Search results for: nuclear receptors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1121

Search results for: nuclear receptors

71 The Possible Interaction between Bisphenol A, Caffeine and Epigallocatechin-3-Gallate on Neurotoxicity Induced by Manganese in Rats

Authors: Azza A. Ali, Hebatalla I. Ahmed, Asmaa Abdelaty

Abstract:

Background: Manganese (Mn) is a naturally occurring element. Exposure to high levels of Mn causes neurotoxic effects and represents an environmental risk factor. Mn neurotoxicity is poorly understood but changing of AChE activity, monoamines and oxidative stress has been established. Bisphenol A (BPA) is a synthetic compound widely used in the production of polycarbonate plastics. There is considerable debate about whether its exposure represents an environmental risk. Caffeine is one of the major contributors to the dietary antioxidants which prevent oxidative damage and may reduce the risk of chronic neurodegenerative diseases. Epigallocatechin-3-gallate is another major component of green tea and has known interactions with caffeine. It also has health-promoting effects in CNS. Objective: To evaluate the potential protective effects of Caffeine and/or EGCG against Mn-induced neurotoxicity either alone or in the presence of BPA in rats. Methods: Seven groups of rats were used and received daily for 5 weeks MnCl2.4H2O (10 mg/kg, IP) except the control group which received saline, corn oil and distilled H2O. Mn was injected either alone or in combination with each of the following: BPA (50 mg/kg, PO), caffeine (10 mg/kg, PO), EGCG (5 mg/kg, IP), caffeine + EGCG and BPA +caffeine +EGCG. All rats were examined in five behavioral tests (grid, bar, swimming, open field and Y- maze tests). Biochemical changes in monoamines, caspase-3, PGE2, GSK-3B, glutamate, acetyl cholinesterase and oxidative parameters, as well as histopathological changes in the brain, were also evaluated for all groups. Results: Mn significantly increased MDA and nitrite content as well as caspase-3, GSK-3B, PGE2 and glutamate levels while significantly decreased TAC and SOD as well as cholinesterase in the striatum. It also decreased DA, NE and 5-HT levels in the striatum and frontal cortex. BPA together with Mn enhanced oxidative stress generation induced by Mn while increased monoamine content that was decreased by Mn in rat striatum. BPA abolished neuronal degeneration induced by Mn in the hippocampus but not in the substantia nigra, striatum and cerebral cortex. Behavioral examinations showed that caffeine and EGCG co-administration had more pronounced protective effect against Mn-induced neurotoxicity than each one alone. EGCG alone or in combination with caffeine prevented neuronal degeneration in the substantia nigra, striatum, hippocampus and cerebral cortex induced by Mn while caffeine alone prevented neuronal degeneration in the substantia nigra and striatum but still showed some nuclear pyknosis in cerebral cortex and hippocampus. The marked protection of caffeine and EGCG co-administration also confirmed by the significant increase in TAC, SOD, ACHE, DA, NE and 5-HT as well as the decrease in MDA, nitrite, caspase-3, PGE2, GSK-3B, the glutamic acid in the striatum. Conclusion: Neuronal degeneration induced by Mn showed some inhibition with BPA exposure despite the enhancement in oxidative stress generation. Co-administration of EGCG and caffeine can protect against neuronal degeneration induced by Mn and improve behavioral deficits associated with its neurotoxicity. The protective effect of EGCG was more pronounced than that of caffeine even with BPA co-exposure.

Keywords: manganese, bisphenol a, caffeine, epigallocatechin-3-gallate, neurotoxicity, behavioral tests, rats

Procedia PDF Downloads 228
70 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity

Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel

Abstract:

A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.

Keywords: myelofibrosis, arthritis, arthralgia, malignancy

Procedia PDF Downloads 98
69 Developing a High Performance Cement Based Material: The Influence of Silica Fume and Organosilane

Authors: Andrea Cretu, Calin Cadar, Maria Miclaus, Lucian Barbu-Tudoran, Siegfried Stapf, Ioan Ardelean

Abstract:

Additives and mineral admixtures have become an integral part of cement-based materials. It is common practice to add silica fume to cement based mixes in order to produce high-performance concrete. There is still a lack of scientific understanding regarding the effects that silica fume has on the microstructure of hydrated cement paste. The aim of the current study is to develop high-performance materials with low permeability and high resistance to flexural stress using silica fume and an organosilane. Organosilane bonds with cement grains and silica fume, influencing both the workability and the final properties of the mix, especially the pore size distributions and pore connectivity. Silica fume is a known pozzolanic agent which reacts with the calcium hydroxide in hydrated cement paste, producing more C-S-H and improving the mechanical properties of the mix. It is believed that particles of silica fume act as capillary pore fillers and nucleation centers for C-S-H and other hydration products. In order to be able to design cement-based materials with added silica fume and organosilane, it is necessary first to understand the formation of the porous network during hydration and to observe the distribution of pores and their connectivity. Nuclear magnetic resonance (NMR) methods in low-fields are non-destructive and allow the study of cement-based materials from the standpoint of their porous structure. Other methods, such as XRD and SEM-EDS, help create a comprehensive picture of the samples, along with the classic mechanical tests (compressive and flexural strength measurements). The transverse relaxation time (T₂) was measured during the hydration of 16 samples prepared with two water/cement ratios (0.3 and 0.4) and different concentrations or organosilane (APTES, up to 2% by mass of cement) and silica fume (up to 6%). After their hydration, the pore size distribution was assessed using the same NMR approach on the samples filled with cyclohexane. The SEM-EDS and XRD measurements were applied on pieces and powders prepared from the samples that were used in mechanical testing, which were kept under water for 28 days. Adding silica fume does not influence the hydration dynamics of cement paste, while the addition of organosilane extends the dormancy stage up to 10 hours. The size distribution of the capillary pores is not influenced by the addition of silica fume or organosilane, while the connectivity of capillary pores is decreased only when there is organosilane in the mix. No filling effect is observed even at the highest concentration of silica fume. There is an apparent increase in flexural strength of samples prepared only with silica fume and a decrease for those prepared with organosilane, with a few exceptions. XRD reveals that the pozzolanic reactivity of silica fume can only be observed when there is no organosilane present and the SEM-EDS method reveals the pore distribution, as well as hydration products and the presence or absence of calcium hydroxide. The current work was funded by the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, through project PN-III-P2-2.1-PED-2016-0719.

Keywords: cement hydration, concrete admixtures, NMR, organosilane, porosity, silica fume

Procedia PDF Downloads 161
68 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 142
67 A Density Function Theory Based Comparative Study of Trans and Cis - Resveratrol

Authors: Subhojyoti Chatterjee, Peter J. Mahon, Feng Wang

Abstract:

Resveratrol (RvL), a phenolic compound, is a key ingredient in wine and tomatoes that has been studied over the years because of its important bioactivities such as anti-oxidant, anti-aging and antimicrobial properties. Out of the two isomeric forms of resveratrol i.e. trans and cis, the health benefit is primarily associated with the trans form. Thus, studying the structural properties of the isomers will not only provide an insight into understanding the RvL isomers, but will also help in designing parameters for differentiation in order to achieve 99.9% purity of trans-RvL. In the present study, density function theory (DFT) study is conducted, using the B3LYP/6-311++G** model to explore the through bond and through space intramolecular interactions. Properties such as vibrational spectroscopy (IR and Raman), nuclear magnetic resonance (NMR) spectra, excess orbital energy spectrum (EOES), energy based decomposition analyses (EDA) and Fukui function are calculated. It is discovered that the structure of trans-RvL, although it is C1 non-planar, the backbone non-H atoms are nearly in the same plane; whereas the cis-RvL consists of two major planes of R1 and R2 that are not in the same plane. The absence of planarity gives rise to a H-bond of 2.67Å in cis-RvL. Rotation of the C(5)-C(8) single bond in trans-RvL produces higher energy barriers since it may break the (planar) entire conjugated structure; while such rotation in cis-RvL produces multiple minima and maxima depending on the positions of the rings. The calculated FT-IR spectrum shows very different spectral features for trans and cis-RvL in the region 900 – 1500 cm-1, where the spectral peaks at 1138-1158 cm-1 are split in cis-RvL compared to a single peak at 1165 cm-1 in trans-RvL. In the Raman spectra, there is significant enhancement of cis-RvL in the region above 3000cm-1. Further, the carbon chemical environment (13C NMR) of the RvL molecule exhibit a larger chemical shift for cis-RvL compared to trans-RvL (Δδ = 8.18 ppm) for the carbon atom C(11), indicating that the chemical environment of the C group in cis-RvL is more diverse than its other isomer. The energy gap between highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) is 3.95 eV for trans and 4.35 eV for cis-RvL. A more detailed inspection using the recently developed EOES revealed that most of the large energy differences i.e. Δεcis-trans > ±0.30 eV, in their orbitals are contributed from the outer valence shell. They are MO60 (HOMO), MO52-55 and MO46. The active sites that has been captured by Fukui function (f + > 0.08) are associated with the stilbene C=C bond of RvL and cis-RvL is more active at these sites than in trans-RvL, as cis orientation breaks the large conjugation of trans-RvL so that the hydroxyl oxygen’s are more active in cis-RvL. Finally, EDA highlights the interaction energy (ΔEInt) of the phenolic compound, where trans is preferred over the cis-RvL (ΔΔEi = -4.35 kcal.mol-1) isomer. Thus, these quantum mechanics results could help in unwinding the diversified beneficial activities associated with resveratrol.

Keywords: resveratrol, FT-IR, Raman, NMR, excess orbital energy spectrum, energy decomposition analysis, Fukui function

Procedia PDF Downloads 194
66 Insights into Particle Dispersion, Agglomeration and Deposition in Turbulent Channel Flow

Authors: Mohammad Afkhami, Ali Hassanpour, Michael Fairweather

Abstract:

The work described in this paper was undertaken to gain insight into fundamental aspects of turbulent gas-particle flows with relevance to processes employed in a wide range of applications, such as oil and gas flow assurance in pipes, powder dispersion from dry powder inhalers, and particle resuspension in nuclear waste ponds, to name but a few. In particular, the influence of particle interaction and fluid phase behavior in turbulent flow on particle dispersion in a horizontal channel is investigated. The mathematical modeling technique used is based on the large eddy simulation (LES) methodology embodied in the commercial CFD code FLUENT, with flow solutions provided by this approach coupled to a second commercial code, EDEM, based on the discrete element method (DEM) which is used for the prediction of particle motion and interaction. The results generated by LES for the fluid phase have been validated against direct numerical simulations (DNS) for three different channel flows with shear Reynolds numbers, Reτ = 150, 300 and 590. Overall, the LES shows good agreement, with mean velocities and normal and shear stresses matching those of the DNS in both magnitude and position. The research work has focused on the prediction of those conditions favoring particle aggregation and deposition within turbulent flows. Simulations have been carried out to investigate the effects of particle size, density and concentration on particle agglomeration. Furthermore, particles with different surface properties have been simulated in three channel flows with different levels of flow turbulence, achieved by increasing the Reynolds number of the flow. The simulations mimic the conditions of two-phase, fluid-solid flows frequently encountered in domestic, commercial and industrial applications, for example, air conditioning and refrigeration units, heat exchangers, oil and gas suction and pressure lines. The particle size, density, surface energy and volume fractions selected are 45.6, 102 and 150 µm, 250, 1000 and 2159 kg m-3, 50, 500, and 5000 mJ m-2 and 7.84 × 10-6, 2.8 × 10-5, and 1 × 10-4, respectively; such particle properties are associated with particles found in soil, as well as metals and oxides prevalent in turbulent bounded fluid-solid flows due to erosion and corrosion of inner pipe walls. It has been found that the turbulence structure of the flow dominates the motion of the particles, creating particle-particle interactions, with most of these interactions taking place at locations close to the channel walls and in regions of high turbulence where their agglomeration is aided both by the high levels of turbulence and the high concentration of particles. A positive relationship between particle surface energy, concentration, size and density, and agglomeration was observed. Moreover, the results derived for the three Reynolds numbers considered show that the rate of agglomeration is strongly influenced for high surface energy particles by, and increases with, the intensity of the flow turbulence. In contrast, for lower surface energy particles, the rate of agglomeration diminishes with an increase in flow turbulence intensity.

Keywords: agglomeration, channel flow, DEM, LES, turbulence

Procedia PDF Downloads 317
65 Common Used Non-Medical Practice and Perceived Benefits in Couples with Fertility Problems in Turkey

Authors: S. Fata, M. A. Tokat, N. Bagardi, B. Yilmaz

Abstract:

Nowadays, various traditional practices are used throughout the world with aim to improve fertility. Various traditional remedies, acupuncture, religious practices such as sacrifice are frequently used. Studies often evaluate the traditional practices used by the women. But the use of this non-medical practice by couples and specific application reasons of this methods has been less investigated. The aim of this study was to evaluate the common used non-medical practices and determine perceived benefits by couples with fertility problems in Turkey. This is a descriptive study. Research data were collected between May-July 2016, in Izmir Ege Birth Education and Research Hospital Assisted Reproduction Clinic, from 151 couples with fertility problem. Personal Information Form and Non-Medical Practices Used for Fertility Evaluation Form was used. Number 'GOA 2649' permission letter from Dokuz Eylul University Non-Invasive Research Ethics Board, permission letter from the institution and the written consent from participants has been received to carry out the study. In the evaluation of the data, frequencies and proportions analysis were used. The average age of women participating in the study was 32.87, the 35.8% were high school graduates, 60.3% were housewife and the 58.9% lived in city. The 30.5% of husbands were high school graduates, the 96.7% were employed and the 60.9% lived in city. The 78.1% of couples lived as a nuclear family, the average marriage year was 7.58, in 33.8% the fertility problem stems from women, 42.4% of them received a diagnosis for 1-2 years, 35.1% were being treated for 1-2 years. The 35.8% of women reported use of non-medical applications. The 24.4% of women used figs, onion cure, hacemat, locust, bee-pollen milk, the 18.2% used herbs, the 13.1% vowed, the 12.1% went to the tomb, the 10.1% did not bath a few days after the embryo transfer, the 9.1% used thermal water baths, the 5.0% manually corrected the womb, the 5.0% printed amulets by Hodja, the 3.0% went to the Hodja/pilgrims. Among the perceived benefits of using non-medical practices; facilitate pregnancy and implantation, improve oocyte quality were the most recently expressed. Women said that they often used herbs to develop follicles, did not bath after embryo transfer with aim to provide implantation, and used thermal waters to get rid of the infection. Compared to women, only the 25.8% of men used the non-medical practice. The 52.1% reported that they used peanuts, hacemat, locust, bee-pollen milk, the 14.9% used herbs, the 12.8% vowed, the 10.1% went to the tomb, the 10.1% used thermal water baths. Improve sperm number, motility and quality were the most expected benefits. Men said that they often used herbs to improve sperm number, used peanuts, hacemat, locust, bee-pollen milk to improve sperm motility and quality. Couples in Turkey often use non-medical practices to deal with fertility problems. Some of the practices considered as useful can adversely affect health. Healthcare providers should evaluate the use of non-medical practices and should inform if the application is known adverse effects on health.

Keywords: fertility, couples, non-medical practice, perceived benefit

Procedia PDF Downloads 342
64 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 386
63 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology

Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma

Abstract:

Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.

Keywords: boron, calcium, nutrient utilization, histopathology

Procedia PDF Downloads 318
62 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 151
61 Human Dental Pulp Stem Cells Attenuate Streptozotocin-Induced Parotid Gland Injury in Rats

Authors: Gehan ElAkabawy

Abstract:

Background: Diabetes mellitus causes severe deteriorations of almost all the organs and systems of the body, as well as significant damage to the oral cavity. The oral changes are mainly related to salivary glands dysfunction characterized by hyposalivation and xerostomia, which significantly reduce diabetic patients’ quality of life. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that the trophic support mediated by dental pulp stem cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of human dental pulp stem cells in diabetic-induced parotid gland damage have not been previously investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of human dental pulp stem cells (hDPSCs) on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. Methods: Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ+hDPSCs). hDPSCs or vehicle was injected into the tail vein 7 days after STZ injection. The fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA) expression in parotid tissues were assessed 28 days post-transplantation. Results: Transplantation of hDPSCs downregulated blood glucose, improved the salivary flow rate, and reduced oxidative stress. The cells migrated to, survived, and differentiated into acinar, ductal, and myoepithelial cells in the STZ-injured parotid gland. Moreover, they downregulated the expression of caspase-3 and upregulated the expression of VEGF and PCNA, likely exerting pro-angiogenetic and antiapoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide (NO) -tetrahydrobiopterin (BH4) pathway. Conclusions: Our results show that hDPSCs can migrate to and survive within the STZ-injured parotid gland, where they prevent its functional and morphological damage by restoring normal glucose levels, differentiating into parotid cell populations, and stimulating paracrine-mediated regeneration. Thus, hDPSCs may have therapeutic potential in the treatment of diabetes-induced parotid gland injury.

Keywords: dental pulp stem cells, diabetes, streptozotocin, parotid gland

Procedia PDF Downloads 195
60 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 206
59 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 92
58 European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities

Authors: M. Marín-Ferrer, M. A. Hernández, T. Tollefsen, S. Vanzo, E. Nweke, P. V. Tognoli, M. De Cort

Abstract:

Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002.

Keywords: environmental radioactivity, Euratom, monitoring report, REMdb

Procedia PDF Downloads 443
57 Molecular Identification of Camel Tick and Investigation of Its Natural Infection by Rickettsia and Borrelia in Saudi Arabia

Authors: Reem Alajmi, Hind Al Harbi, Tahany Ayaad, Zainab Al Musawi

Abstract:

Hard ticks Hyalomma spp. (family: Ixodidae) are obligate ectoparasite in their all life stages on some domestic animals mainly camels and cattle. Ticks may lead to many economic and public health problems because of their blood feeding behavior. Also, they act as vectors for many bacterial, viral and protozoan agents which may cause serious diseases such as tick-born encephalitis, Rocky-mountain spotted fever, Q-fever and Lyme disease which can affect human and/or animals. In the present study, molecular identification of ticks that attack camels in Riyadh region, Saudi Arabia based on the partial sequence of mitochondrial 16s rRNA gene was applied. Also, the present study aims to detect natural infections of collected camel ticks with Rickessia spp. and Borelia spp. using PCR/hybridization of Citrate synthase encoding gene present in bacterial cells. Hard ticks infesting camels were collected from different camels located in a farm in Riyadh region, Saudi Arabia. Results of the present study showed that the collected specimens belong to two species: Hyalomma dromedari represent 99% of the identified specimens and Hyalomma marginatum which account for 1 % of identified ticks. The molecular identification was made through blasting the obtained sequence of this study with sequences already present and identified in GeneBank. All obtained sequences of H. dromedarii specimens showed 97-100% identity with the same gene sequence of the same species (Accession # L34306.1) which was used as a reference. Meanwhile, no intraspecific variations of H. marginatum mesured because only one specimen was collected. Results also had shown that the intraspecific variability between individuals of H. dromedarii obtained in 92 % of samples ranging from 0.2- 6.6%, while the remaining 7 % of the total samples of H. dromedarii showed about 10.3 % individual differences. However, the interspecific variability between H. dromedarii and H. marginatum was approximately 18.3 %. On the other hand, by using the technique of PCR/hybridization, we could detect natural infection of camel ticks with Rickettsia spp. and Borrelia spp. Results revealed the natural presence of both bacteria in collected ticks. Rickettsial spp. infection present in 29% of collected ticks, while 35% of collected specimen were infected with Borrelia spp. The valuable results obtained from the present study are a new record for the molecular identification of camel ticks in Riyadh, Saudi Arabia and their natural infection with both Rickettsia spp. and Borrelia spp. These results may help scientists to provide a good and direct control strategy of ticks in order to protect one of the most important economic animals which are camels. Also results of this project spotlight on the disease that might be transmitted by ticks to put out a direct protective plan to prevent spreading of these dangerous agents. Further molecular studies are needed to confirm the results of the present study by using other mitochondrial and nuclear genes for tick identification.

Keywords: Camel ticks, Rickessia spp. , Borelia spp. , mitochondrial 16s rRNA gene

Procedia PDF Downloads 276
56 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 284
55 Prosodic Transfer in Foreign Language Learning: A Phonetic Crosscheck of Intonation and F₀ Range between Italian and German Native and Non-Native Speakers

Authors: Violetta Cataldo, Renata Savy, Simona Sbranna

Abstract:

Background: Foreign Language Learning (FLL) is characterised by prosodic transfer phenomena regarding pitch accents placement, intonation patterns, and pitch range excursion from the learners’ mother tongue to their Foreign Language (FL) which suggests that the gradual development of general linguistic competence in FL does not imply an equally correspondent improvement of the prosodic competence. Topic: The present study aims to monitor the development of prosodic competence of learners of Italian and German throughout the FLL process. The primary object of this study is to investigate the intonational features and the f₀ range excursion of Italian and German from a cross-linguistic perspective; analyses of native speakers’ productions point out the differences between this pair of languages and provide models for the Target Language (TL). A following crosscheck compares the L2 productions in Italian and German by non-native speakers to the Target Language models, in order to verify the occurrence of prosodic interference phenomena, i.e., type, degree, and modalities. Methodology: The subjects of the research are university students belonging to two groups: Italian native speakers learning German as FL and German native speakers learning Italian as FL. Both of them have been divided into three subgroups according to the FL proficiency level (beginners, intermediate, advanced). The dataset consists of wh-questions placed in situational contexts uttered in both speakers’ L1 and FL. Using a phonetic approach, analyses have considered three domains of intonational contours (Initial Profile, Nuclear Accent, and Terminal Contour) and two dimensions of the f₀ range parameter (span and level), which provide a basis for comparison between L1 and L2 productions. Findings: Results highlight a strong presence of prosodic transfer phenomena affecting L2 productions in the majority of both Italian and German learners, irrespective of their FL proficiency level; the transfer concerns all the three domains of the contour taken into account, although with different modalities and characteristics. Currently, L2 productions of German learners show a pitch span compression on the domain of the Terminal Contour compared to their L1 towards the TL; furthermore, German learners tend to use lower pitch range values in deviation from their L1 when improving their general linguistic competence in Italian FL proficiency level. Results regarding pitch range span and level in L2 productions by Italian learners are still in progress. At present, they show a similar tendency to expand the pitch span and to raise the pitch level, which also reveals a deviation from the L1 possibly in the direction of German TL. Conclusion: Intonational features seem to be 'resistant' parameters to which learners appear not to be particularly sensitive. By contrast, they show a certain sensitiveness to FL pitch range dimensions. Making clear which the most resistant and the most sensitive parameters are when learning FL prosody could lay groundwork for the development of prosodic trainings thanks to which learners could finally acquire a clear and natural pronunciation and intonation.

Keywords: foreign language learning, German, Italian, L2 prosody, pitch range, transfer

Procedia PDF Downloads 286
54 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 194
53 Dietary Factors Contributing to Osteoporosis among Postmenopausal Women in Riyadh Armed Forces Hospital

Authors: Rabab Makki

Abstract:

Bone mineral density and bone metabolism are affected by various factors such as genetic, endocrine, mechanical and nutritional. Our understanding of nutritional influences on bone health is limited because most studies have focused on calcium. This study investigated the dietary factors which are likely t contribute to Osteoporosis in Saudi post-menopausal women, and correlated it with BMD. This is a case controlled study involved 36 postmenopausal Saudi females selected from the Orthopedics and osteoporosis outpatient clinics, and 25 postmenopausal Saudi females as controls from the primary clinic of Military Hospital in Riyadh. The women were diagnosed as osteoporotic based on the BMD measurement at any site (left femur neck, right femur neck, left total hip or right total hip or spine). Both the controls and the Osteoporotics were over 50 years of age and BMI between 31-34 kg/m2 had 2nd degree obesity, and were not free from other problems such as diabetes, hypertension, etc. Subjects (osteoporotics and controls) were interviewed to called data on demographic characterstics, medical history, dietary intake anthropometry (height and weight) bone mineral density. Blood samples were collected from subjects (Osteoporotics and controls). Analysis of serum calcium, vitamin D, phosphate were done at the main laboratory at Military Hospital Riyadh, by the laboratory technician while BMD was determined at the department of Nuclear Medicine by an expert technician and results were interpreted by radiologist.Data on frequency of consumption of animal food (meat, eggs, poultry and fish) and diary foods (milk, yogurt, cheese) of osteoporotic was less than control. In spite of the low intake there was no association with BMD.In general, the vegetables and fruits were consumed less by the osteoporotics than control. The only fruit which had shown a significant positive correlation is banana with right and left hip BMD total probably due to high potassium and minerals content which likely to prevent bone resorption. Mataziz vegetables combination of wheat showed a significant positive correlation with the same site (total right and left hip). Both osteoporotics abd controls were consuming table sugar. (But the sweet intake showed a significant negative correlation with left neck femur BMD, suggesting sucrose increase urinary calcium loss. Both osteoporotic and controls were consuming Arabic coffee. A negative significant correlation between intake of Arabic coffee and BMD of right neck femur of osteoporosis patient was observed. It could be suggested that increased intake of fruits and vegetables, might promote bone density while high intake of coffee and sugars might affect bone density, no significant correlation was observed between BMD at any site and diary product. We can say the major risk factors are inadequate nutrition. Further studies are needed among Saudi population to confirm these results.

Keywords: osteoporosi, Saudia Arabia, Riyadh Armed Forces, postmenopausal women

Procedia PDF Downloads 408
52 A Case of Borderline Personality Disorder: An Explanatory Study of Unconscious Conflicts through Dream-Analysis

Authors: Mariam Anwaar, Kiran B. Ahmad

Abstract:

Borderline Personality Disorder (BPD) is an invasive presence of affect instability, disturbance in self-concept and attachment in relationships. The profound indicator is the dichotomous approach of the world in which the ego categorizes individuals, especially their significant others, into secure or threatful beings, leaving little room for a complex combination of characteristics in one person. This defense mechanism of splitting their world has been described through the explanatory model of unconscious conflict theorized by Sigmund Freud’s Electra Complex in the Phallic Stage. The central role is of the father with whom the daughter experiences penis envy, thus identifying with the mother’s characteristics to receive the father’s attention. However, Margret Mahler, an object relation theorist, elucidates the central role of the mother and that the split occurs during the pre-Electra complex stage. Amid the 14 and 24 months of the infant, it acknowledges the world away from the mother as they have developed milestones such as crawling. In such novelty, the infant crawls away from the mother creating a sense of independence (individuation). On the other hand, being distant causes anxiety, making them return to their original object of security (separation). In BPD, the separation-individuation stage is disrupted, due to contradictory actions of the caregiver, which results in splitting the object into negative and positive aspects, repressing the former and adhering to the latter for survival. Thus, with time, the ego distorts the reality into dichotomous categories, using the splitting defenses, and the mental representation of the self is distorted due to the internalization of the negative objects. The explanatory model was recognized in the case study of Fizza, at 21-year-old Pakistani female, residing in Karachi. Her marital status is single with an occupation being a dental student. Fizza lives in a nuclear family but is surrounded by her extended family as they all are in close vicinity. She came with the complaints of depressive symptoms for two-years along with self-harm due to severe family conflicts. Through the intervention of Dialectical Behavior Therapy (DBT), the self-harming actions were reduced, however, this libidinal energy transformed into claustrophobic symptoms and, along with this, Fizza has always experienced vivid dreams. A retrospective method of Jungian dream-analysis was applied to locate the origins of the splitting in the unconscious. The result was the revelation of a sexual harassment trauma at the age of six-years which was displaced in the form of self-harm. In addition to this, the presence of a conflict at the separation-individuation stage was detected during the dream-analysis, and it was the underlying explanation of the claustrophobic symptoms. This qualitative case study implicates the use of a patient’s subjective experiences, such as dreams, to journey through the spiral of the unconscious in order to not only detect repressed memories but to use them in psychotherapy as a means of healing the patient.

Keywords: borderline personality disorder, dream-analysis, Electra complex, separation-individuation, splitting, unconscious

Procedia PDF Downloads 153
51 Sex Differences in Age-Related AMPK-Sirt1 Axis Alteration in Human Heart

Authors: Maria Luisa Barcena De Arellano, Sofya Pozdniakova, Pavelas Karkacas, Anja Kuhl, Istvan Baczko, Yury Ladilov, Vera Regitz-Zagrosek

Abstract:

Introduction: Aging is associated with deterioration of the physiological function, leading to systemic inflammation and mitochondrial dysfunction that promote the development of cardiovascular diseases. Sex differences in aging-related cardiovascular diseases have been postulated. However, their precise mechanisms remain unclear. In the current study, we aimed to investigate the sex difference in the age-related alteration in Sirt1-AMPK signaling and its relation to the mitochondrial biogenesis and inflammation. Methods: Male and female human non-disease lateral left ventricular wall tissue (young (17–40 years; n= 7 male and 7 female) and old (50–68 years; n= 9 male and 8 female)) were used. qRT-PCR, western blot and immunohistochemistry assays were performed for expression analyses of Sirt1, AMPK, pAMPK, ac-Ku70, TFAM, PGC-1α, Sirt3, SOD2 and catalase. CD68 was used as a marker for macrophages and the ratio of IL-12:IL10 (pro-inflammatory phenotype (high IL-12/low IL-10) and anti-inflammatory phenotype (low IL-12/high IL-10) was used to examine the inflammatory stage in the heart. Results: Sirt1 expression was significantly higher in young females compared to young males, whereas in aged hearts Sirt1 expression was significantly downregulated in females, but not in males. In line with the Sirt1 downregulation in aged females, acetylation of nuclear Ku70, a direct target of Sirt1, in aged female hearts was significantly elevated. The activity of AMPK was significantly decreased in aged individuals, however no sex differences in the AMPK expression or activity were found in young or old individuals. The expression of mitochondrial proteins TOM40, SOD2 and Sirt3 was significantly higher in young females compared to young males, while in aged female hearts SOD2 and TOM40 were downregulated. In addition, the expression of catalase, a key cytosolic and mitochondrial anti-oxidative enzyme was significantly higher in young females and this female sex benefit was lost in aged hearts. In addition, the number of cardiac macrophages was significantly increased in old female, but not in male hearts. Consistently, the pro-inflammatory shift in old females was further confirmed by differences in the IL12/IL10 ratio in young female cardiac tissue in a favour of the anti-inflammatory mediator IL-10 (ratio 1:4) compared to young males (ratio 1:1). The anti-inflammatory environment in the heart was lost in aged females (ratio 1:1). Conclusion: Aging leads to the significant downregulation of Sirt1 expression and elevated acetylation of Ku70 in female, but not in male hearts. Furthermore, a beneficial upregulation of mitochondrial and anti-oxidative proteins in young females is lost with aging. Moreover, the malfunctions in the expression of Sirt1 and mitochondrial proteins in aged female hearts is accompanied by a significant pro-inflammatory shift. The study provides a molecular basis for the increased incidence of cardiovascular diseases in old women.

Keywords: inflammation, mitochondrial dysfunction, aging, Sirt1-AMPK axis

Procedia PDF Downloads 262
50 Impact of Stress and Protein Malnutrition on the Potential Role of Epigallocatechin-3-Gallate in Providing Protection from Nephrotoxicity and Hepatotoxicity Induced by Aluminum in Rats

Authors: Azza A. Ali, Mona G. Khalil, Hemat A. Elariny, Shereen S. El Shaer

Abstract:

Background: Aluminium (Al) is very abundant metal in the earth’s crust. It is a constituent of cooking utensils, medicines, cosmetics, some foods and food additives. Salts of Al are widely used in the treatment of drinking water for purification purposes. Excessive and prolonged exposure to Al causes oxidative stress and impairment of many physiological functions. Its accumulation in liver and kidney causes hepatotoxicity and nephrotoxicity. Social isolation (SI) or Protein malnutrition (PM) also increases oxidative stress and may enhance the toxicity of Al as well as the degeneration in liver and kidney. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has strong antioxidant as well as anti-inflammatory activities and can protect against oxidative stress-induced degenerations. Objective: To study the influence of stress or PM on Al-induced nephrotoxicity and hepatotoxicity in rats, as well as on the potential role of EGCG in providing protection. Methods: Rats received daily AlCl3 (70 mg/kg, IP) for three weeks (Al-toxicity groups) except one normal control group received saline. Al-toxicity groups were divided into four treated and four untreated groups; treated rats received EGCG (10 mg/kg, IP) together with AlCl3. One group of both treated and untreated rats served as control for each of them, and the others were subjected to either stress (mild using isolation or high using electric shock) or to PM (10% casein diet). Specimens of liver and kidney were used for assessment of levels of inflammatory mediators as TNF-α, IL6β, nuclear factor kappa B (NF-κB), oxidative stress (MDA, SOD, TAC, NO), Caspase-3 and for DNA fragmentation as well as for histopathological examinations. Biochemical changes were also measured in the serum as total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea as well as the level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate deshydrogenase (LDH). Results: Nephrotoxicity and hepatotoxicity induced by Al were enhanced in rats exposed to stress and to PM. The influence of stress was more pronounced than PM. Al-toxicity was indicated by the increase in liver and kidney MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3, DNA fragmentation and in ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea levels, together with the decrease in total proteins, SOD, TAC. EGCG provided protection against hazards of Al as indicated by the decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation as well as in levels of ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea in liver and kidney, together with the increase in total proteins, SOD, TAC and confirmed by histopathological examinations. It provided more pronounced protection in high stressful conditions than in mild one than in PM. Conclusion: Stress have a bad impact on Al-induced nephrotoxicity and hepatotoxicity more than PM. Thus it can clarify and maximize the role of EGCG in providing protection. Consequently, administration of EGCG is advised with excessive Al-exposure to avoid nephrotoxicity and hepatotoxicity especially in populations more subjected to stress or PM.

Keywords: aluminum, stress, protein malnutrition, nephrotoxicity, hepatotoxicity, epigallocatechin-3-gallate, rats

Procedia PDF Downloads 307
49 Diversity and Phylogenetic Placement of Seven Inocybe (Inocybaceae, Fungi) from Benin

Authors: Hyppolite Aignon, Souleymane Yorou, Martin Ryberg, Anneli Svanholm

Abstract:

Climate change and human actions cause the extinction of wild mushrooms. In Benin, the diversity of fungi is large and may still contain species new to science but the inventory effort remains low and focuses on particularly edible species (Russula, Lactarius, Lactifluus, and also Amanita). In addition, inventories have started recently and some groups of fungi are not sufficiently sampled, however, the degradation of fungal habitat continues to increase and some species are already disappearing. (Yorou and De Kesel, 2011), however, the degradation of fungi habitat continues to increase and some species may disappear without being known. This genus (Inocybe) overlooked has a worldwide distribution and includes more than 700 species with many undiscovered or poorly known species worldwide and particularly in tropical Africa. It is therefore important to orient the inventory to other genera or important families such as Inocybe (Fungi, Agaricales) in order to highlight their diversity and also to know their phylogenetic positions with a combined approach of gene regions. This study aims to evaluate the species richness and phylogenetic position of Inocybe species and affiliated taxa in West Africa. Thus, in North Benin, we visited the Forest Reserve of Ouémé Supérieur, the Okpara forest and the Alibori Supérieur Forest Reserve. In the center, we targeted the Forest Reserve of Toui-Kilibo. The surveys have been carried during the raining season in the study area meaning from June to October. A total of 24 taxa were collected, photographed and described. The DNA was extracted, the Polymerase Chain Reaction was carried out using primers (ITS1-F, ITS4-B) for Internal transcribed spacer (ITS), (LROR, LWRB, LR7, LR5) for nuclear ribosomal (LSU), (RPB2-f5F, RPB2-b6F, RPB2- b6R2, RPB2-b7R) for RNA polymerase II gene (RPB2) and sequenced. The ITS sequences of the 24 collections of Inocybaceae were edited in Staden and all the sequences were aligned and edited with Aliview v1.17. The sequences were examined by eye for sufficient similarity to be considered the same species. 13 different species were present in the collections. In addition, sequences similar to the ITS sequences of the thirteen final species were searched using BLAST. The nLSU and RPB2 markers for these species have been inserted in a complete alignment, where species from all major Inocybaceae clades as well as from all continents except Antarctica are present. Our new sequences for nLSU and RPB2 have been manually aligned in this dataset. Phylogenetic analysis was performed using the RAxML v7.2.6 maximum likelihood software. Bootstrap replications have been set to 100 and no partitioning of the dataset has been performed. The resulting tree was viewed and edited with FigTree v1.4.3. The preliminary tree resulting from the analysis of maximum likelihood shows us that these species coming from Benin are much diversified and are distributed in four different clades (Inosperma, Inocybe, Mallocybe and Pseudosperma) on the seven clades of Inocybaceae but the phylogeny position of 7 is currently known. This study marks the diversity of Inocybe in Benin and the investigations will continue and a protection plan will be developed in the coming years.

Keywords: Benin, diversity, Inocybe, phylogeny placement

Procedia PDF Downloads 149
48 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 177
47 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 282
46 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 93
45 Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System

Authors: Thiwanka Weerakkody, Lakmali Handagiripathira, Poshitha Dabare, Thisari Guruge

Abstract:

The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes.

Keywords: drinking water, gross alpha, gross beta, waste water

Procedia PDF Downloads 198
44 Biosocial Determinants of Maternal and Child Health in Northeast India: A Case Study

Authors: Benrithung Murry

Abstract:

This paper highlights the biosocial determinants of health-seeking behavior in tribal population groups of northeast India, focusing on maternal and child health. The northeastern region of India is a conglomeration of several ethnic groups, most of which are scheduled as tribal groups. A total of 750 ever-married women in reproductive ages (15-49 years) were interviewed from three tribal groups of Nagaland, India using pre-tested and modified maternal health schedule. Data pertaining to reproductive performance of the mothers and their children health status were collected from 12 villages of Dimapur district, Nagaland, India. The sample for study comprises 212 Angami women, 267 Ao women, and 271 Sumi women, all of which belonging to tribal populations of Northeast India. Sex ratios of 15-49 years in these three populations are 1018.18, 1086.69, and 1106.92, respectively. 90% of the populations in the study are nuclear families, with about 10% of households falling below the poverty line as per the cutoffs for India. Female literacy level in these population groups is higher than the national average of 65.46%; however, about 30% of all married women are not engaged in any sort of earnings. Total fertility rates of these populations are alarming (Total Fertility Rate ≥ 6) and far from replacement fertility level, while infant mortality rates are found to be much lower than the national average of 34 per 1000. The perception and practice of maternal health in this region is unimpressive despite the availability of medical amenities. Only 3 % of mothers in the study have reported 4 times antenatal checkups during last two pregnancies. Other mothers have reported 1 to 3 times of antenatal checkups, but about 25% of them never visited a doctor during the entire pregnancy period. About 15% of mothers never took tetanus injection, while 40% of mothers never took iron folic supplements during pregnancy. Almost half of all women and their husbands do not use birth control measures even for the spacing of children, which has an immense impact on prenatal mortality mainly due to deliberate abortions: the percentage of prenatal mortality among Angami, Ao and Sumi populations is 44.88, 31.88 and 54.98, respectively per 1000 live births. The steep decline in fertility levels in most countries is a consequence of the increasing use of modern methods of contraception. However, among users of birth control measures in these populations, it is seen that most couples use it only after they have the desired number of children, thus its use having no substantial influence in reducing fertility. It is also seen that the majority of the children were only partially vaccinated. With many child deliveries being done at home, many newborns are not administered with polio at birth. Two-third of all children do not have complete basic immunization against polio, diphtheria, tetanus, pertussis, bacillus, and hepatitis besides others. Certain adherence to traditional beliefs and customs apart from the socio-economic factors is believed to have been operating in these populations, which determines their health-seeking behavior. While a more in-depth study combining biological, socio-cultural, economic, and genetic factors is suggested, there is an urgent need for intervention in these populations to combat with the poor maternal and child health status.

Keywords: case study, health behavior, mother and child, northeast india

Procedia PDF Downloads 129
43 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin

Authors: B. K. Kanungo, Monika Thakur, Minati Baral

Abstract:

8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.

Keywords: complexes, DFT, formation constant, TACH2OX

Procedia PDF Downloads 150
42 Harnessing Renewable Energy as a Strategy to Combating Climate Change in Sub Saharan Africa

Authors: Gideon Nyuimbe Gasu

Abstract:

Sub Saharan Africa is at a critical point, experiencing rapid population growth, particularly in urban areas and young growing force. At the same time, the growing risk of catastrophic global climate change threatens to weaken food production system, increase intensity and frequency of drought, flood, and fires and undermine gains on development and poverty reduction. Although the region has the lowest per capital greenhouse gas emission level in the world, it will need to join global efforts to address climate change, including action to avoid significant increases and to encourage a green economy. Thus, there is a need for the concept of 'greening the economy' as was prescribed at Rio Summit of 1992. Renewable energy is one of the criterions to achieve this laudable goal of maintaining a green economy. There is need to address climate change while facilitating continued economic growth and social progress as energy today is critical to economic growth. Fossil fuels remain the major contributor of greenhouse gas emission. Thus, cleaner technologies such as carbon capture storage, renewable energy have emerged to be commercially competitive. This paper sets out to examine how to achieve a low carbon economy with minimal emission of carbon dioxide and other greenhouse gases which is one of the outcomes of implementing a green economy. Also, the paper examines the different renewable energy sources such as nuclear, wind, hydro, biofuel, and solar voltaic as a panacea to the looming climate change menace. Finally, the paper assesses the different renewable energy and energy efficiency as a propeller to generating new sources of income and jobs and in turn reduces carbon emission. The research shall engage qualitative, evaluative and comparative methods. The research will employ both primary and secondary sources of information. The primary sources of information shall be drawn from the sub Saharan African region and the global environmental organizations, energy legislation, policies and related industries and the judicial processes. The secondary sources will be made up of some books, journal articles, commentaries, discussions, observations, explanations, expositions, suggestions, prescriptions and other material sourced from the internet on renewable energy as a panacea to climate change. All information obtained from these sources will be subject to content analysis. The research result will show that the entire planet is warming as a result of the activities of mankind which is clear evidence that the current development is fundamentally unsustainable. Equally, the study will reveal that a low carbon development pathway in the sub Saharan African region should be embraced to minimize emission of greenhouse gases such as using renewable energy rather than coal, oil, and gas. The study concludes that until adequate strategies are devised towards the use of renewable energy the region will continue to add and worsen the current climate change menace and other adverse environmental conditions.

Keywords: carbon dioxide, climate change, legislation/law, renewable energy

Procedia PDF Downloads 226