Search results for: gender classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4647

Search results for: gender classification

3597 Economic Empowerment before Political Participation: Peacebuilding from the Perspective of Women Activists in the Post-Yugoslav Area

Authors: Emilie Fort

Abstract:

Two major pitfalls emerge at the intersection of gender and peacebuilding literature: the comprehension of women as a homogeneous category and a focus on women's participation in formal peace processes and state structures. However, women belong (and identify) to distinct ethnic, religious, or social groups, and the variety of their social location impacts their ability to mobilize, to participate in peace processes as well as the way they envision peace. This study is based on interviews conducted (remotely) with women activists from the post-Yugoslav area. It shows that women's economic empowerment and education are central issues that must be addressed for women political participation being effective. This has implications for peace projects –their priorities, scales of implementation, etc.– and the allocation of civil society’s funds.

Keywords: ex-Yugoslavia, gender-based issues, peacebuilding, women activism

Procedia PDF Downloads 195
3596 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier

Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur

Abstract:

In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.

Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing

Procedia PDF Downloads 90
3595 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 350
3594 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 173
3593 Disentangling the Relationship between Sustainable Consumption and Psychological Well-Being

Authors: Isabel Carrero, Raquel Redondo, Carmen Valor

Abstract:

An unclosed issue in sustainable consumption (SC) literature is the relationship between SC and well-being. This paper seeks to address three limitations in past research. First, well-being has been measured as a single-faceted construct. However, other authors have defended the need to broaden the well-being construct since it goes beyond the emotional experiences and life satisfaction. By examining the relationship between SC and the multifaceted construct of psychological well-being, past contradictory results may be reconciled. To illustrate, past studies have shown that sustainable consumers experience negative emotions when they become aware of the harm that human beings inflict on the planet but they realize they have limited power to solving the problem or when they find limited alternatives or useful information to make sustainable decisions. Thus, these experiences may negatively affect the dimension of well-being 'environmental mastery'. However, as past studies have demonstrated that sustainable consumers feel meaningful, their assessment of the dimension 'purpose in life' would be positive. Thus, we need to understand how SC impinge on the different facets of psychological well-being, in order to better understand the relationship between SC and well-being. Another limitation of past research is that most studies failed to distinguish among different pro-environmental actions under SC (i.e., boycotting, buycotting) among others. For instance, activists have been found to experience higher levels of well-being and sense of meaning than less committed sustainable consumers but also burnt-out and social rejection, which should affect negatively the dimension of 'positive relations'. Finally, the influence of gender has been overlooked in the literature of SC and well-being when it has been identified consistently as a moderator variable in SC. Therefore, this study aims to (1) investigate the effect of SC on the six facets of psychological well-being, (2) distinguish between conventional SC behaviors vs. activism to examine whether these behaviors influence psychological well-being differently (3) and test gender as a moderator variable. It does so by surveying 861 individuals. This paper contributes to existing literature by showing that the relationship between well-being and SC is more intricate than it has been presented in previous literature, as it depends on the facet, the type of behavior carried out and gender.

Keywords: activism, gender, psychological well-being, structural equation modelling, sustainable consumption

Procedia PDF Downloads 165
3592 From Name-Calling to Insidious Rhetoric: Construction and Evolution of the Transgender Imagery in News Discourse, 1953-2016

Authors: Hsiao-Yung Wang

Abstract:

This essay aims to examine how the transgender imagery has been constructed in the Taiwanese news media and its evolution from 1953 to 2016. It also explores the discourse patterns and rhetorical strategies in the transgender-related issues which contributed to levels of evaluation in forming ‘social deviance.’ Samples for analysis were selected from mainstream newspapers, including China Times, United Daily and Apple Daily. The time frame for sample selection is from August 1953 (when the first transgender case was reported in Taiwan) to June 2016. To enhance understanding of media representation as nominalistic-based, the author refers to the representative of critical rhetoric Raymie McKerrow for his study on remembrance and forgetfulness in public discourse (especially in his model of ‘critique of domination’); thereby categorizing the 64 years of transgender discourse into five periods: (1) transgender as ‘intersex’ of surgical-reparative medical treatment; (2) transgender as ‘freak gender-bender’ with criminal behaviors; (3) transgender as ‘ladyboy’ (‘katoey in a Thai term) of bar girls or sex workers; (4) transgender as ‘cross dresser’ of transvestite performance; and (5) transgender as ‘life-style or human right’ of spontaneous gender identification. Based on the research findings, this essay argues that the characterization of transgender reporting as a site for the production of compulsory sexism and gender stereotype by the specific forms of name-calling. Besides, the evolution of word-image addressing to transgender issues also pinpoints media as a reflection of fashion of the day. While the transgender imagery might be crystallized as ‘still social problems’ or ‘gender transgression’ in insidious rhetoric; and while the so-called ‘phobia’ persistently embodies in media discourse to exercise name-calling in an ambiguous (rather than in a bullying) way or under the cover of humanist-liberalist rationales, these emergent rhetorical dilemma should be resolved without any delay.

Keywords: critical rhetoric, media representation, McKerrow, nominalistic, social deviance, transgender

Procedia PDF Downloads 312
3591 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 162
3590 Multidimensional Poverty: A Comparative Study for Vulnerability of Women in Lebanon

Authors: Elif N. Coban

Abstract:

With the political instability that has prevailed in Lebanon since October 2019, followed by a global pandemic and a deepening concurrent economic crisis after the Beirut Port explosion on August 4, 2020, Syrian refugees in Lebanon have struggled to survive what the World Bank has described as one of the worst economic crises in decades. This study aims to assess the vulnerability of Syrian refugee women. It will present a comparative analysis of refugee and Lebanese households using data from Lebanon’s Labour Force and Household Conditions Survey (LFHLCS) and from VASyr surveys, which are comprehensive annual surveys conducted jointly by the United Nations High Commissioner for Refugees (UNHCR), the United Nations Children’s Fund (UNICEF), and the United Nations World Food Programme (WFP). The study adopts an intersectionality-based method, which deals with gender and marginalized communities from many different perspectives, to put forward a gender-oriented approach. Examining the distribution of socioeconomic status among Syrian and Lebanese households might help to understand the disproportionate burdens borne by women. In this context, multidimensional poverty (MP) helps depict fragile communities’ socioeconomic status and allows a fuller grasp the multiple aspects of deprivation. Finally, this understanding may pave the way to more inclusive policy for decision-makers and practitioners working on refugee issues.

Keywords: multidimensional poverty, gender studies, intersectionality, Syrian refugees, Lebanon

Procedia PDF Downloads 120
3589 Modular Robotics and Terrain Detection Using Inertial Measurement Unit Sensor

Authors: Shubhakar Gupta, Dhruv Prakash, Apoorv Mehta

Abstract:

In this project, we design a modular robot capable of using and switching between multiple methods of propulsion and classifying terrain, based on an Inertial Measurement Unit (IMU) input. We wanted to make a robot that is not only intelligent in its functioning but also versatile in its physical design. The advantage of a modular robot is that it can be designed to hold several movement-apparatuses, such as wheels, legs for a hexapod or a quadpod setup, propellers for underwater locomotion, and any other solution that may be needed. The robot takes roughness input from a gyroscope and an accelerometer in the IMU, and based on the terrain classification from an artificial neural network; it decides which method of propulsion would best optimize its movement. This provides the bot with adaptability over a set of terrains, which means it can optimize its locomotion on a terrain based on its roughness. A feature like this would be a great asset to have in autonomous exploration or research drones.

Keywords: modular robotics, terrain detection, terrain classification, neural network

Procedia PDF Downloads 145
3588 ICanny: CNN Modulation Recognition Algorithm

Authors: Jingpeng Gao, Xinrui Mao, Zhibin Deng

Abstract:

Aiming at the low recognition rate on the composite signal modulation in low signal to noise ratio (SNR), this paper proposes a modulation recognition algorithm based on ICanny-CNN. Firstly, the radar signal is transformed into the time-frequency image by Choi-Williams Distribution (CWD). Secondly, we propose an image processing algorithm using the Guided Filter and the threshold selection method, which is combined with the hole filling and the mask operation. Finally, the shallow convolutional neural network (CNN) is combined with the idea of the depth-wise convolution (Dw Conv) and the point-wise convolution (Pw Conv). The proposed CNN is designed to complete image classification and realize modulation recognition of radar signal. The simulation results show that the proposed algorithm can reach 90.83% at 0dB and 71.52% at -8dB. Therefore, the proposed algorithm has a good classification and anti-noise performance in radar signal modulation recognition and other fields.

Keywords: modulation recognition, image processing, composite signal, improved Canny algorithm

Procedia PDF Downloads 191
3587 Family Cohesion, Interpersonal Difficulties and Mental Health Problems in University Students

Authors: Narmeen Ali, Muhammad Arshad

Abstract:

Cohesion has an exact association with family functioning and enmeshment (togetherness) on one side and disengagement (separateness) on the other. Family cohesion can apprehend as a concerned association that family members have with each other and an affirmation of association inside the family. Family cohesion, assigned as the level of congruity or sympathetic or emotional attachment that relatives have toward each other, and it was seen to be associated with relational well-being and feeling of comfort in the young generation. The cross-sectional research design was used by the researcher to answer the research questions. A stratified sampling technique was used to collect the data from the participants. The data was collected equally from the males and females of different universities and different departments of Lahore, Pakistan. A self-report questionnaire was developed of given literature and which were found to be associated with family cohesion, interpersonal difficulties and mental health problems of university students. The demographic information included age, gender, university’s name, class, family system, parent’s education, parent’s profession, number of siblings and birth order. Correlation shows the negative relation between balanced cohesion and interpersonal difficulties, while interpersonal difficulties have a highly positive relationship with mental health problems. Mental health problems also have a negative correlation with the balanced family cohesion. Gender, family system, depression and anxiety are the significant predictors of interpersonal difficulties scale in university students. And gender showed a significant difference regarding family cohesion and interpersonal difficulty scale, as women reported more interpersonal difficulties than men.

Keywords: family cohesion, interpersonal difficulties, mental health problems, university students

Procedia PDF Downloads 127
3586 A Study of Sexual Violence on Women and Children in Hong Kong

Authors: Wing Hang Shelley Leung

Abstract:

With the rise of the recent social movement, namely #MeToo, it shows that a lot of women and children in fact suffered from sexual abuse and some even suffered from child abuse, including in Hong Kong. In view of the ongoing social movements, this paper argues that we have to look beyond their impacts and understand the roots of the problem: what if the underlying cause of the recent social movements was the inherited values that were rooted in us since we were young, or the public’s lack of confidence in the legal system when it comes to this type of personal matters? What if the movements reveal the problematic issue of the lack of protection plans, either in the private or public sphere? If the legal system is presumed to not be able to preemptively protect everyone or effectively punish all perpetrators, can other pillars provide supports to fill in the loopholes of the legal system? This paper takes a theoretical approach to look into current sexuality education, the legal system in Hong Kong and the adoption of Asian values in society to argue that difficulties that are being placed onto victims in disclosing sexual violence they had experienced. Reviews of the current system and recent sexual assaults court cases for case studies allow the research to address the issues of victims’ experience including (a) their reactions to incidents; (b) issues they have in trials; (c) psychological impacts of the incidents; and (d) their understandings of gender equality before and after incidents. The study is significant because it criticises the current legal system in Hong Kong and provides insights to the public by explaining the dynamics between the problem, the legal system and the society. Also, it contributes to the ongoing research about the psychological impacts to victims in Hong Kong, especially how they are placed in a disadvantaged position in the legal system and society and even for their recovery. It contributes to the findings of how family structures, parental responsibilities and gender studies influence a child’s perception of gender equality in Hong Kong and hence their immediate reactions to incidents. To fully address the needs of victims, especially our younger generation, as well as to prevent future harm and to raise awareness, an inclusive framework which recognizes the needs of protecting and safeguarding women and children in the private sphere and a proper education for gender equality are needed.

Keywords: child abuse, children's rights, domestic violence, gender equality, Hong Kong, Me too, sexual violence, women's rights

Procedia PDF Downloads 171
3585 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning

Authors: Suraj Gururaj, Sumantha Udupa U.

Abstract:

Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.

Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization

Procedia PDF Downloads 376
3584 The Women Entrepreneur Support Fund in Bangladesh: Challenges and Prospects

Authors: Chowdhury Dilruba Shoma

Abstract:

Gender is about equal rights that both males and females having access to responsibilities and opportunities in decision making is a fundamental human right. It is also a precondition for, and a mark of, sustainable people-oriented development. In Bangladesh, women have fewer opportunities than men do to access credit from banks and financial institutions. Entrenched patriarchal attitudes, unequal inheritance rights, and male-dominated hierarchies in the financial system, plus high interest rates and a lack of security/collateral, make it harder for women to obtain bank loans. Limited access to institutional credit is a serious restraint on the productivity and income of women entrepreneurs, (and the wider economy). These gender-biased and structural barriers inhibit women’s access to fundamental economic rights. Using a liberal feminist theoretical lens, this study provides some useful insights into the relationship between gender inequality and entrepreneurship, leading to a better understanding of women’s entrepreneurship development in Bangladesh. Recently, the Bangladesh Government, the United Nations Capital Development Fund, and Bangladesh Bank opened up the Women Entrepreneur Support Fund (WESF) ‒ Credit Guarantee Scheme (CGS) pilot project to cover collateral shortfalls for women entrepreneurs in the small and medium enterprise sector. The aim is to improve gender equality and advance women’s rights in relation to receiving credit. This article examines the challenges and prospects of the WESF-CGS, and suggests that implementation of measures in WESF-CGS policymaking, coupled with a combination of legislatory and regulatory reforms that implement the fundamental tenets of liberal feminism, can lead to a comprehensive and effective credit policy to boost women’s agency and economic empowerment. This may ultimately lead to more sustainable development in Bangladesh.

Keywords: Bangladesh, credit guarantee scheme, liberal feminist theory, women entrepreneur support fund

Procedia PDF Downloads 142
3583 Review of Cyber Security in Oil and Gas Industry with Cloud Computing Perspective: Taxonomy, Issues and Future Direction

Authors: Irfan Mohiuddin, Ahmad Al Mogren

Abstract:

In recent years, cloud computing has earned substantial attention in the Oil and Gas Industry and provides services in all the phases of the industry lifecycle. Oil and gas supply infrastructure, in particular, is more vulnerable to accidental, natural and intentional threats because of its widespread distribution. Numerous surveys have been conducted on cloud security and privacy. However, to the best of our knowledge, hardly any survey is carried out that reviews cyber security in all phases with a cloud computing perspective. Moreover, a distinctive classification is performed for all the cloud-based cyber security measures based on the cloud component in use. The classification approach will enable researchers to identify the required technique used to enhance the security in specific cloud components. Also, the limitation of each component will allow the researchers to design optimal algorithms. Lastly, future directions are given to point out the imminent challenges that can pave the way for researchers to further enhance the resilience to cyber security threats in the oil and gas industry.

Keywords: cyber security, cloud computing, safety and security, oil and gas industry, security threats, oil and gas pipelines

Procedia PDF Downloads 143
3582 Girls' Underperformance in Science: From Biological Determinism and Feminist Perspectives

Authors: Raza Ullah, Hazir Ullah

Abstract:

There is ample evidence that reveals the outstanding performance of girls in a different range of subjects. However, it is pertinent to mention here that boys have historically dominated girls, particularly in math, physics, and technological subjects across the globe with the exception of few developed countries. This article examines the reasons why girls are underdog in STEM subjects. The article critically analyzes two main approaches towards gender and education: biological determinist and feminist. This article highlights that social factors influencing girls performance in STEM subjects have not analyzed critically, and girls underachieving in science has linked with biological and sex differences. The article concludes that the underperformance of girls in a STEM subject is the direct response of socio-cultural factors. Thus, socio-cultural factors are responsible for the dearth of girls in STEM subjects.

Keywords: gender, underperformance, STEM, education, sex

Procedia PDF Downloads 162
3581 I Don’t Know How I Got Here and I Don’t Know How to Get out of It: Understanding Male Pre-service Early Child Education Teachers’ Construction of Professional Identity

Authors: Sabika Khalid, Endale Fantahun Tadesse

Abstract:

Unlike other professional sectors, a great deal of studies has addressed the overwhelming gender disparity phenomena in the early childhood education (ECE) workforce, which is acknowledged for the dominance of women over men teachers. The irony of ECE being a gendered working environment is not only observed in societies that are ruled by gender roles but also in Western countries that claim to margin the gender gap in several professions. The participation of male teachers in ECE across most countries ranged from 1% to 3% of the total preschool or kindergarten teachers. When it comes to a dynamic Chinese society tempered with a deep-rooted tradition and cultural ideology, the ECE has no less place for males, and males have a low place for ECE. According to the Ministry of Education of China (2020), there are over 5 million kindergarten teachers and staff members, while only 2.3% are accounted for male teachers. The traditional gender-based discourse asserts that giving care and guidance for young children related to nurturing ‘mothering’ labels the profession in ECE as women’s work derived from originated from their ‘naturality.’ Although a large volume of evidence sheds light on the cause for low male teachers, the perception of parents, female teachers working with male teachers, and the experience of male teachers working in ECE, less is known and understood before being a teacher. Hence, this study argues that the promotion of the involvement of male teachers in light of their masculinity identity asset in the children's learning environment is comprehended to understand the construction of male student teachers' (preservice) professional identity during early childhood teacher training that allows obtaining substantial evidence that provides a feasible and robust implication in the preparation of competent and professional male preschool teachers that understand, cherish, and bring harmony in Chinese ECE through professionalism socialization with the stakeholders. This study intended to reveal male ECE preservice teachers’ knowledge of their professional identity, i.e., how they perceive themselves as a teacher and what factors agents these perceptions towards their professional identity.

Keywords: male teachers, Early Childhood Education (ECE), self-identity, perception of stakeholders

Procedia PDF Downloads 40
3580 Gendered Labelling and Its Effects on Vhavenda Women

Authors: Matodzi Rapalalani

Abstract:

In context with Spencer's (2018) classic labelling theory, labels influence the perceptions of both the individual and other members of society. That is, once labelled, the individual act in ways that confirm the stereotypes attached to the label. This study, therefore, investigates the understanding of gendered labelling and its effects on Vhavenda women. Gender socialization and patriarchy have been viewed as the core causes of the problem. The literature presented the development of gendered labelling, forms of it, and other aspects. A qualitative method of data collection was used in this study, and semi-structural interviews were conducted. A total of 6 participants were used as it is easy to deal with a small sample. Thematic analysis was used as the data was interpreted and analyzed. Ethical issues such as confidentiality, informed consent, and voluntary participation were considered. Through the analysis and data interpretation, causes such as lack of Christian values, insecurities, and lust were mentioned as well as some of the effects such as frustrations, increased divorce, and low self-esteem.

Keywords: gender, naming, Venda, women, African culture

Procedia PDF Downloads 91
3579 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 679
3578 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
3577 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 105
3576 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values

Authors: Dimiter M. Dimitrov, Abdullah Sadaawi

Abstract:

The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.

Keywords: large-scale assessment, reliability, generalizability theory, plausible values

Procedia PDF Downloads 18
3575 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 657
3574 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece

Authors: Eleni Giouli

Abstract:

Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.

Keywords: adult skills, distance learning, education, lifelong learning

Procedia PDF Downloads 137
3573 Astronomical Object Classification

Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan

Abstract:

We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.

Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis

Procedia PDF Downloads 80
3572 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6

Authors: Levent Dumenci, Laura A. Siminoff

Abstract:

Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.

Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement

Procedia PDF Downloads 178
3571 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set

Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques

Procedia PDF Downloads 416
3570 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 102
3569 Support for Privilege Based on Nationality in Switched-At-Birth Scenario

Authors: Anne Lehner, Mostafa Salari Rad, Jeremy Ginges

Abstract:

Many of life’s privileges (and burdens) are thrust on us at birth. Someone born white or male in the United States is also born with a set of advantages over someone born non-white or female. One aspect of privileges conferred by birth is that they are so entrenched in social institutions and social norms that until they are robustly challenged, they can be seen as a moral good. While American society increasingly confronts privileges based on gender and race, other types of privileges, like one's nationality, see less attention. The nationality one is born into can have enormous effects on one’s personal life, work opportunities, and health outcomes. Yet, we predicted that although most Americans would regard it as absurd to think that white people have a right to protect their privileges and 'way of life', they would regard it as obvious that Americans have a right to protect the American way of life and associated privileges. In a preregistered study we presented 300 Americans randomly with one out of three 'privilege scales' in order to assess their agreement with certain statements. The domains for the privilege scales were nationality, race, and gender. Next, all participants completed the switched-at-birth task assessing ones tendency to essentialize nationality. We found that Americans are more approving of privilege based on nationality than of privilege based on gender and race. In addition, we found an interaction of condition with ideology, showing that conservatives are in general more approving of the privilege of any kind than liberals are, and they especially approve of privilege based on nationality. For the switched-at-birth task, we found that both, liberals as well as conservatives are equally willing to grant the child 100% American nationality. Whether or not one chose 100% is unrelated to the expressed approval of privilege based on nationality. One might hesitate to fully grant the child 100% American nationality in the task, yet disapprove of privilege based on nationality. This shows that as much as we see beholders of privilege being oblivious to their statuses within other social categories, like gender or race, we seem to detect the same blindness for the privilege based on nationality. Liberals showing relatively fewer support for privilege based on nationality compared to conservatives still refused to acknowledge the child as having become 100% American and thereby denying the privileges it potentially bestows upon them.

Keywords: thought experiment, anti-immigrant attitudes, privilege of nationality, immigration, moral circles, psychology

Procedia PDF Downloads 132
3568 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 150