Search results for: simulated concrete pore solution (SPS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9082

Search results for: simulated concrete pore solution (SPS)

8032 Porous Carbon Nanoparticels Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen reduction reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template

Procedia PDF Downloads 368
8031 Assessment of Physical and Mechanical Properties of Perlite Mortars with Recycled Cement

Authors: Saca Nastasia, Radu Lidia, Dobre Daniela, Calotă Razvan

Abstract:

In order to achieve the European Union's sustainable and circular economy goals, strategies for reducing raw material consumption, reusing waste, and lowering CO₂ emissions have been developed. In this study, expanded perlite mortars with recycled cement (RC) were obtained and characterized. The recycled cement was obtained from demolition concrete waste. The concrete waste was crushed in a jaw and grinded in a horizontal ball mill to reduce the material's average grain size. Finally, the fine particles were sieved through a 125 µm sieve. The recycled cement was prepared by heating demolition concrete waste at 550°C for 3 hours. At this temperature, the decarbonization does not occur. The utilization of recycled cement can minimize the negative environmental effects of demolished concrete landfills as well as the demand for natural resources used in cement manufacturing. Commercial cement CEM II/A-LL 42.5R was substituted by 10%, 20%, and 30% recycled cement. By substituting reference cement (CEM II/A-LL 42.5R) by RC, a decrease in cement aqueous suspension pH, electrical conductivity, and Ca²⁺ concentration was observed for all measurements (2 hours, 6 hours, 24 hours, 4 days, and 7 days). After 2 hours, pH value was 12.42 for reference and conductivity of 2220 µS/cm and decreased to 12.27, respectively 1570 µS/cm for 30% RC. The concentration of Ca²⁺ estimated by complexometric titration was 20% lower in suspension with 30% RC in comparison to reference for 2 hours. The difference significantly diminishes over time. The mortars have cement: expanded perlite volume ratio of 1:3 and consistency between 140 mm and 200 mm. The density of fresh mortar was about 1400 kg/m3. The density, flexural and compressive strengths, water absorption, and thermal conductivity of hardened mortars were tested. Due to its properties, expanded perlite mortar is a good thermal insulation material.

Keywords: concrete waste, expanded perlite, mortar, recycled cement, thermal conductivity, mechanical strength

Procedia PDF Downloads 71
8030 Characterization of Porosity and Flow in Solid Oxide Fuel Cell with 3D Focused Ion Beam Serial Slicing

Authors: Daniel Phifer, Anna Prokhodtseva

Abstract:

DualBeam (FIB-SEM) has long been the technology of choice to sub-sample and characterize materials at site-specific locations which are difficult or impossible to extract by conventional embedding/polishing methods. Whereas Ga based FIB provides excellent resolution and enables precise material removal, the current is usually limited and only allows the extraction of small material biopsies typically ranging from 5-70um wide. Xe Plasma FIB, by contrast, has around 38x more current and can remove more material at the same time to extract significant sized chunks (100-1000um) of materials for further analysis. This increased volume has enabled time-prohibitive investigations like large grain 3D serial sectioning and EBSD and micro-machining for micro-mechanical testing. Investigation of the pore spaces with 3D modeling can determine the relative characteristics of the materials to help design or select properties for best function. Pore spaces can be described with a tortuosity number which is calculated by modules in the 3D analysis software. Xe Plasma FIB technology provides a workflow with sufficient volume to characterize porosity when both large-volume 3D materials characterization and nanometer resolution is required to understand the system.

Keywords: dual-beam, FIB-SEM, porosity, SOFC, solid oxide fuel cell

Procedia PDF Downloads 193
8029 Studying the Theoretical and Laboratory Design of a Concrete Frame and Optimizing Its Design for Impact and Earthquake Resistance

Authors: Mehrdad Azimzadeh, Seyed Mohammadreza Jabbari, Mohammadreza Hosseinzadeh Alherd

Abstract:

This paper includes experimental results and analytical studies about increasing resistance of single-span reinforced concreted frames against impact factor and their modeling according to optimization methods and optimizing the behavior of these frames under impact loads. During this study, about 30 designs for different frames were modeled and made using specialized software like ANSYS and Sap and their behavior were examined under variable impacts. Then suitable strategies were offered for frames in terms of concrete mixing in order to optimize frame modeling. To reduce the weight of the frames, we had to use fine-grained stones. After designing about eight types of frames for each type of frames, three samples were designed with the aim of controlling the impact strength parameters, and a good shape of the frame was created for the impact resistance, which was a solid frame with muscular legs, and as a bond away from each other as much as possible with a 3 degree gradient in the upper part of the beam.

Keywords: optimization, reinforced concrete, optimization methods, impact load, earthquake

Procedia PDF Downloads 163
8028 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 236
8027 Analytical and Experimental Evaluation of Effects of Nonstructural Brick Walls on Earthquake Response of Reinforced Concrete Structures

Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz

Abstract:

The reinforced concrete (RC) framed structures composed of beams, columns, shear walls and the slabs. The other members are assumed to be nonstructural. Especially the brick infill walls which are used to separate the rooms or spaces are just handled as dead loads. On the other hand, if these infills are constructed within the frame bays, they also have higher shear and compression capacities. It is a well-known fact that, brick infills increase the lateral rigidity of the structure and thought to be a reserve capacity in the design. But, brick infills can create unfavorable failure or damage modes in the earthquake action such as soft story or short columns. The increase in the lateral rigidity also causes an over estimation of natural period of the structure and the corresponding earthquake loads in the design are less than the actual ones. In order to obtain accurate and realistic design results, the infills must be modelled in the structural design and their capacities must be included. Unfortunately, in Turkish Earthquake Code, there is no design methodology for the engineers. In this paper, finite element modelling of infilled reinforced concrete structures are studied. The proposed or used method is compared with the experimental results of a previous study. The effect of infills on the structural response is expressed within the paper.

Keywords: seismic loading, brick infills, finite element analysis, reinforced concrete, earthquake code

Procedia PDF Downloads 296
8026 A Horn Antenna Loaded with FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency selective surface (FSS), horn

Procedia PDF Downloads 438
8025 Co-Integrated Commodity Forward Pricing Model

Authors: F. Boudet, V. Galano, D. Gmira, L. Munoz, A. Reina

Abstract:

Commodities pricing needs a specific approach as they are often linked to each other and so are expectedly doing their prices. They are called co-integrated when at least one stationary linear combination exists between them. Though widespread in economic literature, and even if many equilibrium relations and co-movements exist in the economy, this principle of co-movement is not developed in derivatives field. The present study focuses on the following problem: How can the price of a forward agreement on a commodity be simulated, when it is co-integrated with other ones? Theoretical analysis is developed from Gibson-Schwartz model and an analytical solution is given for short maturities contracts and under risk-neutral conditions. The application has been made to crude oil and heating oil energy commodities and result confirms the applicability of proposed method.

Keywords: co-integration, commodities, forward pricing, Gibson-Schwartz

Procedia PDF Downloads 266
8024 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma

Abstract:

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding

Procedia PDF Downloads 230
8023 Biocarbon for High-Performance Supercapacitors Derived from the Wastewater Treatment of Sewage Sludge

Authors: Santhosh Ravichandran, F. J. Rodríguez-Varela

Abstract:

In this study, a biocarbon (BC) was made from sewage sludge from the water treatment plant (PTAR) in Saltillo, Coahuila, Mexico. The sludge was carbonized in water and then chemically activated by pyrolysis. The biocarbon was evaluated physicochemically using XRD, SEM-EDS, and FESEM. A broad (002) peak attributable to graphitic structures indicates that the material is amorphous. The resultant biocarbon has a high specific surface area (412 m2 g-1), a large pore volume (0.39 cm3 g-1), interconnected hierarchical porosity, and outstanding electrochemical performance. It is appropriate for high-performance supercapacitor electrode materials due to its high specific capacitance of 358 F g-1, great rate capability, and outstanding cycling stability (around 87% capacitance retention after 10,000 cycles, even at a high current density of 19 A g-1). In an aqueous solution, the constructed BC/BC symmetric supercapacitor exhibits increased super capacitor behavior with a high energy density of 29.5 Whkg-1. The concept provides an efficient method for producing high-performance electrode materials for supercapacitors from conventional water treatment biomass wastes.

Keywords: supercapacitors, carbon, material science, batteries

Procedia PDF Downloads 61
8022 Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation

Authors: Kahil Amar, Meziani Faroudja, Khelil Nacim

Abstract:

The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.

Keywords: seismic performance, performance level, pushover analysis, plastic rotation, plastic hinge

Procedia PDF Downloads 118
8021 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods

Authors: Mehdi Ghatei, Masoomeh Lorestani

Abstract:

Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.

Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model

Procedia PDF Downloads 256
8020 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.

Keywords: deflection curves, foamed concrete (FC), load-strain relationships, precast foamed concrete sandwich panel (PFCSP), slenderness ratio, vertical in-plane shear strength capacity

Procedia PDF Downloads 201
8019 Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Authors: Othman S. Alsheraida, Sherif El-Gamal

Abstract:

Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Keywords: anchorage, concrete, epoxy, frp, pre-stressed

Procedia PDF Downloads 279
8018 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 377
8017 Magnetic Survey for the Delineation of Concrete Pillars in Geotechnical Investigation for Site Characterization

Authors: Nuraddeen Usman, Khiruddin Abdullah, Mohd Nawawi, Amin Khalil Ismail

Abstract:

A magnetic survey is carried out in order to locate the remains of construction items, specifically concrete pillars. The conventional Euler deconvolution technique can perform the task but it requires the use of fixed structural index (SI) and the construction items are made of materials with different shapes which require different SI (unknown). A Euler deconvolution technique that estimate background, horizontal coordinate (xo and yo), depth and structural index (SI) simultaneously is prepared and used for this task. The synthetic model study carried indicated the new methodology can give a good estimate of location and does not depend on magnetic latitude. For field data, both the total magnetic field and gradiometer reading had been collected simultaneously. The computed vertical derivatives and gradiometer readings are compared and they have shown good correlation signifying the effectiveness of the method. The filtering is carried out using automated procedure, analytic signal and other traditional techniques. The clustered depth solutions coincided with the high amplitude/values of analytic signal and these are the possible target positions of the concrete pillars being sought. The targets under investigation are interpreted to be located at the depth between 2.8 to 9.4 meters. More follow up survey is recommended as this mark the preliminary stage of the work.

Keywords: concrete pillar, magnetic survey, geotechnical investigation, Euler Deconvolution

Procedia PDF Downloads 244
8016 Structural Evaluation of Airfield Pavement Using Finite Element Analysis Based Methodology

Authors: Richard Ji

Abstract:

Nondestructive deflection testing has been accepted widely as a cost-effective tool for evaluating the structural condition of airfield pavements. Backcalculation of pavement layer moduli can be used to characterize the pavement existing condition in order to compute the load bearing capacity of pavement. This paper presents an improved best-fit backcalculation methodology based on deflection predictions obtained using finite element method (FEM). The best-fit approach is based on minimizing the squared error between falling weight deflectometer (FWD) measured deflections and FEM predicted deflections. Then, concrete elastic modulus and modulus of subgrade reaction were back-calculated using Heavy Weight Deflectometer (HWD) deflections collected at the National Airport Pavement Testing Facility (NAPTF) test site. It is an alternative and more versatile method in considering concrete slab geometry and HWD testing locations compared to methods currently available.

Keywords: nondestructive testing, pavement moduli backcalculation, finite element method, concrete pavements

Procedia PDF Downloads 154
8015 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 154
8014 Laboratory Evaluation of Asphalt Concrete Prepared with Over Burnt Brick Aggregate Treated by Zycosoil

Authors: D. Sarkar, M. Pal, A. K. Sarkar

Abstract:

Asphaltic concrete for pavement construction in India are produced by using crushed stone, gravels etc. as aggregate. In north-Eastern region of India, there is a scarcity o f stone aggregate. Therefore the road engineers are always in search of an optional material as aggregate which can replace the regularly used material. The purpose of this work was to evaluate the utilization of substandard or marginal aggregates in flexible pavement construction. The investigation was undertaken to evaluate the effects of using lower quality aggregates such as over burnt brick aggregate on the preparation of asphalt concrete for flexible pavements. The scope of this work included a review of available literature and existing data, a laboratory evaluation organized to determine the effects of marginal aggregates and potential techniques to upgrade these substandard materials, and a laboratory evaluation of these upgraded marginal aggregate asphalt mixtures. Over burnt brick aggregates are water susceptible and can leads to moisture damage. Moisture damage is the progressive loss of functionality of the material owing to loss of the adhesion bond between the asphalt binder and the aggregate surface. Hence, zycosoil as an anti striping additive were evaluated in this study. This study summarizes the results of the laboratory evaluation carried out to investigate the properties of asphalt concrete prepared with zycosoil modified over burnt brick aggregate. Marshall specimen were prepared with stone aggregate, zycosoil modified stone aggregate, over burnt brick aggregate and zycosoil modified over burnt brick aggregate. Results show that addition of zycosoil with stone aggregate increased stability by 6% and addition of zycosoil with over burnt brick aggregate increased stability by 30%.

Keywords: asphalt concrete, over burnt brick aggregate, marshall stability, zycosoil

Procedia PDF Downloads 338
8013 Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices

Authors: Shubham Jaiswal

Abstract:

In this study, the numerical solution of two-dimensional solute transport system in a homogeneous porous medium of finite-length is obtained. The considered transport system have the terms accounting for advection, dispersion and first-order decay with first-type boundary conditions. Initially, the aquifer is considered solute free and a constant input-concentration is considered at inlet boundary. The solution is describing the solute concentration in rectangular inflow-region of the homogeneous porous media. The numerical solution is derived using a powerful method viz., spectral collocation method. The numerical computation and graphical presentations exhibit that the method is effective and reliable during solution of the physical model with complicated boundary conditions even in the presence of reaction term.

Keywords: two-dimensional solute transport system, spectral collocation method, Chebyshev polynomials, Chebyshev differentiation matrix

Procedia PDF Downloads 216
8012 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 216
8011 Numerical Analysis of Prefabricated Horizontal Drain Induced Consolidation Using ABAQUS

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

This paper deals with the numerical analysis of Prefabricated Horizontal Drain (PHD) induced consolidation of clayey deposits, using ABAQUS. PHDs are much like Prefabricated Vertical Drains (PVDs) installed in horizontal layers, used mainly for enhancing the consolidation of clayey fill embankments, and dredged mud deposits. The efficiency of the system depends mainly on the spacing and layout of the drain. Hence, two spacing related parameters are defined, namely WH (width to horizontal spacing ratio) and VH (vertical to horizontal spacing ratio), and the finite element models are developed based on plane strain unit cell conditions under various combinations of these parameters. The analysis results, in terms of degree of consolidation (U), are compared with the established theories. Based on the analysis, a set of equations are proposed to analyse the PHD induced consolidation. The proposed method is found to be reasonably accurate. Further, the effect of PHDs at different spacing ratios, in accelerating consolidation of a clayey embankment fill is analysed in terms of pore pressure dissipation rate, and settlement. The PHD is found to accelerate the rate of pore pressure dissipation by more than 50%, thus reducing the time for final settlement significantly.

Keywords: ABAQUS, consolidation, plane strain, prefabricated horizontal drain

Procedia PDF Downloads 341
8010 Numerical Study of Blackness Factor Effect on Dark Solitons

Authors: Khelil Khadidja

Abstract:

In this paper, blackness of dark solitons is considered. The exact combination between nonlinearity and dispersion is responsible of solitons stability. Dark solitons get born when dispersion is abnormal and balanced by nonlinearity, at the opposite of brillant solitons which is born by normal dispersion and nonlinearity together. Thanks to their stability, dark solitons are suitable for transmission by optical fibers. Dark solitons which are a solution of Nonlinear Schrodinger equation are simulated with Matlab to discuss the influence of coefficient of blackness. Results show that there is a direct proportion between the coefficient of blackness and the intensity of dark soliton. Those gray solitons are stable and convenient for transmission.

Keywords: abnormal dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 181
8009 Study of the Suitability for the Use of Gravel in the Regions around Araz River in Karabakh as a Concrete Aggregate

Authors: S. B. Shahmarova, F. N. Iskandarli, J. T. Zeynalov, F. N. Mammadov, M. M. Mirzayev, F. Y. Bayramov

Abstract:

The physical, mechanical, and chemical properties of aggregates play an important role in the production of ready-mixed concrete. Furthermore, the alkali-silicate reaction of aggregates is one of the essential factors in construction projects for the durability and longer service life of buildings and construction structures to be built. It is necessary to use the aggregates from the liberated regions of Karabakh and East Zangazur in the preparation of concretes to be produced for reconstruction and renovation projects in those regions. In this regard, the study of the physical and mechanical properties of aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) became a significant issue. So, gravel samples were taken from seven different sources located in the regions around Araz River, where the quarries are planned to be built. The chemical oxide composition of the samples was determined, water absorption and specific gravity tests, chloride, alkali-silicate reaction tests, aggregate crushing strength test, Los Angeles, and frost resistance (into the solution of MgSO₄ and Na₂SO₄) tests were performed, and the results were evaluated in accordance with the relevant standards. As a result, it was determined that the aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) conform to the relative standards and can be used effectively in the production of various concretes to be used for the projects in Karabakh.

Keywords: aggregates of the regions around Araz River (Fuzuli, Jabrayil, and Zangilan), physical and mechanical properties, alkali-silicate reaction, Karabakh, Azerbaijan

Procedia PDF Downloads 75
8008 Extending Smart City Infrastructure to Cover Natural Disasters

Authors: Nina Dasari, Satvik Dasari

Abstract:

Smart city solutions are being developed across the globe to transform urban areas. However, the infrastructure enablement for alerting natural disasters such as floods and wildfires is deficient. This paper discusses an innovative device that could be used as part of the smart city initiative to detect and provide alerts in case of floods at road crossings and wildfires. An Internet of Things (IoT) smart city node was designed, tested, and deployed with collaboration from the City of Austin. The end to end solution includes a 3G enabled IoT device, flood and fire sensors, cloud, a mobile app, and IoT analytics. The real-time data was collected and analyzed using IoT analytics to refine the solution for the past year. The results demonstrate that the proposed solution is reliable and provides accurate results. This low-cost solution is viable, and it can replace the current solution which costs tens of thousands of dollars.

Keywords: analytics, internet of things, natural disasters, smart city

Procedia PDF Downloads 210
8007 Stability of Composite Struts Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The aim of this paper is to examine the behavior of elastic stability of reinforced and composite concrete struts with axial loads. The objective of this study is to verify the ability of the Modified Newmark Method to include geometric non-linearity in addition to non-linearity due to cracking, and also to show the advantage of the established method to reconsider an ignored minor parameter in mathematical modeling, such as the effect of the cracking by extra geometric bending moment Ny on cross-section properties. The purpose of this investigation is not to present some new results for the instability of reinforced or composite concrete columns. Therefore, no kinds of non-linearity involved in the problem are considered here. Only as mentioned, it is a part of the verification of the new established method to solve two kinds of non-linearity P- δ effect and cracking together simultaneously. However, the Modified Newmark Method can be used to solve non-linearity of materials and time-dependent behavior of concrete. However, since it is out of the scope of this article, it is not considered.

Keywords: stability, buckling, modified newmark method, reinforced

Procedia PDF Downloads 309
8006 Analysis of the Behavior of the Structure Under Internal Anfo Explosion

Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim

Abstract:

Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.

Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety

Procedia PDF Downloads 59
8005 Advantages of Utilizing Post-Tensioned Stress Ribbon Systems in Long Span Roofs

Authors: Samih Ahmed, Guayente Minchot, Fritz King, Mikael Hallgren

Abstract:

The stress ribbon system has numerous advantages that include but are not limited to increasing overall stiffness, control deflections, and reduction of materials consumption, which in turn, reduces the load and the cost. Nevertheless, its use is usually limited to bridges, in particular, pedestrian bridges; this can be attributed to the insufficient space that buildings' usually have for end supports, and/or back- stayed cables, that can accommodate the expected high pull-out forces occurring at the cables' ends. In this work, the roof of Västerås Travel Center, which will become one of the longest cable suspended roofs in the world, was chosen as a case study. The aim was to investigate the optimal technique to model the post-tensioned stress ribbon system for the roof structure using the FEM software SAP2000 and to assess any possible reduction in the pull-out forces, deflections, and concrete stresses. Subsequently, a conventional cable suspended roof was simulated using SAP2000, and compared to the post-tension stress ribbon system in order to examine the potential of the latter. Moreover, the effects of temperature loads and support movements on the final design loads were examined. Based on the study, a few practical recommendations concerning the construction method and the iterative design process, required to meet the architectural geometrical demands, are stated by the authors. The results showed that the post-tensioned stress ribbon system reduces the concrete stresses, overall deflections, and more importantly, reduces the pull-out forces and the vertical reactions at both ends by up to 16% and 11%, respectively, which substantially reduces the design forces for the support structures. The magnitude of these reductions was found to be highly correlated to the applied prestressing force, making the size of the prestressing force a key factor in the design.

Keywords: cable suspended, post-tension, roof structure, SAP2000, stress ribbon

Procedia PDF Downloads 145
8004 Drying Shrinkage of Concrete: Scale Effect and Influence of Reinforcement

Authors: Qier Wu, Issam Takla, Thomas Rougelot, Nicolas Burlion

Abstract:

In the framework of French underground disposal of intermediate level radioactive wastes, concrete is widely used as a construction material for containers and tunnels. Drying shrinkage is one of the most disadvantageous phenomena of concrete structures. Cracks generated by differential shrinkage could impair the mechanical behavior, increase the permeability of concrete and act as a preferential path for aggressive species, hence leading to an overall decrease in durability and serviceability. It is of great interest to understand the drying shrinkage phenomenon in order to predict and even to control the strains of concrete. The question is whether the results obtained from laboratory samples are in accordance with the measurements on a real structure. Another question concerns the influence of reinforcement on drying shrinkage of concrete. As part of a global project with Andra (French National Radioactive Waste Management Agency), the present study aims to experimentally investigate the scale effect as well as the influence of reinforcement on the development of drying shrinkage of two high performance concretes (based on CEM I and CEM V cements, according to European standards). Various sizes of samples are chosen, from ordinary laboratory specimens up to real-scale specimens: prismatic specimens with different volume-to-surface (V/S) ratios, thin slices (thickness of 2 mm), cylinders with different sizes (37 and 160 mm in diameter), hollow cylinders, cylindrical columns (height of 1000 mm) and square columns (320×320×1000 mm). The square columns have been manufactured with different reinforcement rates and can be considered as mini-structures, to approximate the behavior of a real voussoir from the waste disposal facility. All the samples are kept, in a first stage, at 20°C and 50% of relative humidity (initial conditions in the tunnel) in a specific climatic chamber developed by the Laboratory of Mechanics of Lille. The mass evolution and the drying shrinkage are monitored regularly. The obtained results show that the specimen size has a great impact on water loss and drying shrinkage of concrete. The specimens with a smaller V/S ratio and a smaller size have a bigger drying shrinkage. The correlation between mass variation and drying shrinkage follows the same tendency for all specimens in spite of the size difference. However, the influence of reinforcement rate on drying shrinkage is not clear based on the present results. The second stage of conservation (50°C and 30% of relative humidity) could give additional results on these influences.

Keywords: concrete, drying shrinkage, mass evolution, reinforcement, scale effect

Procedia PDF Downloads 159
8003 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 378