Search results for: recognition methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16636

Search results for: recognition methods

15586 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.

Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods

Procedia PDF Downloads 44
15585 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution

Authors: Shri Krishna Mishra

Abstract:

In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.

Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation

Procedia PDF Downloads 454
15584 Evaluating Value of Users' Personal Information Based on Cost-Benefit Analysis

Authors: Jae Hyun Park, Sangmi Chai, Minkyun Kim

Abstract:

As users spend more time on the Internet, the probability of their personal information being exposed has been growing. This research has a main purpose of investigating factors and examining relationships when Internet users recognize their value of private information with a perspective of an economic asset. The study is targeted on Internet users, and the value of their private information will be converted into economic figures. Moreover, how economic value changes in relation with individual attributes, dealer’s traits, circumstantial properties will be studied. In this research, the changes in factors on private information value responding to different situations will be analyzed in an economic perspective. Additionally, this study examines the associations between users’ perceived risk and value of their personal information. By using the cost-benefit analysis framework, the hypothesis that the user’s sense in private information value can be influenced by individual attributes and situational properties will be tested. Therefore, this research will attempt to provide answers for three research objectives. First, this research will identify factors that affect value recognition of users’ personal information. Second, it provides evidences that there are differences on information system users’ economic value of information responding to personal, trade opponent, and situational attributes. Third, it investigates the impact of those attributes on individuals’ perceived risk. Based on the assumption that personal, trade opponent and situation attributes make an impact on the users’ value recognition on private information, this research will present the understandings on the different impacts of those attributes in recognizing the value of information with the economic perspective and prove the associative relationships between perceived risk and decision on the value of users’ personal information. In order to validate our research model, this research used the regression methodology. Our research results support that information breach experience and information security systems is associated with users’ perceived risk. Information control and uncertainty are also related to users’ perceived risk. Therefore, users’ perceived risk is considered as a significant factor on evaluating the value of personal information. It can be differentiated by trade opponent and situational attributes. This research presents new perspective on evaluating the value of users’ personal information in the context of perceived risk, personal, trade opponent and situational attributes. It fills the gap in the literature by providing how users’ perceived risk are associated with personal, trade opponent and situation attitudes in conducting business transactions with providing personal information. It adds to previous literature that the relationship exists between perceived risk and the value of users’ private information in the economic perspective. It also provides meaningful insights to the managers that in order to minimize the cost of information breach, managers need to recognize the value of individuals’ personal information and decide the proper amount of investments on protecting users’ online information privacy.

Keywords: private information, value, users, perceived risk, online information privacy, attributes

Procedia PDF Downloads 239
15583 Anthropomorphic Brand Mascot Serve as the Vehicle: To Quickly Remind Customers Who You Are and What You Stand for in Indian Cultural Context

Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabati

Abstract:

For many years organization have been exercising a creative technique of applying brand mascots, which results in making a visual ‘ambassador’ of a brand. The goal of mascot’s is just not confined to strengthening the brand identity, improving customer perception, but also acting as a vehicle of anthropomorphic translation towards the consumer. Such that it helps in embracing the power of recognition and processing the experiences happening in our daily lives. The study examines the relationship between the specific mascot features and brand attitude. It eliminates that mascot trust is an important mediator of the mascot features on brand attitude. Anthropomorphic characters turn out to be the key players despite the application of brand mascots in today’s marketing.

Keywords: advertising, mascot, branding, recall

Procedia PDF Downloads 334
15582 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment

Authors: Miklos Taliga

Abstract:

In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.

Keywords: safety-critical elements, quality managent, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard

Procedia PDF Downloads 585
15581 Associated Risks of Spontaneous Lung Collapse after Shoulder Surgery: A Literature Review

Authors: Fiona Bei Na Tan, Glen Wen Kiat Ho, Ee Leen Liow, Li Yin Tan, Sean Wei Loong Ho

Abstract:

Background: Shoulder arthroscopy is an increasingly common procedure. Pneumothorax post-shoulder arthroscopy is a rare complication. Objectives: Our aim is to highlight a case report of pneumothorax post shoulder arthroscopy and to conduct a literature review to evaluate the possible risk factors associated with developing a pneumothorax during or after shoulder arthroscopy. Case Report: We report the case of a 75-year-old male non-smoker who underwent left shoulder arthroscopy without regional anaesthesia and in the left lateral position. The general anaesthesia and surgery were uncomplicated. The patient was desaturated postoperatively and was found to have a pneumothorax on examination and chest X-ray. A chest tube drain was inserted promptly into the right chest. He had an uncomplicated postoperative course. Methods: PubMed Medline and Cochrane database search was carried out using the terms shoulder arthroplasty, pneumothorax, pneumomediastinum, and subcutaneous emphysema. We selected full-text articles written in English. Results: Thirty-two articles were identified and thoroughly reviewed. Based on our inclusion and exclusion criteria, 14 articles, which included 20 cases of pneumothorax during or after shoulder arthroscopy, were included. Eighty percent (16/20) of pneumothoraxes occurred postoperatively. In the articles that specify the side of pneumothorax, 91% (10/11) occur on the ipsilateral side of the arthroscopy. Eighty-eight percent (7/8) of pneumothoraxes occurred when subacromial decompression was performed. Fifty-six percent (9/16) occurred in patients placed in the lateral decubitus position. Only 30% (6/20) occurred in current or ex-smokers, and only 25% (5/20) had a pre-existing lung condition. Overall, of the articles that posit a mechanism, 75% (9/12) deem the pathogenesis to be multifactorial. Conclusion: The exact mechanism of pneumothorax is currently unknown. Awareness of this complication and timely recognition are important to prevent life-threatening sequelae. Surgeons should have a low threshold to obtain diagnostic plain radiographs in the event of clinical suspicion.

Keywords: rotator cuff repair, decompression, pressure, complication

Procedia PDF Downloads 67
15580 Cooperative Coevolution for Neuro-Evolution of Feed Forward Networks for Time Series Prediction Using Hidden Neuron Connections

Authors: Ravneil Nand

Abstract:

Cooperative coevolution uses problem decomposition methods to solve a larger problem. The problem decomposition deals with breaking down the larger problem into a number of smaller sub-problems depending on their method. Different problem decomposition methods have their own strengths and limitations depending on the neural network used and application problem. In this paper we are introducing a new problem decomposition method known as Hidden-Neuron Level Decomposition (HNL). The HNL method is competing with established problem decomposition method in time series prediction. The results show that the proposed approach has improved the results in some benchmark data sets when compared to the standalone method and has competitive results when compared to methods from literature.

Keywords: cooperative coevaluation, feed forward network, problem decomposition, neuron, synapse

Procedia PDF Downloads 335
15579 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy

Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.

Abstract:

Background:  Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.

Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality

Procedia PDF Downloads 36
15578 Working Memory and Audio-Motor Synchronization in Children with Different Degrees of Central Nervous System's Lesions

Authors: Anastasia V. Kovaleva, Alena A. Ryabova, Vladimir N. Kasatkin

Abstract:

Background: The most simple form of entrainment to a sensory (typically auditory) rhythmic stimulus involves perceiving and synchronizing movements with an isochronous beat with one level of periodicity, such as that produced by a metronome. Children with pediatric cancer usually treated with chemo- and radiotherapy. Because of such treatment, psychologists and health professionals declare cognitive and motor abilities decline in cancer patients. The purpose of our study was to measure working memory characteristics with association with audio-motor synchronization tasks, also involved some memory resources, in children with different degrees of central nervous system lesions: posterior fossa tumors, acute lymphoblastic leukemia, and healthy controls. Methods: Our sample consisted of three groups of children: children treated for posterior fossa tumors (PFT-group, n=42, mean age 12.23), children treated for acute lymphoblastic leukemia (ALL-group, n=11, mean age 11.57) and neurologically healthy children (control group, n=36, mean age 11.67). Participants were tested for working memory characteristics with Cambridge Neuropsychological Test Automated Battery (CANTAB). Pattern recognition memory (PRM) and spatial working memory (SWM) tests were applied. Outcome measures of PRM test include the number and percentage of correct trials and latency (speed of participant’s response), and measures of SWM include errors, strategy, and latency. In the synchronization tests, the instruction was to tap out a regular beat (40, 60, 90 and 120 beats per minute) in synchrony with the rhythmic sequences that were played. This meant that for the sequences with an isochronous beat, participants were required to tap into every auditory event. Variations of inter-tap-intervals and deviations of children’s taps from the metronome were assessed. Results: Analysis of variance revealed the significant effect of group (ALL, PFT and control) on such parameters as short-term PRM, SWM strategy and errors. Healthy controls demonstrated more correctly retained elements, better working memory strategy, compared to cancer patients. Interestingly that ALL patients chose the bad strategy, but committed significantly less errors in SWM test then PFT and controls did. As to rhythmic ability, significant associations of working memory were found out only with 40 bpm rhythm: the less variable were inter-tap-intervals of the child, the more elements in memory he/she could retain. The ability to audio-motor synchronization may be related to working memory processes mediated by the prefrontal cortex whereby each sensory event is actively retrieved and monitored during rhythmic sequencing. Conclusion: Our results suggest that working memory, tested with appropriate cognitive methods, is associated with the ability to synchronize movements with rhythmic sounds, especially in sub-second intervals (40 per minute).

Keywords: acute lymphoblastic leukemia (ALL), audio-motor synchronization, posterior fossa tumor, working memory

Procedia PDF Downloads 300
15577 Mariculture Trials of the Philippine Blue Sponge Xestospongia sp.

Authors: Clairecynth Yu, Geminne Manzano

Abstract:

The mariculture potential of the Philippine blue sponge, Xestospongia sp. was assessed through the pilot sponge culture in the open-sea at two different biogeographic regions in the Philippines. Thirty explants were randomly allocated for the Puerto Galera, Oriental Mindoro culture setup and the other nine were transported to Lucero, Bolinao, Pangasinan. Two different sponge culture methods of the sponge explants- the lantern and the wall method, were employed to assess the production of the Renieramycin M. Both methods have shown to be effective in growing the sponge explants and that the Thin Layer Chromatography (TLC) results have shown that Renieramycin M is present on the sponges. The effect of partial harvesting in the growth and survival rates of the blue sponge in the Puerto Galera setup was also determined. Results showed that a higher growth rate was observed on the partially harvested explants on both culture methods as compared to the unharvested explants.

Keywords: chemical ecology, porifera, sponge, Xestospongia sp.

Procedia PDF Downloads 273
15576 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)

Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier

Abstract:

The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.

Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance

Procedia PDF Downloads 156
15575 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
15574 Comparison of Different Extraction Methods for the Determination of Polyphenols

Authors: Senem Suna

Abstract:

Extraction of bioactive compounds from several food/food products comes as an important topic and new trend related with health promoting effects. As a result of the increasing interest in natural foods, different methods are used for the acquisition of these components especially polyphenols. However, special attention has to be paid to the selection of proper techniques or several processing technologies (supercritical fluid extraction, microwave-assisted extraction, ultrasound-assisted extraction, powdered extracts production) for each kind of food to get maximum benefit as well as the obtainment of phenolic compounds. In order to meet consumer’s demand for healthy food and the management of quality and safety requirements, advanced research and development are needed. In this review, advantages, and disadvantages of different extraction methods, their opportunities to be used in food industry and the effects of polyphenols are mentioned in details. Consequently, with the evaluation of the results of several studies, the selection of the most suitable food specific method was aimed.

Keywords: bioactives, extraction, powdered extracts, supercritical fluid extraction

Procedia PDF Downloads 239
15573 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 251
15572 Factors Relating to Motivation to Change Behaviors in Individuals Who Are Overweight

Authors: Teresa Wills, Geraldine Mccarthy, Nicola Cornally

Abstract:

Background: Obesity is an emerging healthcare epidemic affecting virtually all age and socio-economic groups and is one of the most serious and prevalent diseases of the 21st century. It is a public health challenge because of its prevalence, associated costs and health effects. The increasing prevalence of obesity has created a social perception that overweight body sizes are healthy and normal. This normalization of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation thus impeding recognition of obesity. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. It is widely accepted that the causes of obesity are complex and multi-factorial. Engagement of individuals in weight management programmes is difficult if they do not perceive they have a problem with their weight. Recognition of the problem is a key component of obesity management and identifying the main predictors of behaviour is key to designing health behaviour interventions. Aim: The aim of the research was to determine factors relating to motivation to change behaviours in individuals who perceive themselves to be overweight. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. A sample of 202 men and women who perceived themselves to be overweight participated in the research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Findings: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p = < 0.019) and environmental barriers to physical activity (p= < 0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p < 0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. These findings have important implications for health professionals to help inform their practice and for the development of intervention programmes to prevent and control obesity.

Keywords: motivation to change behaviours, obesity, predictors of behavior, interventions, overweight

Procedia PDF Downloads 414
15571 Effects of Storage Methods on Proximate Compositions of African Yam Bean (Sphenostylis stenocarpa) Seeds

Authors: Iyabode A. Kehinde, Temitope A. Oyedele, Clement G. Afolabi

Abstract:

One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on the nutritive composition of AYB seeds stored in three types of storage materials viz; Jute bags, Polypropylene bags, and Plastic Bowls. Freshly harvested seeds of AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the storeroom was recorded monthly with Kestrel pocket weather tracker 4000. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. The temperature of the storeroom decreased from 32.9ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by the increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that of the three storage materials jute bag was more effective at preserving AYB seeds.

Keywords: storage methods, proximate composition, African Yam Bean, fungi

Procedia PDF Downloads 134
15570 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537
15569 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 482
15568 Using Learning Apps in the Classroom

Authors: Janet C. Read

Abstract:

UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.

Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy

Procedia PDF Downloads 71
15567 Feedback from Experiments on Managing Methods against Japanese Knotweed on a River Appendix of the RhôNe between 2015 and 2020

Authors: William Brasier, Nicolas Rabin, Celeste Joly

Abstract:

Japanese knotweed (Fallopia japonica) is very present on the banks of the Rhone, colonizing more and more areas along the river. The Compagnie Nationale du Rhone (C.N.R.), which manages the river, has experimented with several control techniques in recent years. Since 2015, 15 experimental plots have been monitored on the banks of a restored river appendix to measure the effect of three control methods: confinement by felt, repeated mowing and the planting of competing species and/or species with allelopathic power: Viburnum opulus, Rhamnus frangula, Sambucus ebulus and Juglans regia. Each year, the number of stems, the number of elderberry plants, the height of the plants and photographs were collected. After six years of monitoring, the results showed that the density of knotweed stems decreased by 50 to 90% on all plots. The control methods are sustainable and are gradually gaining in efficiency. The establishment of native plants coupled with regular manual maintenance can reduce the development of Japanese knotweed. Continued monitoring over the next few years will determine the kinetics of the total eradication (i.e. 0 stem/plot) of the Japanese knotweed by these methods.

Keywords: fallopia japonica, interspecific plant competition , Rhone river, riparian trees

Procedia PDF Downloads 132
15566 Waters Colloidal Phase Extraction and Preconcentration: Method Comparison

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

Colloids are ubiquitous in the environment and are known to play a major role in enhancing the transport of trace elements, thus being an important vector for contaminants dispersion. Colloids study and characterization are necessary to improve our understanding of the fate of pollutants in the environment. However, in stream water and groundwater, colloids are often very poorly concentrated. It is therefore necessary to pre-concentrate colloids in order to get enough material for analysis, while preserving their initial structure. Many techniques are used to extract and/or pre-concentrate the colloidal phase from bulk aqueous phase, but yet there is neither reference method nor estimation of the impact of these different techniques on the colloids structure, as well as the bias introduced by the separation method. In the present work, we have tested and compared several methods of colloidal phase extraction/pre-concentration, and their impact on colloids properties, particularly their size distribution and their elementary composition. Ultrafiltration methods (frontal, tangential and centrifugal) have been considered since they are widely used for the extraction of colloids in natural waters. To compare these methods, a ‘synthetic groundwater’ was used as a reference. The size distribution (obtained by Field-Flow Fractionation (FFF)) and the chemical composition of the colloidal phase (obtained by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and Total Organic Carbon analysis (TOC)) were chosen as comparison factors. In this way, it is possible to estimate the pre-concentration impact on the colloidal phase preservation. It appears that some of these methods preserve in a more efficient manner the colloidal phase composition while others are easier/faster to use. The choice of the extraction/pre-concentration method is therefore a compromise between efficiency (including speed and ease of use) and impact on the structural and chemical composition of the colloidal phase. In perspective, the use of these methods should enhance the consideration of colloidal phase in the transport of pollutants in environmental assessment studies and forensics.

Keywords: chemical composition, colloids, extraction, preconcentration methods, size distribution

Procedia PDF Downloads 216
15565 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 584
15564 Thoughts on the Informatization Technology Innovation of Cores and Samples in China

Authors: Honggang Qu, Rongmei Liu, Bin Wang, Yong Xu, Zhenji Gao

Abstract:

There is a big gap in the ability and level of the informatization technology innovation of cores and samples compared with developed countries. Under the current background of promoting the technology innovation, how to strengthen the informatization technology innovation of cores and samples for National Cores and Samples Archives, which is a national innovation research center, is an important research topic. The paper summarizes the development status of cores and samples informatization technology, and finds the gaps and deficiencies, and proposes the innovation research directions and content, including data extraction, recognition, processing, integration, application and so on, so as to provide some reference and guidance for the future innovation research of the archives and support better the geological technology innovation in China.

Keywords: cores and samples;, informatization technology;, innovation;, suggestion

Procedia PDF Downloads 126
15563 Using of Bimolecular Fluorescence Complementation (BiFC) Assays to Study Homo and/ or Heterodimerization of Laminin Receptor 37 LRP/ 67 LR with Galectin-3

Authors: Fulwah Alqahtani, Jafar Mahdavi, Lee Weldon, Nick Holliday, Dlawer Ala'Aldeen

Abstract:

There are two isoforms of laminin receptor; monomeric 37 kDa laminin receptor precursor (37 LRP) and mature 67 kDa laminin receptor (67 LR). The relationship between the 67 LR and its precursor 37 LRP is not completely understood, but previous observations have suggested that 37 LRP can undergo homo- and/or hetero- dimerization with Galectin-3 (Gal-3) to form mature 67 LR. Gal-3 is the only member of the chimera-type group of galectins, and has one C-terminal carbohydrate recognition domain (CRD) that is responsible for binding the ß-galactoside moieties of mono- or oligosaccharides on several host and microbial molecules. The aim of this work was to investigate homo- and hetero-dimerization among the 37 LRP and Gal-3 to form mature 67 LR in mammalian cells using bimolecular fluorescence complementation (BiFC).

Keywords: 37 LRP, 67 LR, Gal-3, BiFC

Procedia PDF Downloads 504
15562 Human Resource Management Practices and Employee Retention in Public Higher Learning Institutions in the Maldives

Authors: Shaheeb Abdul Azeez, Siong-Choy Chong

Abstract:

Background: Talent retention is increasingly becoming a major challenge for many industries due to the high turnover rate. Public higher learning institutions in the Maldives have a similar situation with the turnover of their employees'. This paper is to identify whether Human Resource Management (HRM) practices have any impact on employee retention in public higher learning institutions in the Maldives. Purpose: This paper aims to identify the influence of HRM practices on employee retention in public higher learning institutions in the Maldives. A total of 15 variables used in this study; 11 HRM practices as independent variables (leadership, rewards, salary, employee participation, compensation, training and development, career development, recognition, appraisal system and supervisor support); job satisfaction and motivation as mediating variables; demographic profile as moderating variable and employee retention as dependent variable. Design/Methodology/Approach: A structured self-administered questionnaire was used for data collection. A total of 300 respondents were selected as the study sample, representing the academic and administrative from public higher learning institutions using a stratified random sampling method. AMOS was used to test the hypotheses constructed. Findings: The results suggest that there is no direct effect between the independent variable and dependent variable. Also, the study concludes that no moderate effects of demographic profile between independent and dependent variables. However, the mediating effects of job satisfaction and motivation in the relationship between HRM practices and employee retention were significant. Salary had a significant influence on job satisfaction, whilst both compensation and recognition have significant influence on motivation. Job satisfaction and motivation were also found to significantly influence employee retention. Research Limitations: The study consists of many variables more time consuming for the respondents to answer the questionnaire. The study is focussed only on public higher learning institutions in the Maldives due to no participation from the private sector higher learning institutions. Therefore, the researcher is unable to identify the actual situation of the higher learning industry in the Maldives. Originality/Value: To our best knowledge, no study has been conducted using the same framework throughout the world. This study is the initial study conducted in the Maldives in this study area and can be used as a baseline for future researches. But there are few types of research conducted on the same subject throughout the world. Some of them concluded with positive findings while others with negative findings. Also, they have used 4 to 7 HRM practices as their study framework.

Keywords: human resource management practices, employee retention, motivation, job satisfaction

Procedia PDF Downloads 156
15561 Electroencephalography Correlates of Memorability While Viewing Advertising Content

Authors: Victor N. Anisimov, Igor E. Serov, Ksenia M. Kolkova, Natalia V. Galkina

Abstract:

The problem of memorability of the advertising content is closely connected with the key issues of neuromarketing. The memorability of the advertising content contributes to the marketing effectiveness of the promoted product. Significant directions of studying the phenomenon of memorability are the memorability of the brand (detected through the memorability of the logo) and the memorability of the product offer (detected through the memorization of dynamic audiovisual advertising content - commercial). The aim of this work is to reveal the predictors of memorization of static and dynamic audiovisual stimuli (logos and commercials). An important direction of the research was revealing differences in psychophysiological correlates of memorability between static and dynamic audiovisual stimuli. We assumed that static and dynamic images are perceived in different ways and may have a difference in the memorization process. Objective methods of recording psychophysiological parameters while watching static and dynamic audiovisual materials are well suited to achieve the aim. The electroencephalography (EEG) method was performed with the aim of identifying correlates of the memorability of various stimuli in the electrical activity of the cerebral cortex. All stimuli (in the groups of statics and dynamics separately) were divided into 2 groups – remembered and not remembered based on the results of the questioning method. The questionnaires were filled out by survey participants after viewing the stimuli not immediately, but after a time interval (for detecting stimuli recorded through long-term memorization). Using statistical method, we developed the classifier (statistical model) that predicts which group (remembered or not remembered) stimuli gets, based on psychophysiological perception. The result of the statistical model was compared with the results of the questionnaire. Conclusions: Predictors of the memorability of static and dynamic stimuli have been identified, which allows prediction of which stimuli will have a higher probability of remembering. Further developments of this study will be the creation of stimulus memory model with the possibility of recognizing the stimulus as previously seen or new. Thus, in the process of remembering the stimulus, it is planned to take into account the stimulus recognition factor, which is one of the most important tasks for neuromarketing.

Keywords: memory, commercials, neuromarketing, EEG, branding

Procedia PDF Downloads 251
15560 Gender and Science: Is the Association Universal?

Authors: Neelam Kumar

Abstract:

Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.

Keywords: gender, science, universal, women

Procedia PDF Downloads 308
15559 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 472
15558 Current Environmental Accounting Disclosure Requirements and Compliance by Nigerian Oil Companies

Authors: Amina Jibrin Ahmed

Abstract:

The environment is mankind's natural habitat. Industrial activities over time have taken their toll on it in the form of deterioration and degradation. The petroleum industry is particularly notorious for its negative impact on its host environments. The realization that this poses a threat to sustainability led to the increased awareness and subsequent recognition of the importance of environmental disclosure in financial statements. This paper examines the laws and regulations put in place by the Nigerian Government to mitigate this impact, and the level of compliance by Shell Nigeria, the pioneer and largest oil company in the country. Based on the disclosure made, this paper finds there is indeed a high level of compliance by that company, and voluntary disclosure moreover.

Keywords: environmental accounting, legitimacy theory, environmental impact assessment, environmental disclosure, host communities

Procedia PDF Downloads 518
15557 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 399