Search results for: flexible joint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2115

Search results for: flexible joint

1065 Inclusive Cities Decision Matrix Based on a Multidimensional Approach for Sustainable Smart Cities

Authors: Madhurima S. Waghmare, Shaleen Singhal

Abstract:

The concept of smartness, inclusion, sustainability is multidisciplinary and fuzzy, rooted in economic and social development theories and policies which get reflected in the spatial development of the cities. It is a challenge to convert these concepts from aspirations to transforming actions. There is a dearth of assessment and planning tools to support the city planners and administrators in developing smart, inclusive, and sustainable cities. To address this gap, this study develops an inclusive cities decision matrix based on an exploratory approach and using mixed methods. The matrix is soundly based on a review of multidisciplinary urban sector literature and refined and finalized based on inputs from experts and insights from case studies. The application of the decision matric on the case study cities in India suggests that the contemporary planning tools for cities need to be multidisciplinary and flexible to respond to the unique needs of the diverse contexts. The paper suggests that a multidimensional and inclusive approach to city planning can play an important role in building sustainable smart cities.

Keywords: inclusive-cities decision matrix, smart cities in India, city planning tools, sustainable cities

Procedia PDF Downloads 141
1064 3D Reconstruction of Human Body Based on Gender Classification

Authors: Jiahe Liu, Hongyang Yu, Feng Qian, Miao Luo

Abstract:

SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models.

Keywords: gender classification, joint detection, SMPL-X, 3D reconstruction

Procedia PDF Downloads 50
1063 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri

Authors: Shishay T. Kidanu

Abstract:

The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.

Keywords: ERT, Karst, MASW, sinkhole

Procedia PDF Downloads 198
1062 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 517
1061 A Literature Review on Development of a Forecast Supported Approach for the Continuous Pre-Planning of Required Transport Capacity for the Design of Sustainable Transport Chains

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Logistics service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilisation and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transport capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organise more economically and ecologically sustainable transport chains in a more flexible way. To further describe such planning aspects, this paper gives a structured literature review on transport planning problems. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing-, network-design- and choice-of-carriers-problems. Models and their developed solution techniques are presented and the literature review is concluded with an outlook to our future research objectives

Keywords: choice of transport mode, fleet-sizing, freight transport planning, multimodal, review, service network design

Procedia PDF Downloads 348
1060 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 153
1059 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 355
1058 Analysis of Moment Rotation Curve for Steel Beam Column Joint

Authors: A. J. Shah, G. R. Vesmawala

Abstract:

Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.

Keywords: bolt, moment, rotation, stiffness, connections

Procedia PDF Downloads 379
1057 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education

Procedia PDF Downloads 92
1056 Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications

Authors: Lingaraju Dumpala, Laxmi Mohan Kumar Chintada, Devadas Deepu, Pravin Kumar Yadav

Abstract:

Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated.

Keywords: Underwater Friction Stir Welding(UFSW), Al alloys, mechanical properties, Normal Friction Stir Welding(NFSW)

Procedia PDF Downloads 267
1055 21st Century Provocation: Modern Slavery, the Implications for Individuals on the Autism Spectrum

Authors: Christina Surmei

Abstract:

Autism Spectrum Disorder (ASD) is defined as a diverse range of developmental conditions that affect an individual’s functionality. ASD is not linear, and individuals can present with deficits in social interaction, communication, and demonstrate limited, repetitive patterns of behaviour, interests, or activities. These characteristics may be observed in a variety of ways and range from mild to severe. ASD may include autism disorder, pervasive developmental disorder not otherwise specified, Asperger’s, or other related pervasive developmental disorders. Modern slavery is defined as 'situations of exploitation that a person cannot refuse or leave because of threats, violence, coercion, and abuse of power or deception'. A review of the literature investigated the prevalence of research regarding ASD and modern slavery. Two universal search engines and five online journals were used as the apparatuses of inquiry. The results revealed two editorials, one study, and one act, totaling four publications attesting to ASD and modern slavery as a joint entity. This is representative of a vast absence of research. However, as individual entities research on autism and modern slavery is in a general high occurrence. This paper has identified a significant gap in research on ASD and modern slavery, and initiates the dialogue to unpack a significant global issue in society today.

Keywords: autism spectrum, education, modern slavery, support

Procedia PDF Downloads 147
1054 Design and Development of an Application for the Evaluation of Personal Injury and Disability in Occupational and Forensic Medicine

Authors: Daniel Suárez, Jesús Tomas, Sandra Sendra, Sandra Viciano-Tudela, Luis Felipe Calle, Javier Urios, Jaime Lloret

Abstract:

Our study is to develop a tool for the mobile phone to an assessment of body damage or determination of the degree of disability. This is a field of action of legal medicine and insurance with obvious economic implications. Those people who have suffered an accident or bodily harm demand a quantification of it. The assessment of bodily harm or disability by the expert medical professional is not exempt from complexity. Sometimes it is difficult to quantify pain; other times, the doctor faces simulators or exaggerators, and on many occasions, it is difficult to remember the extensive tables of scales whose details are complex to remember and apply. We present a tool, as a mobile application, that allows entering the sociodemographic date of the patient as well as the characteristics of the accident suffered by the person. With these preliminary data and introducing bodily damage, an approximate calculation of the compensation that the injured party should receive can be made. One of the results of this study is that it allows calculating joint mobility angles without the need to use a goniometer.

Keywords: mobile tool, body damage, personal injury and disability, telemedicine

Procedia PDF Downloads 66
1053 Digital Economy as an Alternative for Post-Pandemic Recovery in Latin America: A Literature Review

Authors: Armijos-Orellana Ana, González-Calle María, Maldonado-Matute Juan, Guerrero-Maxi Pedro

Abstract:

Nowadays, the digital economy represents a fundamental element to guarantee economic and social development, whose importance increased significantly with the arrival of the COVID-19 pandemic. However, despite the benefits it offers, it can also be detrimental to those developing countries characterized by a wide digital divide. It is for this reason that the objective of this research was to identify and describe the main characteristics, benefits, and obstacles of the digital economy for Latin American countries. Through a bibliographic review, using the analytical-synthetic method in the period 1995-2021, it was determined that the digital economy could give way to structural changes, reduce inequality, and promote processes of social inclusion, as well as promote the construction and participatory development of organizational structures and institutional capacities in Latin American countries. However, the results showed that the digital economy is still incipient in the region and at least three factors are needed to establish it: joint work between academia, the business sector and the State, greater emphasis on learning and application of digital transformation and the creation of policies that encourage the creation of digital organizations.

Keywords: developing countries, digital divide, digital economy, digital literacy, digital transformation

Procedia PDF Downloads 122
1052 Resiliency, Peer and Parental Support as Determinants of Adolescents' Social Adjustment among Secondary Students in Ilorin, Kwara State

Authors: Titilola Adebowale

Abstract:

Some factors are responsible for the social adjustment among the adolescents. The study investigated resiliency, peer and parental support as factors that could determine social adjustment among adolescents in Ilorin, Kwara state. The study adopted descriptive survey research design. A sample size of 300 SS1 & SS2 students from ten secondary schools, six public and four private schools were randomly selected within Ilorin Metropolis. Self-structured questionnaire that was validated and the reliability ensured was used to collect data from the respondents. Four hypotheses were postulated and tested at 0.05 level of significance. Data collected was analysed using Pearson Product Moment Correlation (PPMC) and Regression Analysis. The findings revealed that there was a positive relationship between resiliency and social adjustment: r (298) = .402, p<0.01, r2 = .162; that there was a positive relationship between peer support and social adjustment: r (298) = .570, p<0.01, r2 = .325; that there was a positive relationship between parental support and social adjustment: r (298) = .451, p<0.01, r2 = .203; also reveals significant joint contribution of the independent variables (resilience, peer support, parental support) to the prediction of social adjustment: F (3,296) = 55.587, P<0.01. Various recommendations were given which includes the roles of government, agencies, individuals, parents, teachers, religious and marriage institutions.

Keywords: resiliency, peer support, parental support, adolescents, social adjustment

Procedia PDF Downloads 157
1051 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process

Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar

Abstract:

This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.

Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering

Procedia PDF Downloads 372
1050 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, Rüdiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: damping coefficients, finite element analysis, super-element, state-space model

Procedia PDF Downloads 305
1049 Applying Genetic Algorithm in Exchange Rate Models Determination

Authors: Mehdi Rostamzadeh

Abstract:

Genetic Algorithms (GAs) are an adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this study, we apply GAs for fundamental and technical models of exchange rate determination in exchange rate market. In this framework, we estimated absolute and relative purchasing power parity, Mundell-Fleming, sticky and flexible prices (monetary models), equilibrium exchange rate and portfolio balance model as fundamental models and Auto Regressive (AR), Moving Average (MA), Auto-Regressive with Moving Average (ARMA) and Mean Reversion (MR) as technical models for Iranian Rial against European Union’s Euro using monthly data from January 1992 to December 2014. Then, we put these models into the genetic algorithm system for measuring their optimal weight for each model. These optimal weights have been measured according to four criteria i.e. R-Squared (R2), mean square error (MSE), mean absolute percentage error (MAPE) and root mean square error (RMSE).Based on obtained Results, it seems that for explaining of Iranian Rial against EU Euro exchange rate behavior, fundamental models are better than technical models.

Keywords: exchange rate, genetic algorithm, fundamental models, technical models

Procedia PDF Downloads 255
1048 Development of a Forecast-Supported Approach for the Continuous Pre-Planning of Mandatory Transportation Capacity for the Design of Sustainable Transport Chains: A Literature Review

Authors: Georg Brunnthaller, Sandra Stein, Wilfried Sihn

Abstract:

Transportation service providers are facing increasing volatility concerning future transport demand. Short-term planning horizons and planning uncertainties lead to reduced capacity utilization and increasing empty mileage. To overcome these challenges, a model is proposed to continuously pre-plan future transportation capacity in order to redesign and adjust the intermodal fleet accordingly. It is expected that the model will enable logistics service providers to organize more economically and ecologically sustainable transport chains in a more flexible way. To further describe these planning aspects, this paper gives an overview on transportation planning problems in a structured way. The focus is on strategic and tactical planning levels, comprising relevant fleet-sizing, service-network-design and choice-of-carriers-problems. Models and their developed solution techniques are presented, and the literature review is concluded with an outlook to our future research directions.

Keywords: freight transportation planning, multimodal, fleet-sizing, service network design, choice of transportation mode, review

Procedia PDF Downloads 297
1047 Development of a Highly Flexible, Sensitive and Stretchable Polymer Nanocomposite for Strain Sensing

Authors: Shaghayegh Shajari, Mehdi Mahmoodi, Mahmood Rajabian, Uttandaraman Sundararaj, Les J. Sudak

Abstract:

Although several strain sensors based on carbon nanotubes (CNTs) have been reported, the stretchability and sensitivity of these sensors have remained as a challenge. Highly stretchable and sensitive strain sensors are in great demand for human motion monitoring and human-machine interface. This paper reports the fabrication and characterization of a new type of strain sensors based on a stretchable fluoropolymer / CNT nanocomposite system made via melt-mixing technique. Electrical and mechanical characterizations were obtained. The results showed that this nanocomposite sensor has high stretchability up to 280% of strain at an optimum level of filler concentration. The piezoresistive properties and the strain sensing mechanism of the strain sensor were investigated using Electrochemical Impedance Spectroscopy (EIS). High sensitivity was obtained (gauge factor as large as 12000 under 120% applied strain) in particular at the concentrations above the percolation threshold. Due to the tunneling effect, a non- linear piezoresistivity was observed at high concentrations of CNT loading. The nanocomposites with good conductivity and lightweight could be a promising candidate for strain sensing applications.

Keywords: carbon nanotubes, fluoropolymer, piezoresistive, strain sensor

Procedia PDF Downloads 280
1046 Using Electrical Impedance Tomography to Control a Robot

Authors: Shayan Rezvanigilkolaei, Shayesteh Vefaghnematollahi

Abstract:

Electrical impedance tomography is a non-invasive medical imaging technique suitable for medical applications. This paper describes an electrical impedance tomography device with the ability to navigate a robotic arm to manipulate a target object. The design of the device includes various hardware and software sections to perform medical imaging and control the robotic arm. In its hardware section an image is formed by 16 electrodes which are located around a container. This image is used to navigate a 3DOF robotic arm to reach the exact location of the target object. The data set to form the impedance imaging is obtained by having repeated current injections and voltage measurements between all electrode pairs. After performing the necessary calculations to obtain the impedance, information is transmitted to the computer. This data is fed and then executed in MATLAB which is interfaced with EIDORS (Electrical Impedance Tomography Reconstruction Software) to reconstruct the image based on the acquired data. In the next step, the coordinates of the center of the target object are calculated by image processing toolbox of MATLAB (IPT). Finally, these coordinates are used to calculate the angles of each joint of the robotic arm. The robotic arm moves to the desired tissue with the user command.

Keywords: electrical impedance tomography, EIT, surgeon robot, image processing of electrical impedance tomography

Procedia PDF Downloads 261
1045 Advancing in Cricket Analytics: Novel Approaches for Pitch and Ball Detection Employing OpenCV and YOLOV8

Authors: Pratham Madnur, Prathamkumar Shetty, Sneha Varur, Gouri Parashetti

Abstract:

In order to overcome conventional obstacles, this research paper investigates novel approaches for cricket pitch and ball detection that make use of cutting-edge technologies. The research integrates OpenCV for pitch inspection and modifies the YOLOv8 model for cricket ball detection in order to overcome the shortcomings of manual pitch assessment and traditional ball detection techniques. To ensure flexibility in a range of pitch environments, the pitch detection method leverages OpenCV’s color space transformation, contour extraction, and accurate color range defining features. Regarding ball detection, the YOLOv8 model emphasizes the preservation of minor object details to improve accuracy and is specifically trained to the unique properties of cricket balls. The methods are more reliable because of the careful preparation of the datasets, which include novel ball and pitch information. These cutting-edge methods not only improve cricket analytics but also set the stage for flexible methods in more general sports technology applications.

Keywords: OpenCV, YOLOv8, cricket, custom dataset, computer vision, sports

Procedia PDF Downloads 49
1044 Levels of Selected Heavy Metals in Varieties of Vegetable oils Consumed in Kingdom of Saudi Arabia and Health Risk Assessment of Local Population

Authors: Muhammad Waqar Ashraf

Abstract:

Selected heavy metals, namely Cu, Zn, Fe, Mn, Cd, Pb, and As, in seven popular varieties of edible vegetable oils collected from Saudi Arabia, were determined by graphite furnace atomic absorption spectrometry (GF-AAS) using microwave digestion. The accuracy of procedure was confirmed by certified reference materials (NIST 1577b). The concentrations for copper, zinc, iron, manganese, lead and arsenic were observed in the range of 0.035 - 0.286, 0.955 - 3.10, 17.3 - 57.8, 0.178 - 0.586, 0.011 - 0.017 and 0.011 - 0.018 µg/g, respectively. Cadmium was found to be in the range of 2.36 - 6.34 ng/g. The results are compared internationally and with standards laid down by world health agencies. A risk assessment study has been carried out to assess exposure to these metals via consumption of vegetable oils. A comparison has been made with safety intake levels for these heavy metals recommended by Institute of Medicine of the National Academies (IOM), US Environmental Protection Agency (US EPA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA). The results indicated that the dietary intakes of the selected heavy metals from daily consumption of 25 g of edible vegetable oils for a 70 kg individual should pose no significant health risk to local population.

Keywords: vegetable oils, heavy metals, contamination, health risk assessment

Procedia PDF Downloads 435
1043 The Development of a Conceptual Framework for Assessing Neighborhood Sustainability in South Africa

Authors: Benedict Okundaye, Patricia Tzortzopoulos, Yun Gao

Abstract:

Scholars and international organisations have contended that developing nations lack the technical expertise, infrastructure, and ability to cope with or prepare for the neighbourhood’s sustainable development as Sustainable Development Goals, mainly targeting goal 11 unimpressive accomplishments. Both wealthy and impoverished communities are facing increasing issues due to rapid urbanisation and pandemics, particularly in Africa. The global neighbourhood challenges, especially in developing countries such as South Africa, include pollution poverty, energy poverty, digital poverty, environmental degradation, social exclusion, and socioeconomic inequalities. With the problematic international sustainability assessment tools lingering, few researchers have produced frameworks to engage the local contexts, but improvements are still required. This research anchors on developing a people-centred, flexible, and adaptable neighbourhood sustainability assessment framework that becomes a tool to assess the characteristics of neighbourhood sustainability in South Africa. The conceptual framework employs a variety of approaches, including broader dimensional factors, a closed-ended questionnaire, and statistical analysis to improve on and complement other existing frameworks.

Keywords: participation, development, inclusion, urbanism, cities, resilience

Procedia PDF Downloads 73
1042 Users and Non-Users of Social Media: An Exploratory Study of Rural Women in Eastern Uttar Pradesh

Authors: Neha Bhushan

Abstract:

For the purpose of this study a village of district Azamgarh has been selected which is a part of the most populous and backward state of the country, Uttar Pradesh. In the age of information, everyone has the right to acquire information and it becomes important to assess the acceptance and non-acceptance of social media among rural population. Rural women of the state are showing positive trends in the form of increased social media and mobile usage. This study is an effort to know the purpose of rural women for using social media. The study design is exploratory and qualitative in nature. Data collection primarily consisted of 25 semi-structured individual interviews having 10 open-ended specific questions in one of the villages of Azamgarh district of Eastern Uttar Pradesh. Sampling approach is flexible and situational. Data reveals that rural women have become active on social media since last six months to one year. Most of them are using Facebook, Whatsapp, and YouTube for the purpose of interaction, learning new skills, checking out recipes and latest fashion. This pilot study gives a bird eye view of the problem and opens door for exploring this least explored area.

Keywords: exploratory research, mobile usage, rural women, social media

Procedia PDF Downloads 125
1041 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis

Procedia PDF Downloads 324
1040 Models of Bilingual Education in Majority Language Contexts: An Exploratory Study of Bilingual Programmes in Qatari Primary Schools

Authors: Fatma Al-Maadheed

Abstract:

Following an ethnographic approach this study explored bilingual programmes offered by two types of primary schools in Qatar: international and Independent schools. Qatar with its unique linguistic and socio-economic situation launched a new initiative for educatiobnal development in 2001 but with hardly any research linked to theses changes. The study reveals that the Qatari bilingual schools context was one of heteroglossia, with three codes in operation: Modern Standard Arabic, Colloquial Arabic dialects and English. The two schools adopted different models of bilingualism. The international school adopted a strict separation policy between the two languages following a monoglossic belief. The independent school was found to apply a flexible language policy. The study also highlighted the daily challnges produced from the diglossia situation in Qatar, the difference between students and teacher dialect as well as acquiring literacy in the formal language. In addition to an abscence of a clear language policy in Schools, the study brought attention to the instructional methods utilised in language teaching which are mostly associated with successful bilingual education.

Keywords: diglossia, instructional methods, language policy, qatari primary schools

Procedia PDF Downloads 458
1039 Second Order Cone Optimization Approach to Two-stage Network DEA

Authors: K. Asanimoghadam, M. Salahi, A. Jamalian

Abstract:

Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.

Keywords: network DEA, conic optimization, undesirable output, SBM

Procedia PDF Downloads 179
1038 Experimental Study on Improving the Engineering Properties of Sand Dunes Using Random Fibers-Geogrid Reinforcement

Authors: Adel M. Belal, Sameh Abu El-Soud, Mariam Farid

Abstract:

This study presents the effect of reinforcement inclusions (fibers-geogrids) on fine sand bearing capacity under strip footings. Experimental model tests were carried out using a rectangular plates [(10cm x 38 cm), (7.5 cm x 38 cm), and (12.5 cm x 38 cm)] with a geogrids and randomly reinforced fibers. The width and depth of the geogrid were varied to determine their effects on the engineering properties of treated poorly graded fine sand. Laboratory model test results for the ultimate stresses and the settlement of a rigid strip foundation supported by single and multi-layered fiber-geogrid-reinforced sand are presented. The number of layers of geogrid was varied between 1 to 4. The effect of the first geogrid reinforcement depth, the spacing between the reinforcement and its length on the bearing capacity is investigated by experimental program. Results show that the use of flexible random fibers with a content of 0.125% by weight of the treated sand dunes, with 3 geogrid reinforcement layers, u/B= 0.25 and L/B=7.5, has a significant increase in the bearing capacity of the proposed system.

Keywords: earth reinforcement, geogrid, random fiber, reinforced soil

Procedia PDF Downloads 296
1037 Design and Implementation of Remote Application Virtualization in Cloud Environments

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang

Abstract:

Cloud computing is a paradigm of computing that shifts the way computing has been done in the past. The users can use cloud resources such as application software or storage space from the cloud without needing to own them. This paper is focused on solutions that are anticipated to introduce IaaS idea to build cloud base services and enable the individual remote user's applications in cloud environments, which appear as if they are running on the end user's local computer. The available features of application delivery solution have been developed based on our previous research on the virtualization technology to offer applications independent of location so that the users can work online, offline, anywhere, with appropriate device and at any time. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud service. Users no longer need to burden the system managers and drastically reduces the overall cost of hardware and software licenses. Moreover, this flexible remote application virtualization service represents the next significant step to the mobile workplace, and it lets users access their applications remotely through cloud services anywhere. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.

Keywords: cloud computing, IaaS, virtualization, application delivery

Procedia PDF Downloads 261
1036 Improving Automotive Efficiency through Lean Management Tools: A Case Study

Authors: Raed El-Khalil, Hussein Zeaiter

Abstract:

Managing and improving efficiency in the current highly competitive global automotive industry demands that companies adopt leaner and more flexible systems. During the past 20 years the domestic automotive industry in North America has been focusing on establishing new management strategies in order to meet market demands. 98The lean management process also known as Toyota Manufacturing Process (TPS) or lean manufacturing encompasses tools and techniques that were established in order to provide the best quality product with the fastest lead time at the lowest cost. The following paper presents a study that focused on improving labor efficiency at one of the Big Three (Ford, GM, Chrysler LLC) domestic automotive facility in North America. The objective of the study was to utilize several lean management tools in order to optimize the efficiency and utilization levels at the “Pre-Marriage” chassis area in a truck manufacturing and assembly facility. Utilizing three different lean tools (i.e. Standardization of work, 7 Wastes, and 5S) this research was able to improve efficiency by 51%, utilization by 246%, and reduce operations by 14%. The return on investment calculated based on the improvements made was 284%.

Keywords: lean manufacturing, standardized work, operation efficiency, utilization

Procedia PDF Downloads 495