Search results for: real-coded genetic algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4767

Search results for: real-coded genetic algorithm

3717 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 272
3716 Scheduling Nodes Activity and Data Communication for Target Tracking in Wireless Sensor Networks

Authors: AmirHossein Mohajerzadeh, Mohammad Alishahi, Saeed Aslishahi, Mohsen Zabihi

Abstract:

In this paper, we consider sensor nodes with the capability of measuring the bearings (relative angle to the target). We use geometric methods to select a set of observer nodes which are responsible for collecting data from the target. Considering the characteristics of target tracking applications, it is clear that significant numbers of sensor nodes are usually inactive. Therefore, in order to minimize the total network energy consumption, a set of sensor nodes, called sentinel, is periodically selected for monitoring, controlling the environment and transmitting data through the network. The other nodes are inactive. Furthermore, the proposed algorithm provides a joint scheduling and routing algorithm to transmit data between network nodes and the fusion center (FC) in which not only provides an efficient way to estimate the target position but also provides an efficient target tracking. Performance evaluation confirms the superiority of the proposed algorithm.

Keywords: coverage, routing, scheduling, target tracking, wireless sensor networks

Procedia PDF Downloads 380
3715 Genetics of Birth and Weaning Weight of Holstein, Friesians in Sudan

Authors: Safa A. Mohammed Ali, Ammar S. Ahamed, Mohammed Khair Abdalla

Abstract:

The objectives of this study were to estimate the means and genetic parameters of birth and weaning weight of calves of pure Holstein-Friesian cows raised in Sudan. The traits studied were:*Weight at birth *Weight at weaning. The study also included some of the important factors that affected these traits. The data were analyzed using Harvey’s Least Squares and Maximum Likelihood programme. The results obtained showed that the overall mean weight at birth of the calves under study was 34.36±0.94kg. Male calves were found to be heavier than females; the difference between the sexes was highly significant (P<0.001). The mean weight at birth of male calves was 34.27±1.17 kg while that of females was 32.51±1.14kg. The effect of sex of calves, sire and parity of dam were highly significant (P<0.001). The overall mean of weight at weaning was 67.10 ± 5.05 kg, weight at weaning was significantly (p<0.001) effected by sex of calves, sire, year and season of birth have highly significant (P<0.001) effect on either trait. Also estimates heritabilities of birth weight was (0.033±0.015) lower than heritabilities of weaning weight (0.224±0.039), and genetic correlation was 0.563, the phenotypic correlation 0.281, and the environmental correlation 0.268.

Keywords: birth, weaning, weight, friesian

Procedia PDF Downloads 668
3714 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures

Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara

Abstract:

The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.

Keywords: IoT, fog computing, task offloading, efficient crow search algorithm

Procedia PDF Downloads 58
3713 A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, DaoHong Yang

Abstract:

The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia PDF Downloads 100
3712 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 113
3711 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 482
3710 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 46
3709 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
3708 A Supervised Goal Directed Algorithm in Economical Choice Behaviour: An Actor-Critic Approach

Authors: Keyvanl Yahya

Abstract:

This paper aims to find a algorithmic structure that affords to predict and explain economic choice behaviour particularly under uncertainty (random policies) by manipulating the prevalent Actor-Critic learning method that complies with the requirements we have been entrusted ever since the field of neuroeconomics dawned on us. Whilst skimming some basics of neuroeconomics that might be relevant to our discussion, we will try to outline some of the important works which have so far been done to simulate choice making processes. Concerning neurological findings that suggest the existence of two specific functions that are executed through Basal Ganglia all the way down to sub-cortical areas, namely 'rewards' and 'beliefs', we will offer a modified version of actor/critic algorithm to shed a light on the relation between these functions and most importantly resolve what is referred to as a challenge for actor-critic algorithms, that is lack of inheritance or hierarchy which avoids the system being evolved in continuous time tasks whence the convergence might not emerge.

Keywords: neuroeconomics, choice behaviour, decision making, reinforcement learning, actor-critic algorithm

Procedia PDF Downloads 397
3707 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 534
3706 Influence of the Line Parameters in Transmission Line Fault Location

Authors: Marian Dragomir, Alin Dragomir

Abstract:

In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.

Keywords: estimation algorithms, fault location, line parameters, simulation tool

Procedia PDF Downloads 357
3705 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
3704 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 339
3703 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 113
3702 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process

Procedia PDF Downloads 321
3701 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 279
3700 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 404
3699 Analyze and Visualize Eye-Tracking Data

Authors: Aymen Sekhri, Emmanuel Kwabena Frimpong, Bolaji Mubarak Ayeyemi, Aleksi Hirvonen, Matias Hirvonen, Tedros Tesfay Andemichael

Abstract:

Fixation identification, which involves isolating and identifying fixations and saccades in eye-tracking protocols, is an important aspect of eye-movement data processing that can have a big impact on higher-level analyses. However, fixation identification techniques are frequently discussed informally and rarely compared in any meaningful way. With two state-of-the-art algorithms, we will implement fixation detection and analysis in this work. The velocity threshold fixation algorithm is the first algorithm, and it identifies fixation based on a threshold value. For eye movement detection, the second approach is U'n' Eye, a deep neural network algorithm. The goal of this project is to analyze and visualize eye-tracking data from an eye gaze dataset that has been provided. The data was collected in a scenario in which individuals were shown photos and asked whether or not they recognized them. The results of the two-fixation detection approach are contrasted and visualized in this paper.

Keywords: human-computer interaction, eye-tracking, CNN, fixations, saccades

Procedia PDF Downloads 137
3698 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: Wireless Sensor network (WSN), Random Deployment, Clustering, Isolated Nodes, Networks Lifetime

Procedia PDF Downloads 337
3697 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients

Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama

Abstract:

The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.

Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1

Procedia PDF Downloads 223
3696 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 316
3695 Bioinformatics Approach to Support Genetic Research in Autism in Mali

Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind

Abstract:

Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.

Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations

Procedia PDF Downloads 83
3694 Diffusion Adaptation Strategies for Distributed Estimation Based on the Family of Affine Projection Algorithms

Authors: Mohammad Shams Esfand Abadi, Mohammad Ranjbar, Reza Ebrahimpour

Abstract:

This work presents the distributed processing solution problem in a diffusion network based on the adapt then combine (ATC) and combine then adapt (CTA)selective partial update normalized least mean squares (SPU-NLMS) algorithms. Also, we extend this approach to dynamic selection affine projection algorithm (DS-APA) and ATC-DS-APA and CTA-DS-APA are established. The purpose of ATC-SPU-NLMS and CTA-SPU-NLMS algorithm is to reduce the computational complexity by updating the selected blocks of weight coefficients at every iteration. In CTA-DS-APA and ATC-DS-APA, the number of the input vectors is selected dynamically. Diffusion cooperation strategies have been shown to provide good performance based on these algorithms. The good performance of introduced algorithm is illustrated with various experimental results.

Keywords: selective partial update, affine projection, dynamic selection, diffusion, adaptive distributed networks

Procedia PDF Downloads 708
3693 Sorting Fish by Hu Moments

Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla

Abstract:

This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.

Keywords: counting fish, digital image processing, invariant moments, pattern recognition

Procedia PDF Downloads 412
3692 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 375
3691 Robust Quantum Image Encryption Algorithm Leveraging 3D-BNM Chaotic Maps and Controlled Qubit-Level Operations

Authors: Vivek Verma, Sanjeev Kumar

Abstract:

This study presents a novel quantum image encryption algorithm, using a 3D chaotic map and controlled qubit-level scrambling operations. The newly proposed 3D-BNM chaotic map effectively reduces the degradation of chaotic dynamics resulting from the finite word length effect. It facilitates the generation of highly unpredictable random sequences and enhances chaotic performance. The system’s efficacy is additionally enhanced by the inclusion of a SHA-256 hash function. Initially, classical plain images are converted into their quantum equivalents using the Novel Enhanced Quantum Representation (NEQR) model. The Generalized Quantum Arnold Transformation (GQAT) is then applied to disrupt the coordinate information of the quantum image. Subsequently, to diffuse the pixel values of the scrambled image, XOR operations are performed using pseudorandom sequences generated by the 3D-BNM chaotic map. Furthermore, to enhance the randomness and reduce the correlation among the pixels in the resulting cipher image, a controlled qubit-level scrambling operation is employed. The encryption process utilizes fundamental quantum gates such as C-NOT and CCNOT. Both theoretical and numerical simulations validate the effectiveness of the proposed algorithm against various statistical and differential attacks. Moreover, the proposed encryption algorithm operates with low computational complexity.

Keywords: 3D Chaotic map, SHA-256, quantum image encryption, Qubit level scrambling, NEQR

Procedia PDF Downloads 14
3690 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network

Authors: Ehsan Motamedian

Abstract:

Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.

Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions

Procedia PDF Downloads 435
3689 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 93
3688 The Neuropsychology of Obsessive Compulsion Disorder

Authors: Mia Bahar, Özlem Bozkurt

Abstract:

Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.

Keywords: compulsions, obsessions, neuropsychiatric, genetic

Procedia PDF Downloads 65