. They were clinically node negative, so sentinel lymph node biopsy was performed. Patients underwent ALND with positive sentinel lymph node. A total of 156 breast cancer patients with mastectomies were reviewed. Results: 95% of the patients were female while 3% were male. Average age was 44 years. There was no difference in race, comorbidities, histology, T stage, N stage, and overall stage, use of adjuvant chemotherapy and radiation therapy. 64 patients underwent ALND for positive lymph node while 92 patients were spared of axillary dissection due to negative sentinel lymph node biopsy. Out of 64 patients, 38 patients (59%) had only 1 lymph node positive which was the sentinel node. 18 patients (28%) had 2 lymph nodes positive including the sentinel node while only 8 patients (13%) had 3 or more positive nodes. Conclusion: Keeping in mind the complications related to ALND, above results clearly show that ALND could have been avoided in 87% of patients in the setting of adjuvant radiation, possibly avoiding the morbidity associated with axillary lymphadenectomy although a prospective randomized trial needs to confirm these results.Keywords: mastectomy, sentinel lymph node biopsy, axillary lymph node dissection, breast cancer
Procedia PDF Downloads 195105 Comparison of Propofol versus Ketamine-Propofol Combination as an Anesthetic Agent in Supratentorial Tumors: A Randomized Controlled Study
Authors: Jakkireddy Sravani
Abstract:
Introduction: The maintenance of hemodynamic stability is of pivotal importance in supratentorial surgeries. Anesthesia for supratentorial tumors requires an understanding of localized or generalized rising ICP, regulation, and maintenance of intracerebral perfusion, and avoidance of secondary systemic ischemic insults. We aimed to compare the effects of the combination of ketamine and propofol with propofol alone when used as an induction and maintenance anesthetic agent during supratentorial tumors. Methodology: This prospective, randomized, double-blinded controlled study was conducted at AIIMS Raipur after obtaining the institute Ethics Committee approval (1212/IEC-AIIMSRPR/2022 dated 15/10/2022), CTRI/2023/01/049298 registration and written informed consent. Fifty-two supratentorial tumor patients posted for craniotomy and excision were included in the study. The patients were randomized into two groups. One group received a combination of ketamine and propofol, and the other group received propofol for induction and maintenance of anesthesia. Intraoperative hemodynamic stability and quality of brain relaxation were studied in both groups. Statistical analysis and technique: An MS Excel spreadsheet program was used to code and record the data. Data analysis was done using IBM Corp SPSS v23. The independent sample "t" test was applied for continuously dispersed data when two groups were compared, the chi-square test for categorical data, and the Wilcoxon test for not normally distributed data. Results: The patients were comparable in terms of demographic profile, duration of the surgery, and intraoperative input-output status. The trends in BIS over time were similar between the two groups (p-value = 1.00). Intraoperative hemodynamics (SBP, DBP, MAP) were better maintained in the ketamine and propofol combination group during induction and maintenance (p-value < 0.01). The quality of brain relaxation was comparable between the two groups (p-value = 0.364). Conclusion: Ketamine and propofol combination for the induction and maintenance of anesthesia was associated with superior hemodynamic stability, required fewer vasopressors during excision of supratentorial tumors, provided adequate brain relaxation, and some degree of neuroprotection compared to propofol alone.Keywords: supratentorial tumors, hemodynamic stability, brain relaxation, ketamine, propofol
Procedia PDF Downloads 25104 COX-2 Inhibitor NS398 Counteracts Chemoresistance to Temozolomide in T98G Glioblastoma Cell Line
Authors: Francesca Lombardi, Francesca Rosaria Augello, Benedetta Cinque, Maria Grazia Cifone, Paola Palumbo
Abstract:
Glioblastoma multiforme (GBM) is a high-grade primary brain tumor refractory to current forms of treatment. The survival benefits of patients with GBM remain unsatisfactory due to the intrinsic or acquired resistance to temozolomide (TMZ), an alkylating agent, used as the first-line chemotherapeutic drug to treat GBM patients. Its cytotoxic effect is visualized by the induction of O6-methylguanine (O6MeG) within DNA. Cyclooxygenase-2 (COX-2), an inflammation-associated enzyme, has been implicated in tumorigenesis and progression of GBM, its inhibition shows anticancer activities. In the present study, it was verified if the combination of a COX-2 selective inhibitor, NS398, with TMZ could counteract the TMZ resistance. In particular, the effect of NS398 mixed with TMZ was investigated in the GBM TMZ-resistant cell line, T98G. Cells were pretreated with NS398 (100µM, 24 hours) and then exposed to TMZ alone (200µM), NS398 alone, or both for 72 hours, after which cell growth rate and cycle phases, as well as apoptosis level, were evaluated. Coadministration of NS398 and TMZ caused a significant decrease in cell growth and a progressive increase of dead cells detected by trypan blue staining. Moreover, a significant level of apoptotic cell percentage and alteration of cell cycle phases were observed in T98G treated with TMZ-NS398 combination when compared to untreated cells or TMZ-treated cells. TMZ-resistant tumors, as GBM, express elevated levels of DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The mixture drastically reduced MGMT expression in the TMZ-resistant cell line T98G, known to express high levels of MGMT basically. Moreover, while TMZ alone did not influence the COX-2 protein expression, the combination successfully reduced it. In conclusion, these results demonstrated that NS398 enhanced the efficacy of TMZ through cell number reduction, apoptosis induction, and decreased MGMT levels, suggesting the ability of drug combination to reduce the chemoresistance. This drug combination deserves attention and could be considered as a promising therapeutic strategy for GBM patients.Keywords: COX-2, COX-2 inhibitor, glioblastoma, NS398, T98G, temozolomide
Procedia PDF Downloads 152103 Wt1 and FoxL2 Genes Expression Pattern in Mesonephros-Gonad Complexes of Green Sea Turtle (Chelonia mydas) Embryos Incubated in Feminization and Masculinization Temperature
Authors: Fitria D. Ayuningtyas, Anggraini Barlian
Abstract:
Green turtle (Chelonia mydas) is one of TSD (Temperature-dependent Sex Determination, TSD) animals which sex is determined by the egg’s incubation temperature. GSD (Genotypic Sex Determination) homologous genes such as Wilms’ Tumor (Wt1) and Forkhead Box L2 (FoxL2) play a role in TSD animal sex determination process. Wt1 plays a role in both male pathway, as a transcription factor for Sf1 gene and in female pathway, as a transcription factor for Dax1. FoxL2 plays a role specifically in female sex determination, and known as transcriptional factor for Aromatase gene. Until now, research on the pattern of Wt1 and FoxL2 genes expression in C.mydas has not been conducted yet. The aim of this research is to know the pattern of Wt1 and FoxL2 genes expression in Mesonephros-Gonad (MG) complexes of Chelonia mydas embryos incubated in masculinizing temperature (MT) and feminizing temperature (FT). Eggs of C.mydas incubated in 3 different stage of TSP (Thermosensitive Period) at masculinizing temperature (26±10C, MT) and feminizing temperature (31±10C FT). Mesonefros-gonad complexes were isolated at Pre-TSP stage (FT at days 14th, MT at days 24th), TSP stage (FT at days 24th, MT at days 36th) and differentiated stage (FT at days 40th, MT at days 58th). RNA from mesonephros-gonad (MG) complexes were converted into cDNA by RT-PCR process, and the pattern of Wt1 and FoxL2 genes expression is analyzed by quantitative Real Time PCR (qPCR) method, β-actin gene is used as an internal control. The pattern of Wt1 gene expression in Pre-TSP stage was almost the same between MG complexes incubated at MT or FT, while TSP and differentiation stage, the pattern of Wt1 gene expression in MG complexes incubated at MT or FT was increased. Wt1 gene expression of MG complexes that incubated at FT was higher than at MT. There was a difference pattern between Wt1 gene expression in this research compared to the previous research in protein level. It could be assumed that the difference caused by post-transcriptional regulation mechanisms before mRNA of Wt1 gene translated into protein structure. The pattern of FoxL2 gene expression in Pre-TSP stage was almost the same between MG complexes that incubated at MT and FT, and increased in both TSP and differentiated stage. The FoxL2 gene expression in MG complexes that incubated in FT is higher than MT on TSP and differentiated stage. Based on the results of this research, it can be assumed that Wt1 and FoxL2 gene were expressed in MG complexes that incubated both at MT and FT since Pre-TSP stage. The pattern of Wt1 gene expression was increased in every stage of gonadal development, and so do the pattern of FoxL2 gene expression. Wt1 and FoxL2 gene expressions were higher in MG complexes incubated at FT than MT.Keywords: chelonia mydas, FoxL2, gene expression, TSD, Wt1
Procedia PDF Downloads 407102 Implementation of Autologous Adipose Graft from the Abdomen for Complete Fat Pad Loss of the Heel Following a Traumatic Open Fracture Secondary to a Motor Vehicle Accident: A Case Study
Authors: Ahmad Saad, Shuja Abbas, Breanna Marine
Abstract:
Introduction: This study explores the potential applications of autologous pedal fat pad grafting as a minimally invasive therapeutic strategy for addressing pedal fat pad loss. Without adequate shock absorbing tissue, a patient can experience functional deficits, ulcerations, loss of quality of life, and significant limitations with ambulation. This study details a novel technique involving autologous adipose grafting from the abdomen to enhance plantar fat pad thickness in a patient involved in a severe motor vehicle accident which resulted in total fat pad loss of the heel. Autologous adipose grafting (AAG) was used following adipose allografting in an effort to recreate a normal shock absorbing surface to allow return to activities of daily living and painless ambulation. Methods: A 46-year-old male sustained multiple open pedal fractures and necrosis to the heel fat pad after a motorcycle accident, which resulted in complete loss of the calcaneal fat pad. The patient underwent serial debridement’s, utilization of wound vac therapy and split thickness skin grafting to accomplish complete closure, despite complete loss of adipose to area. Patient presented with complaints of pain on ambulation, inability to bear weight on the heel, recurrent ulcerations, admitted had not been ambulating for two years. Clinical exam demonstrated complete loss of the plantar fat pad with a thin layer of epithelial tissue overlying the calcaneal bone, allowing visibility of the osseous contour of the calcaneus. Scar tissue had formed in place of the fat pad, with thickened epithelial tissue extending from the midfoot to the calcaneus. After conservative measures were exhausted, the patient opted for initial management by adipose allograft matrix (AAM) injections. Post operative X-ray imaging revealed noticeable improvement in calcaneal fat pad thickness. At 1 year follow up, the patient was able to ambulate without assistive devices. The fat pad at this point was significantly thicker than it was pre-operatively, but the thickness did not restore to pre-accident thickness. In order to compare the take of allograft versus autografting of adipose tissue, the decision to use adipose autograft through abdominal liposuction harvesting was deemed suitable. A general surgeon completed harvesting of adipose cells from the patient’s abdomen via liposuction, and a podiatric surgeon performed the AAG injection into the heel. Total of 15 cc’s of autologous adipose tissue injected to the calcaneus. Results: There was a visual increase in the calcaneal fat pad thickness both clinically and radiographically. At the 6-week follow up, imaging revealed retention of the calcaneal fat pad thickness. Three months postop, patient returned to activities of daily living and increased quality of life due to their increased ability to ambulate. Discussion: AAG is a novel treatment for pedal fat pad loss. These treatments may be viable and reproducible therapeutic choices for patients suffering from fat pad atrophy, fat pad loss, and/or plantar ulcerations. Both treatments of AAM and AAG exhibited similar therapeutic results by providing pain relief for ambulation and allowing for patients to return to their quality of life.Keywords: podiatry, wound, adipose, allograft, autograft, wound care, limb reconstruction, injection, limb salvage
Procedia PDF Downloads 82101 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters
Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi
Abstract:
Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment
Procedia PDF Downloads 143100 Optimization of Culture Conditions of Paecilomyces tenuipes, Entomopathogenic Fungi Inoculated into the Silkworm Larva, Bombyx mori
Authors: Sunghee Nam
Abstract:
Entomopathogenic fungi is a Cordyceps species that is isolated from dead silkworm and cicada. Fungi on cicadas were described in old Chinese medicinal books and from ancient times, vegetable wasps and plant worms were widely known to have active substance and have been studied for pharmacological use. Among many fungi belonging to the genus Cordyceps, Cordyceps sinensis have been demonstrated to yield natural products possessing various biological activities and many bioactive components. Generally, It is commonly used to replenish the kidney and soothe the lung, and for the treatment of fatigue. Due to their commercial and economic importance, the demand for Cordyceps has been rapidly increased. However, a supply of Cordyceps specimen could not meet the increasing demand because of their sole dependence on field collection and habitat destruction. Because it is difficult to obtain many insect hosts in nature and the edibility of host insect needs to be verified in a pharmacological aspect. Recently, this setback was overcome that P. tenuipes was able to be cultivated in a large scale using silkworm as host. Pharmacological effects of P. tenuipes cultured on silkworm such as strengthening immune function, anti-fatigue, anti-tumor activity and controlling liver etc. have been proved. They are widely commercialized. In this study, we attempted to establish a method for stable growth inhibition of P. tenuipes on silkworm hosts and an optimal condition for synnemata formation. To determine optimum culturing conditions, temperature and light conditions were varied. The length and number of synnemata was highest at 25℃ temperature and 100~300 lux illumination. On an average, the synnemata of wild P. tenuipes measures 70 ㎜ in length and 20 in number; those of the cultured strain were relatively shorter and more in number. The number of synnemata may have increased as a result of inoculating the host with highly concentrated conidia, while the length may have decreased due to limited nutrition per individual. It is not able that changes in light illumination cause morphological variations in the synnemata. However, regulation of only light and temperature could not produce stromata like perithecia, asci, and ascospores.Keywords: optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi optimization of culture conditions of paecilomyces tenuipes, entomopathogenic fungi silkworm larva, bombyx mori
Procedia PDF Downloads 25399 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality
Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas
Abstract:
Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy
Procedia PDF Downloads 32598 Role of F18-FDG PET in Management of Differentiated Thyroid Cancers (TENIS) Patients
Authors: Seemab Safdar, Shazia Fatima, Ahmad Qureshy, M. Adnan Saeed, M. Faheem
Abstract:
Background: Thyroid cancer has 586,000 cases per year worldwide, and this translates to 3% of all tumor diagnoses. 90% of the cases fall under differentiated thyroid carcinoma (DTC), which includes follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC). During their illness, 10% of patients develop distant metastases, and two-thirds of them develop resistance to radioactive iodine (RAI) treatment. It has been shown that in some circumstances, like DTC with high TG levels and negative 131I whole-body scintigraphy (TENIS), [18F] FDG-PET-CT is an effective imaging technique. This study determines the role of [18F] FDG-PET-CT in the treatment of TENIS patients. Methods: 16 patients (n = 12 female; 4 males, age 45 ± 15 years) with histologically proven thyroid cancer (Differentiated and poorly differentiated) and high TG with negative iodine scans were included in this prospective study from January 2024 to June 2024. They underwent scanning in state-of-the-art (GE Discovery MI) [18F] FDG-PET-CT for re-staging or diagnostics of recurrent disease using a standardized protocol. All DTC subtypes and PDTC were included. The referring physicians completed standardized questionnaires both before and after PET-CT to prospectively determine the examination's effect on clinical decision-making. Patient outcomes were measured by analysis of medical records. Moreover, after PET-CT, a change in the pre-PET-CT planned therapies was documented in 32% of cases and additional invasive diagnostic procedures could be waived in 37.5 % of cases. TG levels under TSH stimulation were significantly higher in patients showing PET-CT metastases compared to patients without such findings (68.75%). Results: Without PET-CT, physicians referring to the doctors had not established a complete treatment plan for 45% of patients with thyroid carcinoma. 12/16 patients showed FDG avidity in cervical lymph nodes that were not Iodine avid previously, 2 patients had FDG avid disease in the lungs. In the process, PET-CT helped plan patient management and created a clear plan for treatment in 68.75% of patients. Conclusions: This study confirms that [18F] FDG-PET-CT used in a routine clinical setting has a very important impact on the management of patients with thyroid cancer when TG levels are persistently high in the presence of negative Iodine Scans by initiating treatments and replacing additional imaging and invasive tests.Keywords: PET-CT, TENIS, role, FDG
Procedia PDF Downloads 1597 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts
Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy
Abstract:
Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability
Procedia PDF Downloads 200